• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisit of advection-dispersion equation model with velocity-dependent dispersion in capturing tracer dynamics in single empty fractures *

    2019-01-05 08:08:40MuWang王沐WeidongZhao趙衛(wèi)東RhiannonGarrardYongZhangYongLiu劉詠JiazhongQian錢(qián)家忠
    關(guān)鍵詞:衛(wèi)東

    Mu Wang (王沐), Wei-dong Zhao (趙衛(wèi)東), Rhiannon Garrard , Yong Zhang , , Yong Liu (劉詠),Jia-zhong Qian (錢(qián)家忠)

    1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China 2. Department of Geological Sciences, University of Alabama, Tuscaloosa, USA

    3. College of Mechanics and Materials, Hohai University, Nanjing 210098, China

    4. School of Food and Biotechnology Engineering, Hefei University of Technology, Hefei 230009, China

    Abstract: An accurate quantification of the contaminant transport through fractured media is critical for dealing with water-quality related scientific and engineering issues, where the dispersion coefficient is an important and elusive parameter for the solute transport modeling. Many previous studies show that the dispersion coefficient (D) in the standard advection-dispersion equation (ADE)model can be approximated by D = λ (where α is the dispersivity), a formula to be revisited systematically in this study by laboratory experiments and model analysis. First, a series of tracer transport experiments in single empty fractures are conducted in cases of different hydraulic gradients. Second, the tracer breakthrough curves are determined by simulations based on the ADE model,to obtain the dispersion coefficients corresponding to various fracture roughnesses and flow velocities. A varying trend of λ is analyzed under different flow conditions. Results show that although the standard ADE model cannot be used to characterize the late-time tailing of the tracer BTCs, likely due to the solute retention, this simple model can simulate most of the solute mass dynamics moving through fractures and may therefore provide information for estimating the dispersion in parsimonious models appropriate for the non-Fickian transport. The following three conclusions are drawn: (1) the peak of the breakthrough curves comes earlier with increasing the roughness, according to the ADE simulation, (2) the value of λ generally decreases as the relative roughness of the fracture increases, (3) the value of λ is approximately equal to 2.0 when the dispersion is dominated by the molecular diffusion in the smooth fracture.

    Key words: Dispersion coefficient, molecular diffusion, roughness, variation trend, single fracture

    Introduction

    In hydrogeological sciences, the nature of the groundwater flow through fractured media is an important issue[1-3]. Yu et al.[4]investigated three different aquifer host rocks through leaching experiments with 13 trace elements under different experimental conditions, to examine the effect of the host rock mineralogy on the leachate composition, and to extract useful information about the groundwater source. Qian et al.[5]discussed the influence of the roughness and the Reynolds number on the flow through a single rough fracture and concluded that those factors did influence the flow’s friction. The solute transport in fractured media has also attracted a great deal of research attention. Wang et al.[6]developed an efficient quasi-3-D random walk particle tracking (RWPT) algorithm to simulate the solute transport through natural fractures based on a 2-D flow field generated from the modified local cubic law(MLCL). Zhou et al.[7]dealt with a coupled threedomain transport problem using mobile and immobile domains to characterize a filled single fracture and a matrix domain to characterize the rock body. Kang et al.[8]proposed a correlated continuous-time random walk (CTRW) modeling approach, as a simple yet powerful framework for characterizing the impact of the velocity distribution and correlation on the transport in fractured media. Becker and Shapiro[9]excluded the influence of the diffusion and the tough flow in the fracture solute transport, and found that the abnormal phenomenon in the breakthrough curves is caused by the anisotropy of the aperture distribution,which may be attributed to the fracture surface roughness.

    The ADE model with a velocity-dependent dispersion coefficient was proposed to quantify the contaminant transport in geologic media. The solute transport in three-dimensional heterogeneous media can be quantified by the following ADE model

    where /ct?? is the concentration variation of the solute in the migration process, and the subscripts(,,)x y z denote the directions of the velocity or the dispersion. The first three items on the right side of the equation express the solute transport caused by the hydrodynamic dispersion, and the last three items express the solute transport caused by the advection.The Green’s function solution of the 1-D advectiondispersion equation (ADE) is expressed as

    which describes a symmetric normal distribution in space at a given time, meaning that the resident concentration distribution is unimodal and it attains a peak value when = /t x v.

    If (1) there is linear isothermal adsorption on the fracture surface during the solute transport, and (2) the inlet boundary has a continuous source with a constant concentration0C, then the definite solution for the solute transport process can be expressed as:

    where C is the solute concentration,dR is the retardation coefficient, andLD is the longitudinal dispersion coefficient. The analytical solution of Eq.(3) is

    With a large enough x or t, the second item in Eq. (4) can be ignored, then one obtains

    which can be simplified as

    leading to

    In this study, Eq. (7) is solved using the Matlab’s erfinv fu nction, to obtain a linear relationship between t and, and the dispersion coefficient can be expressed as

    Parsimonious models with an effective dispersion coefficient were proposed by adding additional parameters to the standard ADE in order to simulate the transport in complex porous or fractured media with intrinsic multi-scale heterogeneity. For example, the well-known continuous time random walk (CTRW)model developed by Berkowitz et al.[10], the multi-rate mass transfer (MRMT) model developed by many researchers, including Tecklenburg et al.[11], and the fractional advection-dispersion equation (FADE)models[12], used to capture the non-Fickian or anomalous transport in natural geological media. In these stochastic models, a spatial averaged velocity and a constant dispersion coefficient are usually assumed,and the impact of the local flow velocities deviating from the mean velocity on the solute transport is captured by additional terms, such as the memory kernel in the CTRW model, the mass transfer rate coefficients combined by the capacity coefficients in the MRMT model, and the fractional index in the FADE model. The direct measurement of most of these additional parameters, however, remains a challenge. Most importantly, the effective and typically constant dispersion coefficient is not known in these complex models. Since the standard ADE model is much simpler and for the velocity-dependent dispersion coefficient, a potential mathematical formula can be used (although the exact values remain to be shown), we revisit and evaluate the standard transport model with a constant dispersion coefficient, which might shed some light to the selection of the effective dispersion coefficient in the CTRW, MRMT, or the FADE models.

    Fig. 1 Schematic diagram of experimental setup

    Table 1 Values of solute transport Pe and D/ Dd in different fracture situations

    When moving through a porous or fractured medium, the contaminant particles can be driven by the mean flow velocity, whose spatial fluctuation (due to the local variation of hydraulic properties) can be accounted by the hydrodynamic dispersion with a coefficient D. The correlation between the dispersion coefficient D and the flow velocity v was quantitatively studied. For example, Dou et al.[13]obtained roughness scale dependence of the relationship between tracer longitudinal dispersion and Peclet number in fractures. Later, Dentz and Carrera[14]quantified the dynamic D by using a spatial moment analysis. Wang et al.[15]derived a closed-form expression for the dynamic longitudinal dispersion coefficient and analyzed the time and length scales for the distinguishing Fickian and non-Fickian transport regimes. Bear[16]built a model by a string of small units, linking each other with short passages, and he assumed that when a fluid with a certain concentration of the tracer flowed into a unit of another fluid with a different concentration, the former displaced a part of the latter fluid, to form a new kind of homogeneous fluid immediately, and this unit was called the ideal mixer. In the ideal mixer, the effect of the molecular diffusion is negligible. After many tests, he discussed the correlation between the dispersion coefficient and the flow velocity, and came up with the equation

    where α is the dispersivity, v is the flow velocity,and λ is an exponent with a suggested value ranging from 1.0-2.0. Pugliese and Poulsen[17]established a set of expressions for estimating the dispersion coefficient in porous media at low velocities, taking into account the effect of porous media on the physical properties, they also came up with Eq. (8). Douglas and Stephen[18]analyzed the influence of the fracture roughness on the correlation between the dispersion coefficient and the flow velocity in a single fracture,and concluded that the value of λ was 2.0 for smooth parallel plates, and approximately 1.3 for rough plates. A systematic study is still needed to further understand the nature of the solute transport in fractured media and explore the variations of the dispersion coefficient against the fracture roughness and the flow velocities, which is the purpose of this study.

    In this paper, we carry out the laboratory experiments and the model analysis to decipher the velocitydependent dispersion. We first conduct a series of hydraulic tests with different hydraulic gradients in the laboratory. The solute transport is then fitted using the ADE model, to analyze and disclose the variations of the dispersion coefficients against the fracture roughness and the flow velocity under different hydraulic conditions.

    1. Experimental design

    1.1 Experimental setup

    The schematic diagram of the experimental setup of the flow and transport tests in a single fracture is shown in Fig. 1(a). The model is made of perspex casing with dimensions of 982 mm×250 mm×7.5 mm(length × width × height), placed horizontally. It includes three major parts: the inflow (outflow)flumes, the steady flow flumes, and the single fracture.The fracture roughness is varied by affixing rough plastic plates along the fracture walls, as shown in Fig.1(b). There are six types of fractures according to the size of plastic plates: 40 mm×40 mm×1 mm, 40 mm×40 mm×2 mm, 40 mm×40 mm×3 mm, 20 mm×20 mm×1 mm, 20 mm×20 mm×2 mm and 20 mm×20 mm×3 mm,marked with (a) through (f), respectively, as shown in Tables 1, 2. The relative roughness is the ratio of the surface relief to the fracture aperture, and the surface relief is the height of the plastic plate and the aperture value is obtained from Table 1. The water and the tracer (NaCl) flow into the fracture from the steady flow flume. The tracer samples are taken from a sampling port, and put on the fracture plate, to the right of the steady flow flume. They are then measured by a DDS-307 conductivity meter, manufactured by the Shanghai Optical Instrument Factory. The tracer concentration values are obtained by using a standard curve. All experiments are conducted with tap water.

    Table 2 Values of λ in different fracture situations

    1.2 Experimental method

    A graduated cylinder is used to gauge the steady flow velocity during the tests with errors below 2%.The height of the inflow (outflow) flumes could be moved up or down, and the water head differences are controlled by adjusting both ends of the model. The water flow is monitored to determine if it follows the Darcy’s law. The tracer conductivity is measured for the collected samples and is used to plot the breakthrough curves according to standard curve procedures. The dispersion coefficients are calculated in accordance with the standard advection-dispersion equation.

    2. Results and discussions

    The Peclet number, according to the diagram of the relationship between the molecular diffusion and the hydrodynamic dispersion by Bear[19]is =Pe, where v is the average velocity, b is the average aperture, anddD is the molecular diffusion coefficient. Peclet numbers calculated from the tests are listed in Table 1. The values of Pe range from, and the values ofrange fromIn the equation, the parameter ? is approximately equal to 0.5, m is an exponent,whose value ranges from 0 to 1.2. Our experiment points fall into the zones IV and V, as seen in Fig. 2.In these zones, the mechanical dispersion plays the major role while the effect of the molecular diffusion is negligible. In this case the dispersion coefficient can be determined as =D vλα .

    Fig. 2 Relationship between molecular diffusion and hydrodynamic dispersion

    2.1 Analysis of flow condition

    In this test, the heights of the inflow (outflow)flumes are adjusted and the flow velocities are calculated for different hydraulic gradients. Their relationship is shown in Fig. 3. The Darcy’s law and the Forchheimer’s formula are used to fit the experimental data. The correlation coefficient for the Forchheimer’s formula is larger than that for the Darcy’s law. In addition, the relationship between the hydraulic gradient and the velocity is nearly quadratic. Therefore,the water is regarded as obeying the non-Darcian flow.

    Fig. 3 Fitting curves of hydraulic gradient versus velocity in fractures of different roughness for different equations

    Fig. 4 Experimental data and ADE breakthrough curves at the velocity of 31.4105 mm/s

    2.2 ADE model of solute transport

    The NaCl is used as the tracer in this study.The tests of the solute transport are conducted with the tracer concentration values obtained according to the standard curve procedure using the conductivity values. The breakthrough curves of the solute transport through the rough-walled and smooth fractures are determined by the simulation with the ADE model,as shown in Fig. 4, Fig. 6(a).

    The simple ADE model with a constant dispersion coefficient for each BTC can capture the dynamics for a majority of the solute mass moving through each fracture. In addition, the timing of the concentration peak occurs earlier as the roughness increases,as shown in Figs. 4(a)-4(c) and Figs. 4(d)-4(f). The reason might be that the channeling of the groundwater flow is enhanced as the roughness increases,and therefore, the solute transported in the channel moves relatively faster than with the average velocity.

    It is worth noting that with the simple ADE model, the late-time tailing of the tracer BTC is underestimated. The delayed transport for some solute particles is one of the common characteristics of the non-Fickian transport, which is typically caused by the solute retention at zones of relatively small velocities. The retention process cannot be captured by a Fickian diffusive process with the standard ADE model, but may be efficiently simulated by stochastic models such as the CTRW, MRMT, or FADE models,where additional parameters and/or terms are designed to specifically capture the solute retention. Hence the dispersion coefficient determined in this study with the standard ADE might serve as a useful reference for the effective, typically constant dispersion coefficient in the stochastic models. We will focus on the stochastic models for the non-Fickian transport in a future study.

    Fig. 5 Log-log plots of dispersion coefficient versus velocity in rough fractures of different roughnesses

    2.3 Analysis of velocity dependence of dispersion co-efficient in rough fracture

    Corresponding to the above analysis, the values of the dispersion coefficient are calculated at different flow velocities, then log-log plots of the values are drawn, as shown in Fig. 5. The values of λ obtained from the plots (a) through (f) are listed in Table 2:they range between 1.0 and 2.0, in good agreement with those in the study of porous media by Bear[16].

    In addition, the rough plastic plates in the fractures (a)-(c) have the same length and width but different heights. From Table 2 it is evident that the values of λ decrease with the increase of the relative fracture roughness, and the same trend is found in the fractures (d) through (f).

    2.4 Analysis of velocity dependence of dispersion co-efficient in smooth fracture

    The solute transport in smooth fractures is also an important aspect in the observation. In this study,the dispersion coefficients are calculated, for different flow velocities, in a smooth fracture with a 4 mm aperture. The results are shown in Fig. 6(b). The value of λ is found to be 2.0038. Next, Pe is calculated for different flow velocities (Table 3). Detwiler and Rajaram[20]concluded that the molecular diffusion dominates the solute transport in cases of 1Pe≤ in a smooth fracture. In this study, 1Pe≤ for all cases,thus the solute transport is indeed dominated by the molecular diffusion. The results confirm the research results of Douglas et al.[18]for the dispersion coefficient, proportional to the square of the velocity for the transport dominated by the molecular diffusion in the smooth fracture.

    Fig. 6 Experimental results for the smooth fractures

    Table 3 The Pe values versus flow velocities in smooth fracture of 4 mm aperture

    3. Conclusions

    In this study, the tracer transport tests are conducted for various flow velocities and fracture roughnesses. From the statistical analysis, the following conclusions can be drawn:

    (1) Although the standard ADE model can not well simulate the late-time tailing in the tracer breakthrough due to the solute retention, it can capture the early arrivals and the main features of the transport that the peak of the breakthrough curve arrives earlier as the roughness in the rough-walled fracture increases. This simple model may, therefore, provide some useful information for estimating the effective and typically constant dispersion coefficient used in parsimonious, stochastic transport models designed specifically for the non-Fickian transport.

    (2) The dispersion coefficient is found to be proportional to the flow velocity when the dispersion is dominated by the advection in a rough fracture. The relationship can be expressed as =D vλα (which follows the same power-law rule as that identified by many previous studies), where the experimental values of λ range from 1.1482 to 1.5003, decreasing with the increase of the relative fracture-wall roughness under non-Darcian flow conditions.

    (3) The proportional relationship between the dispersion coefficients and the flow velocity is found to be stable when the dispersion is dominated by the molecular diffusion in smooth fractures, where the value of λ is approximately equal to 2.0.

    Acknowledgements

    This work was supported by the Key Program of Huainan Mining Group Co. LDT (Grant No. HNKYJT-JS-2010), the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2013490111), the Public Welfare Geological Survey Program of Anhui Province (Grant No.2015-g-26), the Shandong Province Pilot Program of Science and Technology on Construction of Water Eco-civilization. YZ was funded by the National Science Foundation, United States (Grant Nos. DMS-1025417, DMS-1460319.

    猜你喜歡
    衛(wèi)東
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    以問(wèn)導(dǎo)學(xué),在轉(zhuǎn)換中理解概念
    非新生兒破傷風(fēng)的治療進(jìn)展
    《雍和宮》
    攝影與攝像(2020年3期)2020-09-10 07:22:44
    油畫(huà) 苗女
    南風(fēng)(2020年11期)2020-08-04 04:55:24
    祝衛(wèi)東
    愛(ài)打噴嚏的小河馬
    致衛(wèi)東先生(信札)
    作品(2017年6期)2017-06-19 19:37:06
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    種心情
    亚洲国产精品一区三区| 一区二区三区乱码不卡18| 女性被躁到高潮视频| 老汉色∧v一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 色94色欧美一区二区| av在线观看视频网站免费| 精品久久久久久电影网| 精品少妇内射三级| 国产精品免费视频内射| 在线 av 中文字幕| 2021少妇久久久久久久久久久| 日韩av免费高清视频| bbb黄色大片| 亚洲国产精品一区二区三区在线| 欧美在线一区亚洲| 日韩人妻精品一区2区三区| 岛国毛片在线播放| 极品少妇高潮喷水抽搐| 搡老岳熟女国产| 亚洲成人国产一区在线观看 | 又大又黄又爽视频免费| 国产精品av久久久久免费| 欧美变态另类bdsm刘玥| 欧美精品高潮呻吟av久久| 亚洲精品久久成人aⅴ小说| 国产伦人伦偷精品视频| 国产97色在线日韩免费| av女优亚洲男人天堂| 丝袜喷水一区| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 超碰成人久久| 秋霞伦理黄片| 亚洲精品视频女| 国产亚洲欧美精品永久| 黄色视频在线播放观看不卡| 亚洲精品一二三| 久久99一区二区三区| 精品免费久久久久久久清纯 | 久久人人爽人人片av| 日韩中文字幕欧美一区二区 | 久久99一区二区三区| 少妇人妻久久综合中文| 可以免费在线观看a视频的电影网站 | 一级毛片电影观看| 在线观看免费午夜福利视频| 少妇人妻久久综合中文| 黄片播放在线免费| 午夜激情av网站| 亚洲国产精品成人久久小说| 国产爽快片一区二区三区| 国产xxxxx性猛交| 热99久久久久精品小说推荐| 90打野战视频偷拍视频| 亚洲精品日韩在线中文字幕| 国产成人欧美在线观看 | 久久久精品免费免费高清| 国产探花极品一区二区| 亚洲人成77777在线视频| 波多野结衣一区麻豆| 丰满迷人的少妇在线观看| 黄色视频在线播放观看不卡| 妹子高潮喷水视频| 一区福利在线观看| 黄频高清免费视频| 精品国产一区二区久久| www.熟女人妻精品国产| 久久 成人 亚洲| 女性被躁到高潮视频| 亚洲成人一二三区av| 免费少妇av软件| www.av在线官网国产| 亚洲精品aⅴ在线观看| 久久久久精品久久久久真实原创| www.熟女人妻精品国产| 亚洲情色 制服丝袜| 91老司机精品| 搡老乐熟女国产| 国产99久久九九免费精品| 黄色毛片三级朝国网站| 国产精品欧美亚洲77777| 欧美精品av麻豆av| 久久影院123| 在线观看国产h片| 欧美日韩国产mv在线观看视频| 中文字幕av电影在线播放| 中文字幕最新亚洲高清| 狂野欧美激情性xxxx| 国产亚洲最大av| 亚洲第一青青草原| 精品一品国产午夜福利视频| 午夜免费男女啪啪视频观看| 国产男女超爽视频在线观看| 男女下面插进去视频免费观看| 大香蕉久久成人网| 日本wwww免费看| 国产精品一区二区在线不卡| 婷婷色综合www| 日韩中文字幕欧美一区二区 | 在线观看人妻少妇| 国产伦理片在线播放av一区| 国产精品av久久久久免费| 国产精品成人在线| xxx大片免费视频| 国产成人av激情在线播放| 免费日韩欧美在线观看| 国产一级毛片在线| 80岁老熟妇乱子伦牲交| 女人久久www免费人成看片| 狠狠婷婷综合久久久久久88av| 亚洲国产精品一区二区三区在线| 青草久久国产| 中文字幕色久视频| 观看美女的网站| 少妇 在线观看| 欧美成人午夜精品| 亚洲少妇的诱惑av| 18禁国产床啪视频网站| 狠狠婷婷综合久久久久久88av| 亚洲精品aⅴ在线观看| 最近最新中文字幕大全免费视频 | 91成人精品电影| 成年人午夜在线观看视频| 精品卡一卡二卡四卡免费| 毛片一级片免费看久久久久| 亚洲欧美清纯卡通| 午夜免费鲁丝| 亚洲国产中文字幕在线视频| 最新在线观看一区二区三区 | 黄色 视频免费看| 国产日韩欧美视频二区| 一区二区三区激情视频| 亚洲av在线观看美女高潮| 亚洲在久久综合| 老汉色av国产亚洲站长工具| 久久精品国产亚洲av涩爱| 18禁国产床啪视频网站| 黄色一级大片看看| 香蕉丝袜av| 成人手机av| 丁香六月欧美| h视频一区二区三区| 亚洲av中文av极速乱| 综合色丁香网| 亚洲精品一区蜜桃| 国产福利在线免费观看视频| 黄色毛片三级朝国网站| 亚洲国产看品久久| 国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 丝瓜视频免费看黄片| 一级毛片黄色毛片免费观看视频| 亚洲国产中文字幕在线视频| 乱人伦中国视频| 男女之事视频高清在线观看 | 日日摸夜夜添夜夜爱| 极品少妇高潮喷水抽搐| 黄片无遮挡物在线观看| 好男人视频免费观看在线| 欧美av亚洲av综合av国产av | 久久久久久人人人人人| 国产成人精品久久二区二区91 | 一区二区日韩欧美中文字幕| 日韩不卡一区二区三区视频在线| 日韩 亚洲 欧美在线| 十八禁网站网址无遮挡| 国产精品三级大全| 日韩制服丝袜自拍偷拍| 日韩av在线免费看完整版不卡| 欧美日韩视频高清一区二区三区二| 日韩制服丝袜自拍偷拍| 国产黄频视频在线观看| 日本欧美国产在线视频| 亚洲精品美女久久av网站| 亚洲av男天堂| 免费看av在线观看网站| 色网站视频免费| 国产男女内射视频| 97在线人人人人妻| 成人手机av| 亚洲综合精品二区| 亚洲第一青青草原| 久久久国产一区二区| 精品国产超薄肉色丝袜足j| 亚洲成色77777| 又粗又硬又长又爽又黄的视频| 国产亚洲一区二区精品| 国产av码专区亚洲av| 久久午夜综合久久蜜桃| 乱人伦中国视频| 久久免费观看电影| 丰满少妇做爰视频| 在线天堂中文资源库| 国产男人的电影天堂91| 免费黄网站久久成人精品| 精品福利永久在线观看| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 国产淫语在线视频| 精品一区二区三区四区五区乱码 | 晚上一个人看的免费电影| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 天天影视国产精品| 免费高清在线观看视频在线观看| 免费av中文字幕在线| 亚洲av福利一区| 久久97久久精品| 男的添女的下面高潮视频| 超色免费av| 国产一区二区在线观看av| 男男h啪啪无遮挡| 在线观看人妻少妇| 男女下面插进去视频免费观看| 丰满乱子伦码专区| 侵犯人妻中文字幕一二三四区| 亚洲精华国产精华液的使用体验| 电影成人av| 久久久久久久久免费视频了| 国产乱来视频区| 久久久久精品人妻al黑| 亚洲伊人久久精品综合| 亚洲综合精品二区| 巨乳人妻的诱惑在线观看| 国产黄色免费在线视频| xxxhd国产人妻xxx| 18禁观看日本| 亚洲av日韩精品久久久久久密 | 在线天堂中文资源库| 中文字幕人妻熟女乱码| xxxhd国产人妻xxx| 国产日韩欧美视频二区| 免费看不卡的av| 日韩人妻精品一区2区三区| 2018国产大陆天天弄谢| a 毛片基地| 国产精品香港三级国产av潘金莲 | 90打野战视频偷拍视频| 精品国产一区二区久久| 亚洲成人手机| 十八禁高潮呻吟视频| 黑丝袜美女国产一区| 亚洲免费av在线视频| 咕卡用的链子| 亚洲视频免费观看视频| 国产国语露脸激情在线看| 不卡av一区二区三区| 国产不卡av网站在线观看| 欧美日韩视频精品一区| 亚洲欧美一区二区三区久久| 欧美黑人精品巨大| 午夜日本视频在线| 欧美中文综合在线视频| 国产乱来视频区| 国产免费现黄频在线看| 亚洲av男天堂| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 桃花免费在线播放| 国产精品久久久久久精品电影小说| a级片在线免费高清观看视频| 最黄视频免费看| 亚洲精品日本国产第一区| 国产一卡二卡三卡精品 | 丰满迷人的少妇在线观看| 欧美成人精品欧美一级黄| 成人免费观看视频高清| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| 丝袜美足系列| 悠悠久久av| 人人妻人人爽人人添夜夜欢视频| 国产 一区精品| 亚洲色图综合在线观看| 熟妇人妻不卡中文字幕| 美女主播在线视频| 欧美亚洲日本最大视频资源| 中文欧美无线码| 日韩 亚洲 欧美在线| 国产伦人伦偷精品视频| 亚洲欧美清纯卡通| 欧美日韩亚洲综合一区二区三区_| 亚洲 欧美一区二区三区| 亚洲精华国产精华液的使用体验| 男女高潮啪啪啪动态图| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 女人被躁到高潮嗷嗷叫费观| av在线观看视频网站免费| 久久久久精品性色| 亚洲国产精品一区二区三区在线| 不卡av一区二区三区| 国产男女超爽视频在线观看| 王馨瑶露胸无遮挡在线观看| 精品酒店卫生间| 人人澡人人妻人| 欧美黑人精品巨大| √禁漫天堂资源中文www| 搡老岳熟女国产| 99热网站在线观看| 九九爱精品视频在线观看| 成人黄色视频免费在线看| 精品少妇一区二区三区视频日本电影 | 免费看不卡的av| 国产一区二区在线观看av| 少妇人妻精品综合一区二区| 90打野战视频偷拍视频| 丰满乱子伦码专区| 乱人伦中国视频| 亚洲av日韩在线播放| 观看美女的网站| 波多野结衣av一区二区av| 国产成人精品无人区| 成人18禁高潮啪啪吃奶动态图| 最近的中文字幕免费完整| 国产精品久久久人人做人人爽| 国产精品成人在线| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三区在线| 久久久久久久久久久免费av| 一级毛片电影观看| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆 | 各种免费的搞黄视频| 男人舔女人的私密视频| 日本wwww免费看| 久久久久久人妻| 波多野结衣一区麻豆| 另类精品久久| 这个男人来自地球电影免费观看 | 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 国产精品一国产av| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 在现免费观看毛片| 男的添女的下面高潮视频| 国产伦理片在线播放av一区| 欧美精品av麻豆av| 尾随美女入室| 青青草视频在线视频观看| 尾随美女入室| xxxhd国产人妻xxx| av有码第一页| 亚洲欧美一区二区三区久久| 一级毛片黄色毛片免费观看视频| 999久久久国产精品视频| 日本午夜av视频| 久久久久网色| 国产一区二区三区综合在线观看| 精品亚洲成a人片在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 国产不卡av网站在线观看| 免费在线观看黄色视频的| 老司机深夜福利视频在线观看 | 亚洲av中文av极速乱| 嫩草影院入口| 久久久久久久国产电影| 人人妻人人澡人人爽人人夜夜| 男女边吃奶边做爰视频| 纯流量卡能插随身wifi吗| 国产黄色免费在线视频| 久久久久久免费高清国产稀缺| 国产精品无大码| 国产成人欧美| 久久这里只有精品19| 久久精品国产a三级三级三级| 99精品久久久久人妻精品| 亚洲国产成人一精品久久久| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲av男天堂| 日韩视频在线欧美| 激情五月婷婷亚洲| 亚洲国产精品999| 欧美久久黑人一区二区| 欧美激情极品国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 国产免费现黄频在线看| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 亚洲国产最新在线播放| 亚洲一码二码三码区别大吗| 亚洲五月色婷婷综合| 久久99精品国语久久久| 女的被弄到高潮叫床怎么办| 日本vs欧美在线观看视频| 丁香六月天网| 午夜久久久在线观看| 秋霞伦理黄片| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区 | 国产成人精品久久久久久| 热99国产精品久久久久久7| 天天操日日干夜夜撸| 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 久久久久人妻精品一区果冻| 91精品三级在线观看| 啦啦啦视频在线资源免费观看| 国产成人精品在线电影| 在现免费观看毛片| 汤姆久久久久久久影院中文字幕| 999精品在线视频| 久久久久精品久久久久真实原创| 午夜福利视频在线观看免费| 久久久国产一区二区| av视频免费观看在线观看| 国产一区二区 视频在线| 日韩,欧美,国产一区二区三区| 毛片一级片免费看久久久久| 制服丝袜香蕉在线| 一二三四在线观看免费中文在| 视频在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 国产熟女午夜一区二区三区| 精品亚洲成a人片在线观看| 中文精品一卡2卡3卡4更新| 考比视频在线观看| av在线播放精品| 大陆偷拍与自拍| 国产精品嫩草影院av在线观看| 国产精品久久久久久人妻精品电影 | 亚洲av日韩精品久久久久久密 | 99热全是精品| 久久精品久久久久久噜噜老黄| 国产亚洲精品第一综合不卡| 多毛熟女@视频| 国产精品国产av在线观看| 国产成人av激情在线播放| 国产伦理片在线播放av一区| 欧美另类一区| 99久久人妻综合| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 自线自在国产av| 日韩伦理黄色片| 三上悠亚av全集在线观看| 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 黄频高清免费视频| 一本大道久久a久久精品| 国产成人精品福利久久| 精品第一国产精品| av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 国产野战对白在线观看| 日韩精品有码人妻一区| 熟妇人妻不卡中文字幕| 日本wwww免费看| av在线app专区| 成人国产av品久久久| 久久久久久免费高清国产稀缺| 国产不卡av网站在线观看| 午夜久久久在线观看| 午夜影院在线不卡| 亚洲免费av在线视频| 伊人久久国产一区二区| 国产国语露脸激情在线看| 飞空精品影院首页| 免费不卡黄色视频| 久久精品熟女亚洲av麻豆精品| 黑人欧美特级aaaaaa片| 老司机影院毛片| 色婷婷久久久亚洲欧美| 久久性视频一级片| 97在线人人人人妻| 国产精品欧美亚洲77777| 久久久久精品人妻al黑| 我要看黄色一级片免费的| 亚洲一区二区三区欧美精品| 亚洲国产欧美日韩在线播放| 一本—道久久a久久精品蜜桃钙片| h视频一区二区三区| 黄色怎么调成土黄色| 夫妻性生交免费视频一级片| 黄色视频在线播放观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品高潮呻吟av久久| av天堂久久9| 色94色欧美一区二区| 一边摸一边抽搐一进一出视频| 黄片无遮挡物在线观看| 国产野战对白在线观看| 国产人伦9x9x在线观看| 亚洲成色77777| 国产 精品1| 99精品久久久久人妻精品| 国产精品麻豆人妻色哟哟久久| av天堂久久9| 国产成人精品在线电影| 九色亚洲精品在线播放| 久久久久精品久久久久真实原创| 国产淫语在线视频| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 青春草国产在线视频| 日韩一卡2卡3卡4卡2021年| 人妻 亚洲 视频| 啦啦啦中文免费视频观看日本| 久久人妻熟女aⅴ| 在线观看www视频免费| 国产一区二区在线观看av| 两个人免费观看高清视频| 91精品国产国语对白视频| 男女下面插进去视频免费观看| 国产成人欧美| 又粗又硬又长又爽又黄的视频| 精品少妇黑人巨大在线播放| 亚洲综合精品二区| 青草久久国产| 欧美精品高潮呻吟av久久| 久久综合国产亚洲精品| 狠狠婷婷综合久久久久久88av| 麻豆精品久久久久久蜜桃| 久久久精品国产亚洲av高清涩受| 成年动漫av网址| 国产一区二区在线观看av| 成人午夜精彩视频在线观看| 中文字幕av电影在线播放| 国产女主播在线喷水免费视频网站| 国产精品久久久久久久久免| 午夜激情久久久久久久| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 国产精品无大码| 午夜影院在线不卡| 免费观看性生交大片5| 国产成人精品无人区| 国产精品蜜桃在线观看| 大片电影免费在线观看免费| 精品酒店卫生间| 日韩 亚洲 欧美在线| 久久这里只有精品19| 久久狼人影院| 男男h啪啪无遮挡| 亚洲精品日韩在线中文字幕| 国产亚洲精品第一综合不卡| 综合色丁香网| 国产女主播在线喷水免费视频网站| 在线亚洲精品国产二区图片欧美| 久久久国产一区二区| 国产一区二区激情短视频 | 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 最新的欧美精品一区二区| 在线免费观看不下载黄p国产| 最新的欧美精品一区二区| 中文字幕亚洲精品专区| 国产97色在线日韩免费| 国产av一区二区精品久久| 天堂8中文在线网| 色网站视频免费| 国产 精品1| 69精品国产乱码久久久| 亚洲伊人色综图| 日韩av免费高清视频| 亚洲第一青青草原| 卡戴珊不雅视频在线播放| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频| 天堂中文最新版在线下载| 国产精品一区二区精品视频观看| 国产黄频视频在线观看| 午夜精品国产一区二区电影| 国产一区二区在线观看av| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 91国产中文字幕| 亚洲欧美色中文字幕在线| 日日爽夜夜爽网站| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 中文字幕av电影在线播放| 亚洲av中文av极速乱| 天天躁狠狠躁夜夜躁狠狠躁| 高清不卡的av网站| 国产精品 国内视频| 涩涩av久久男人的天堂| 看免费av毛片| 老鸭窝网址在线观看| 精品亚洲成a人片在线观看| 日本爱情动作片www.在线观看| 电影成人av| 亚洲成人免费av在线播放| 天美传媒精品一区二区| 日韩人妻精品一区2区三区| 国产野战对白在线观看| 亚洲 欧美一区二区三区| 亚洲一区二区三区欧美精品| 国产一区有黄有色的免费视频| 国产1区2区3区精品| 麻豆av在线久日| 欧美精品高潮呻吟av久久| 美女福利国产在线| 街头女战士在线观看网站| 精品一品国产午夜福利视频| 一区二区三区乱码不卡18| 亚洲色图 男人天堂 中文字幕| 国产av一区二区精品久久| 亚洲自偷自拍图片 自拍|