• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisit of advection-dispersion equation model with velocity-dependent dispersion in capturing tracer dynamics in single empty fractures *

    2019-01-05 08:08:40MuWang王沐WeidongZhao趙衛(wèi)東RhiannonGarrardYongZhangYongLiu劉詠JiazhongQian錢(qián)家忠
    關(guān)鍵詞:衛(wèi)東

    Mu Wang (王沐), Wei-dong Zhao (趙衛(wèi)東), Rhiannon Garrard , Yong Zhang , , Yong Liu (劉詠),Jia-zhong Qian (錢(qián)家忠)

    1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China 2. Department of Geological Sciences, University of Alabama, Tuscaloosa, USA

    3. College of Mechanics and Materials, Hohai University, Nanjing 210098, China

    4. School of Food and Biotechnology Engineering, Hefei University of Technology, Hefei 230009, China

    Abstract: An accurate quantification of the contaminant transport through fractured media is critical for dealing with water-quality related scientific and engineering issues, where the dispersion coefficient is an important and elusive parameter for the solute transport modeling. Many previous studies show that the dispersion coefficient (D) in the standard advection-dispersion equation (ADE)model can be approximated by D = λ (where α is the dispersivity), a formula to be revisited systematically in this study by laboratory experiments and model analysis. First, a series of tracer transport experiments in single empty fractures are conducted in cases of different hydraulic gradients. Second, the tracer breakthrough curves are determined by simulations based on the ADE model,to obtain the dispersion coefficients corresponding to various fracture roughnesses and flow velocities. A varying trend of λ is analyzed under different flow conditions. Results show that although the standard ADE model cannot be used to characterize the late-time tailing of the tracer BTCs, likely due to the solute retention, this simple model can simulate most of the solute mass dynamics moving through fractures and may therefore provide information for estimating the dispersion in parsimonious models appropriate for the non-Fickian transport. The following three conclusions are drawn: (1) the peak of the breakthrough curves comes earlier with increasing the roughness, according to the ADE simulation, (2) the value of λ generally decreases as the relative roughness of the fracture increases, (3) the value of λ is approximately equal to 2.0 when the dispersion is dominated by the molecular diffusion in the smooth fracture.

    Key words: Dispersion coefficient, molecular diffusion, roughness, variation trend, single fracture

    Introduction

    In hydrogeological sciences, the nature of the groundwater flow through fractured media is an important issue[1-3]. Yu et al.[4]investigated three different aquifer host rocks through leaching experiments with 13 trace elements under different experimental conditions, to examine the effect of the host rock mineralogy on the leachate composition, and to extract useful information about the groundwater source. Qian et al.[5]discussed the influence of the roughness and the Reynolds number on the flow through a single rough fracture and concluded that those factors did influence the flow’s friction. The solute transport in fractured media has also attracted a great deal of research attention. Wang et al.[6]developed an efficient quasi-3-D random walk particle tracking (RWPT) algorithm to simulate the solute transport through natural fractures based on a 2-D flow field generated from the modified local cubic law(MLCL). Zhou et al.[7]dealt with a coupled threedomain transport problem using mobile and immobile domains to characterize a filled single fracture and a matrix domain to characterize the rock body. Kang et al.[8]proposed a correlated continuous-time random walk (CTRW) modeling approach, as a simple yet powerful framework for characterizing the impact of the velocity distribution and correlation on the transport in fractured media. Becker and Shapiro[9]excluded the influence of the diffusion and the tough flow in the fracture solute transport, and found that the abnormal phenomenon in the breakthrough curves is caused by the anisotropy of the aperture distribution,which may be attributed to the fracture surface roughness.

    The ADE model with a velocity-dependent dispersion coefficient was proposed to quantify the contaminant transport in geologic media. The solute transport in three-dimensional heterogeneous media can be quantified by the following ADE model

    where /ct?? is the concentration variation of the solute in the migration process, and the subscripts(,,)x y z denote the directions of the velocity or the dispersion. The first three items on the right side of the equation express the solute transport caused by the hydrodynamic dispersion, and the last three items express the solute transport caused by the advection.The Green’s function solution of the 1-D advectiondispersion equation (ADE) is expressed as

    which describes a symmetric normal distribution in space at a given time, meaning that the resident concentration distribution is unimodal and it attains a peak value when = /t x v.

    If (1) there is linear isothermal adsorption on the fracture surface during the solute transport, and (2) the inlet boundary has a continuous source with a constant concentration0C, then the definite solution for the solute transport process can be expressed as:

    where C is the solute concentration,dR is the retardation coefficient, andLD is the longitudinal dispersion coefficient. The analytical solution of Eq.(3) is

    With a large enough x or t, the second item in Eq. (4) can be ignored, then one obtains

    which can be simplified as

    leading to

    In this study, Eq. (7) is solved using the Matlab’s erfinv fu nction, to obtain a linear relationship between t and, and the dispersion coefficient can be expressed as

    Parsimonious models with an effective dispersion coefficient were proposed by adding additional parameters to the standard ADE in order to simulate the transport in complex porous or fractured media with intrinsic multi-scale heterogeneity. For example, the well-known continuous time random walk (CTRW)model developed by Berkowitz et al.[10], the multi-rate mass transfer (MRMT) model developed by many researchers, including Tecklenburg et al.[11], and the fractional advection-dispersion equation (FADE)models[12], used to capture the non-Fickian or anomalous transport in natural geological media. In these stochastic models, a spatial averaged velocity and a constant dispersion coefficient are usually assumed,and the impact of the local flow velocities deviating from the mean velocity on the solute transport is captured by additional terms, such as the memory kernel in the CTRW model, the mass transfer rate coefficients combined by the capacity coefficients in the MRMT model, and the fractional index in the FADE model. The direct measurement of most of these additional parameters, however, remains a challenge. Most importantly, the effective and typically constant dispersion coefficient is not known in these complex models. Since the standard ADE model is much simpler and for the velocity-dependent dispersion coefficient, a potential mathematical formula can be used (although the exact values remain to be shown), we revisit and evaluate the standard transport model with a constant dispersion coefficient, which might shed some light to the selection of the effective dispersion coefficient in the CTRW, MRMT, or the FADE models.

    Fig. 1 Schematic diagram of experimental setup

    Table 1 Values of solute transport Pe and D/ Dd in different fracture situations

    When moving through a porous or fractured medium, the contaminant particles can be driven by the mean flow velocity, whose spatial fluctuation (due to the local variation of hydraulic properties) can be accounted by the hydrodynamic dispersion with a coefficient D. The correlation between the dispersion coefficient D and the flow velocity v was quantitatively studied. For example, Dou et al.[13]obtained roughness scale dependence of the relationship between tracer longitudinal dispersion and Peclet number in fractures. Later, Dentz and Carrera[14]quantified the dynamic D by using a spatial moment analysis. Wang et al.[15]derived a closed-form expression for the dynamic longitudinal dispersion coefficient and analyzed the time and length scales for the distinguishing Fickian and non-Fickian transport regimes. Bear[16]built a model by a string of small units, linking each other with short passages, and he assumed that when a fluid with a certain concentration of the tracer flowed into a unit of another fluid with a different concentration, the former displaced a part of the latter fluid, to form a new kind of homogeneous fluid immediately, and this unit was called the ideal mixer. In the ideal mixer, the effect of the molecular diffusion is negligible. After many tests, he discussed the correlation between the dispersion coefficient and the flow velocity, and came up with the equation

    where α is the dispersivity, v is the flow velocity,and λ is an exponent with a suggested value ranging from 1.0-2.0. Pugliese and Poulsen[17]established a set of expressions for estimating the dispersion coefficient in porous media at low velocities, taking into account the effect of porous media on the physical properties, they also came up with Eq. (8). Douglas and Stephen[18]analyzed the influence of the fracture roughness on the correlation between the dispersion coefficient and the flow velocity in a single fracture,and concluded that the value of λ was 2.0 for smooth parallel plates, and approximately 1.3 for rough plates. A systematic study is still needed to further understand the nature of the solute transport in fractured media and explore the variations of the dispersion coefficient against the fracture roughness and the flow velocities, which is the purpose of this study.

    In this paper, we carry out the laboratory experiments and the model analysis to decipher the velocitydependent dispersion. We first conduct a series of hydraulic tests with different hydraulic gradients in the laboratory. The solute transport is then fitted using the ADE model, to analyze and disclose the variations of the dispersion coefficients against the fracture roughness and the flow velocity under different hydraulic conditions.

    1. Experimental design

    1.1 Experimental setup

    The schematic diagram of the experimental setup of the flow and transport tests in a single fracture is shown in Fig. 1(a). The model is made of perspex casing with dimensions of 982 mm×250 mm×7.5 mm(length × width × height), placed horizontally. It includes three major parts: the inflow (outflow)flumes, the steady flow flumes, and the single fracture.The fracture roughness is varied by affixing rough plastic plates along the fracture walls, as shown in Fig.1(b). There are six types of fractures according to the size of plastic plates: 40 mm×40 mm×1 mm, 40 mm×40 mm×2 mm, 40 mm×40 mm×3 mm, 20 mm×20 mm×1 mm, 20 mm×20 mm×2 mm and 20 mm×20 mm×3 mm,marked with (a) through (f), respectively, as shown in Tables 1, 2. The relative roughness is the ratio of the surface relief to the fracture aperture, and the surface relief is the height of the plastic plate and the aperture value is obtained from Table 1. The water and the tracer (NaCl) flow into the fracture from the steady flow flume. The tracer samples are taken from a sampling port, and put on the fracture plate, to the right of the steady flow flume. They are then measured by a DDS-307 conductivity meter, manufactured by the Shanghai Optical Instrument Factory. The tracer concentration values are obtained by using a standard curve. All experiments are conducted with tap water.

    Table 2 Values of λ in different fracture situations

    1.2 Experimental method

    A graduated cylinder is used to gauge the steady flow velocity during the tests with errors below 2%.The height of the inflow (outflow) flumes could be moved up or down, and the water head differences are controlled by adjusting both ends of the model. The water flow is monitored to determine if it follows the Darcy’s law. The tracer conductivity is measured for the collected samples and is used to plot the breakthrough curves according to standard curve procedures. The dispersion coefficients are calculated in accordance with the standard advection-dispersion equation.

    2. Results and discussions

    The Peclet number, according to the diagram of the relationship between the molecular diffusion and the hydrodynamic dispersion by Bear[19]is =Pe, where v is the average velocity, b is the average aperture, anddD is the molecular diffusion coefficient. Peclet numbers calculated from the tests are listed in Table 1. The values of Pe range from, and the values ofrange fromIn the equation, the parameter ? is approximately equal to 0.5, m is an exponent,whose value ranges from 0 to 1.2. Our experiment points fall into the zones IV and V, as seen in Fig. 2.In these zones, the mechanical dispersion plays the major role while the effect of the molecular diffusion is negligible. In this case the dispersion coefficient can be determined as =D vλα .

    Fig. 2 Relationship between molecular diffusion and hydrodynamic dispersion

    2.1 Analysis of flow condition

    In this test, the heights of the inflow (outflow)flumes are adjusted and the flow velocities are calculated for different hydraulic gradients. Their relationship is shown in Fig. 3. The Darcy’s law and the Forchheimer’s formula are used to fit the experimental data. The correlation coefficient for the Forchheimer’s formula is larger than that for the Darcy’s law. In addition, the relationship between the hydraulic gradient and the velocity is nearly quadratic. Therefore,the water is regarded as obeying the non-Darcian flow.

    Fig. 3 Fitting curves of hydraulic gradient versus velocity in fractures of different roughness for different equations

    Fig. 4 Experimental data and ADE breakthrough curves at the velocity of 31.4105 mm/s

    2.2 ADE model of solute transport

    The NaCl is used as the tracer in this study.The tests of the solute transport are conducted with the tracer concentration values obtained according to the standard curve procedure using the conductivity values. The breakthrough curves of the solute transport through the rough-walled and smooth fractures are determined by the simulation with the ADE model,as shown in Fig. 4, Fig. 6(a).

    The simple ADE model with a constant dispersion coefficient for each BTC can capture the dynamics for a majority of the solute mass moving through each fracture. In addition, the timing of the concentration peak occurs earlier as the roughness increases,as shown in Figs. 4(a)-4(c) and Figs. 4(d)-4(f). The reason might be that the channeling of the groundwater flow is enhanced as the roughness increases,and therefore, the solute transported in the channel moves relatively faster than with the average velocity.

    It is worth noting that with the simple ADE model, the late-time tailing of the tracer BTC is underestimated. The delayed transport for some solute particles is one of the common characteristics of the non-Fickian transport, which is typically caused by the solute retention at zones of relatively small velocities. The retention process cannot be captured by a Fickian diffusive process with the standard ADE model, but may be efficiently simulated by stochastic models such as the CTRW, MRMT, or FADE models,where additional parameters and/or terms are designed to specifically capture the solute retention. Hence the dispersion coefficient determined in this study with the standard ADE might serve as a useful reference for the effective, typically constant dispersion coefficient in the stochastic models. We will focus on the stochastic models for the non-Fickian transport in a future study.

    Fig. 5 Log-log plots of dispersion coefficient versus velocity in rough fractures of different roughnesses

    2.3 Analysis of velocity dependence of dispersion co-efficient in rough fracture

    Corresponding to the above analysis, the values of the dispersion coefficient are calculated at different flow velocities, then log-log plots of the values are drawn, as shown in Fig. 5. The values of λ obtained from the plots (a) through (f) are listed in Table 2:they range between 1.0 and 2.0, in good agreement with those in the study of porous media by Bear[16].

    In addition, the rough plastic plates in the fractures (a)-(c) have the same length and width but different heights. From Table 2 it is evident that the values of λ decrease with the increase of the relative fracture roughness, and the same trend is found in the fractures (d) through (f).

    2.4 Analysis of velocity dependence of dispersion co-efficient in smooth fracture

    The solute transport in smooth fractures is also an important aspect in the observation. In this study,the dispersion coefficients are calculated, for different flow velocities, in a smooth fracture with a 4 mm aperture. The results are shown in Fig. 6(b). The value of λ is found to be 2.0038. Next, Pe is calculated for different flow velocities (Table 3). Detwiler and Rajaram[20]concluded that the molecular diffusion dominates the solute transport in cases of 1Pe≤ in a smooth fracture. In this study, 1Pe≤ for all cases,thus the solute transport is indeed dominated by the molecular diffusion. The results confirm the research results of Douglas et al.[18]for the dispersion coefficient, proportional to the square of the velocity for the transport dominated by the molecular diffusion in the smooth fracture.

    Fig. 6 Experimental results for the smooth fractures

    Table 3 The Pe values versus flow velocities in smooth fracture of 4 mm aperture

    3. Conclusions

    In this study, the tracer transport tests are conducted for various flow velocities and fracture roughnesses. From the statistical analysis, the following conclusions can be drawn:

    (1) Although the standard ADE model can not well simulate the late-time tailing in the tracer breakthrough due to the solute retention, it can capture the early arrivals and the main features of the transport that the peak of the breakthrough curve arrives earlier as the roughness in the rough-walled fracture increases. This simple model may, therefore, provide some useful information for estimating the effective and typically constant dispersion coefficient used in parsimonious, stochastic transport models designed specifically for the non-Fickian transport.

    (2) The dispersion coefficient is found to be proportional to the flow velocity when the dispersion is dominated by the advection in a rough fracture. The relationship can be expressed as =D vλα (which follows the same power-law rule as that identified by many previous studies), where the experimental values of λ range from 1.1482 to 1.5003, decreasing with the increase of the relative fracture-wall roughness under non-Darcian flow conditions.

    (3) The proportional relationship between the dispersion coefficients and the flow velocity is found to be stable when the dispersion is dominated by the molecular diffusion in smooth fractures, where the value of λ is approximately equal to 2.0.

    Acknowledgements

    This work was supported by the Key Program of Huainan Mining Group Co. LDT (Grant No. HNKYJT-JS-2010), the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2013490111), the Public Welfare Geological Survey Program of Anhui Province (Grant No.2015-g-26), the Shandong Province Pilot Program of Science and Technology on Construction of Water Eco-civilization. YZ was funded by the National Science Foundation, United States (Grant Nos. DMS-1025417, DMS-1460319.

    猜你喜歡
    衛(wèi)東
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    以問(wèn)導(dǎo)學(xué),在轉(zhuǎn)換中理解概念
    非新生兒破傷風(fēng)的治療進(jìn)展
    《雍和宮》
    攝影與攝像(2020年3期)2020-09-10 07:22:44
    油畫(huà) 苗女
    南風(fēng)(2020年11期)2020-08-04 04:55:24
    祝衛(wèi)東
    愛(ài)打噴嚏的小河馬
    致衛(wèi)東先生(信札)
    作品(2017年6期)2017-06-19 19:37:06
    Experimental study of flow field in interference area between impeller and guide vane of axial flow pump*
    種心情
    亚洲成av人片在线播放无| 亚洲黑人精品在线| 国产精品av视频在线免费观看| av福利片在线观看| 国产 一区 欧美 日韩| 乱系列少妇在线播放| 一级毛片久久久久久久久女| 婷婷六月久久综合丁香| 亚洲精品亚洲一区二区| 欧美激情久久久久久爽电影| 国产精品一区二区免费欧美| 国产精品一区www在线观看 | 亚洲成a人片在线一区二区| 搡老妇女老女人老熟妇| 三级国产精品欧美在线观看| 看黄色毛片网站| 尤物成人国产欧美一区二区三区| 日本撒尿小便嘘嘘汇集6| 日本一二三区视频观看| 久久久久久久精品吃奶| 精品久久久久久成人av| 18禁在线播放成人免费| av在线观看视频网站免费| 久久香蕉精品热| 国产精品一区二区三区四区免费观看 | 看十八女毛片水多多多| 淫妇啪啪啪对白视频| 中出人妻视频一区二区| 给我免费播放毛片高清在线观看| 淫秽高清视频在线观看| 少妇被粗大猛烈的视频| 国产av在哪里看| 日韩人妻高清精品专区| 国产黄片美女视频| 久久久久精品国产欧美久久久| 在线看三级毛片| 国产欧美日韩一区二区精品| 一个人观看的视频www高清免费观看| 亚洲精品国产成人久久av| 精品乱码久久久久久99久播| 成人三级黄色视频| 午夜免费成人在线视频| 日本黄大片高清| 久久香蕉精品热| 亚洲av二区三区四区| 搡老熟女国产l中国老女人| 日韩大尺度精品在线看网址| av在线亚洲专区| 国产精品不卡视频一区二区| 国产精品亚洲美女久久久| 欧美日韩瑟瑟在线播放| 精品福利观看| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 欧美区成人在线视频| 成年版毛片免费区| 免费看光身美女| 中文字幕人妻熟人妻熟丝袜美| 99在线视频只有这里精品首页| 国产私拍福利视频在线观看| 草草在线视频免费看| 黄片wwwwww| 波多野结衣高清作品| 超碰av人人做人人爽久久| 国产成人影院久久av| 国语自产精品视频在线第100页| 精品一区二区三区视频在线| 国产精品久久电影中文字幕| 伊人久久精品亚洲午夜| 国产乱人视频| 国产精品一区二区三区四区久久| 嫩草影院新地址| 成年人黄色毛片网站| 精品久久久久久成人av| 国产aⅴ精品一区二区三区波| 精品久久久久久久人妻蜜臀av| av福利片在线观看| 国产午夜福利久久久久久| 一进一出抽搐gif免费好疼| 亚洲自拍偷在线| 久久亚洲精品不卡| 深夜精品福利| 美女xxoo啪啪120秒动态图| 亚洲精品影视一区二区三区av| 久久亚洲真实| 国产精品久久视频播放| 禁无遮挡网站| 国产人妻一区二区三区在| 国产亚洲精品久久久com| 在线免费十八禁| 简卡轻食公司| 成年女人毛片免费观看观看9| 亚洲图色成人| 欧美潮喷喷水| 亚洲av二区三区四区| 丰满的人妻完整版| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 高清毛片免费观看视频网站| 黄色欧美视频在线观看| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 内射极品少妇av片p| 亚洲精品成人久久久久久| 日日干狠狠操夜夜爽| 亚洲av不卡在线观看| 成年版毛片免费区| 99热只有精品国产| 国产麻豆成人av免费视频| 在线播放无遮挡| 午夜免费成人在线视频| 亚洲精品影视一区二区三区av| 亚洲欧美精品综合久久99| 亚洲不卡免费看| 黄色女人牲交| 九色成人免费人妻av| 日韩av在线大香蕉| 午夜福利在线观看吧| 午夜老司机福利剧场| 国产人妻一区二区三区在| 欧美成人a在线观看| 亚洲欧美日韩高清专用| 男人狂女人下面高潮的视频| 校园春色视频在线观看| 在线国产一区二区在线| 亚洲国产日韩欧美精品在线观看| .国产精品久久| 亚洲精品在线观看二区| 免费电影在线观看免费观看| 五月玫瑰六月丁香| 嫩草影院精品99| 欧美xxxx黑人xx丫x性爽| 久久久久性生活片| 小说图片视频综合网站| 久久久久久久午夜电影| 国产单亲对白刺激| 在线观看免费视频日本深夜| 嫩草影院精品99| 欧美极品一区二区三区四区| 国产高潮美女av| 亚洲性夜色夜夜综合| 成熟少妇高潮喷水视频| 久久热精品热| 日本 欧美在线| 欧美最黄视频在线播放免费| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 黄色日韩在线| 高清日韩中文字幕在线| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 在线免费观看的www视频| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验 | 成人欧美大片| 亚洲精品成人久久久久久| 久久久久九九精品影院| 中国美白少妇内射xxxbb| 黄片wwwwww| 亚洲最大成人手机在线| 免费av观看视频| 色在线成人网| 国内精品宾馆在线| 欧美高清成人免费视频www| 午夜福利18| 嫩草影院入口| 亚洲午夜理论影院| 亚州av有码| 两人在一起打扑克的视频| 免费无遮挡裸体视频| 免费高清视频大片| 亚洲不卡免费看| 国产高潮美女av| 一夜夜www| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 国产亚洲精品久久久com| 韩国av一区二区三区四区| 男女做爰动态图高潮gif福利片| 男人的好看免费观看在线视频| 看片在线看免费视频| 五月伊人婷婷丁香| 午夜爱爱视频在线播放| 欧美日韩综合久久久久久 | 成人亚洲精品av一区二区| 亚洲,欧美,日韩| 搡老熟女国产l中国老女人| 日韩欧美在线二视频| 亚洲中文日韩欧美视频| 国产精品98久久久久久宅男小说| 22中文网久久字幕| 高清日韩中文字幕在线| 女人十人毛片免费观看3o分钟| 成人特级av手机在线观看| 欧美成人一区二区免费高清观看| 午夜免费激情av| aaaaa片日本免费| 欧美一级a爱片免费观看看| 一级黄色大片毛片| 亚洲国产精品sss在线观看| 精品久久国产蜜桃| 美女cb高潮喷水在线观看| 欧美丝袜亚洲另类 | 国内精品一区二区在线观看| 日韩一本色道免费dvd| 亚洲精品日韩av片在线观看| 五月玫瑰六月丁香| 少妇猛男粗大的猛烈进出视频 | 欧美色欧美亚洲另类二区| 久久久久久久久久久丰满 | 深夜a级毛片| 国产一区二区在线av高清观看| 毛片一级片免费看久久久久 | 人妻制服诱惑在线中文字幕| 国产午夜精品久久久久久一区二区三区 | 亚洲精华国产精华液的使用体验 | 极品教师在线免费播放| 俄罗斯特黄特色一大片| 午夜福利在线观看吧| 午夜爱爱视频在线播放| 久久久久久久久久久丰满 | 91久久精品电影网| 男女做爰动态图高潮gif福利片| 国产精品日韩av在线免费观看| 欧美在线一区亚洲| 在线看三级毛片| 黄色欧美视频在线观看| 少妇高潮的动态图| 欧美日本亚洲视频在线播放| 欧美一区二区国产精品久久精品| 狂野欧美白嫩少妇大欣赏| 成人一区二区视频在线观看| 精品久久久噜噜| 国产av麻豆久久久久久久| 日本黄色视频三级网站网址| av.在线天堂| 自拍偷自拍亚洲精品老妇| 女生性感内裤真人,穿戴方法视频| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 欧美激情在线99| 波多野结衣巨乳人妻| 亚洲综合色惰| 亚洲av不卡在线观看| 大型黄色视频在线免费观看| 国产精华一区二区三区| 亚洲av二区三区四区| 黄色视频,在线免费观看| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 亚洲成a人片在线一区二区| 999久久久精品免费观看国产| а√天堂www在线а√下载| 国产色婷婷99| 亚洲av.av天堂| 日本黄色片子视频| 老熟妇仑乱视频hdxx| 国模一区二区三区四区视频| 亚洲欧美日韩东京热| 国国产精品蜜臀av免费| 淫妇啪啪啪对白视频| 色噜噜av男人的天堂激情| 99热6这里只有精品| 亚洲电影在线观看av| 岛国在线免费视频观看| 日日摸夜夜添夜夜添av毛片 | 99热精品在线国产| 88av欧美| 又爽又黄a免费视频| 搡老岳熟女国产| 中文字幕精品亚洲无线码一区| 国产精品久久久久久久电影| 欧美成人a在线观看| 国产伦一二天堂av在线观看| 亚洲av日韩精品久久久久久密| 国产大屁股一区二区在线视频| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 全区人妻精品视频| 午夜福利在线观看吧| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| 日本在线视频免费播放| 色噜噜av男人的天堂激情| 亚洲成a人片在线一区二区| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 一个人免费在线观看电影| 欧美潮喷喷水| 国产av不卡久久| 一本精品99久久精品77| 国产蜜桃级精品一区二区三区| 又爽又黄无遮挡网站| 亚洲专区中文字幕在线| 久99久视频精品免费| 久久精品91蜜桃| 91在线精品国自产拍蜜月| 欧美高清成人免费视频www| 久久精品国产清高在天天线| 亚洲国产精品久久男人天堂| 成人三级黄色视频| 亚洲精品456在线播放app | 亚洲av电影不卡..在线观看| 少妇人妻一区二区三区视频| 成人二区视频| 亚洲国产精品sss在线观看| 中文字幕精品亚洲无线码一区| av在线蜜桃| 桃红色精品国产亚洲av| 亚洲经典国产精华液单| 色精品久久人妻99蜜桃| 在线观看66精品国产| av视频在线观看入口| 国产精品亚洲美女久久久| 综合色av麻豆| 日韩在线高清观看一区二区三区 | x7x7x7水蜜桃| 亚洲精品在线观看二区| 99热这里只有是精品在线观看| 悠悠久久av| 国产精华一区二区三区| 国产午夜福利久久久久久| 亚洲精品久久国产高清桃花| 小说图片视频综合网站| 高清毛片免费观看视频网站| 一区二区三区激情视频| 免费观看的影片在线观看| 看十八女毛片水多多多| 男女视频在线观看网站免费| 网址你懂的国产日韩在线| 最近中文字幕高清免费大全6 | 国产国拍精品亚洲av在线观看| 真实男女啪啪啪动态图| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 啦啦啦观看免费观看视频高清| 亚洲一级一片aⅴ在线观看| 亚洲图色成人| 亚洲av.av天堂| 在线播放国产精品三级| 国产精品一及| 99热这里只有是精品50| АⅤ资源中文在线天堂| 欧美潮喷喷水| 九九热线精品视视频播放| 日本三级黄在线观看| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看| 欧美色欧美亚洲另类二区| 亚洲av中文字字幕乱码综合| av天堂在线播放| 国产精品爽爽va在线观看网站| 很黄的视频免费| 久久精品国产亚洲av涩爱 | 小蜜桃在线观看免费完整版高清| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 精品人妻一区二区三区麻豆 | 波野结衣二区三区在线| 变态另类丝袜制服| 97超级碰碰碰精品色视频在线观看| 尾随美女入室| 五月玫瑰六月丁香| 亚洲精品乱码久久久v下载方式| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 国产老妇女一区| 一区二区三区免费毛片| av.在线天堂| 国内精品宾馆在线| 国产精品综合久久久久久久免费| 国产成人av教育| 男人舔奶头视频| 久久久久性生活片| 午夜影院日韩av| 干丝袜人妻中文字幕| 色在线成人网| 欧美日韩亚洲国产一区二区在线观看| 国产蜜桃级精品一区二区三区| 久久精品国产鲁丝片午夜精品 | 亚洲av成人精品一区久久| 国产精品人妻久久久影院| av在线老鸭窝| 亚洲熟妇熟女久久| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 日韩在线高清观看一区二区三区 | 国内精品久久久久精免费| 午夜福利18| 成人二区视频| 亚洲成人精品中文字幕电影| 老司机福利观看| 日本 av在线| 黄色丝袜av网址大全| 搡女人真爽免费视频火全软件 | 小蜜桃在线观看免费完整版高清| 美女xxoo啪啪120秒动态图| 搞女人的毛片| 性插视频无遮挡在线免费观看| 国语自产精品视频在线第100页| videossex国产| 在线观看免费视频日本深夜| 1024手机看黄色片| 日韩一本色道免费dvd| 深夜精品福利| 少妇的逼水好多| a级毛片免费高清观看在线播放| 中文字幕高清在线视频| 在线观看美女被高潮喷水网站| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 九九在线视频观看精品| 国产真实乱freesex| 午夜福利高清视频| 免费看av在线观看网站| 午夜a级毛片| 日韩欧美国产在线观看| 国产精品,欧美在线| 国产高清三级在线| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 欧美黑人巨大hd| 在线天堂最新版资源| 久9热在线精品视频| 午夜福利高清视频| 久久久国产成人精品二区| 婷婷色综合大香蕉| 久久久久精品国产欧美久久久| 国产成年人精品一区二区| av专区在线播放| 听说在线观看完整版免费高清| 不卡视频在线观看欧美| videossex国产| 国产一区二区三区视频了| 熟女人妻精品中文字幕| 国产真实伦视频高清在线观看 | 88av欧美| 在线国产一区二区在线| 岛国在线免费视频观看| 亚洲中文字幕日韩| 午夜激情欧美在线| 黄片wwwwww| 亚洲天堂国产精品一区在线| 精品久久久久久久久av| 欧美激情国产日韩精品一区| 97热精品久久久久久| 国产精品久久久久久久电影| 麻豆国产av国片精品| 51国产日韩欧美| 免费看a级黄色片| 中文字幕免费在线视频6| 色吧在线观看| a级一级毛片免费在线观看| 国产精品女同一区二区软件 | 最近在线观看免费完整版| 国产三级中文精品| 亚洲人成伊人成综合网2020| 国内少妇人妻偷人精品xxx网站| 久久国内精品自在自线图片| 欧美不卡视频在线免费观看| 亚洲精品国产成人久久av| 99热这里只有是精品50| 免费av毛片视频| 久久草成人影院| 美女免费视频网站| 日韩 亚洲 欧美在线| 三级国产精品欧美在线观看| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 午夜精品在线福利| 国产极品精品免费视频能看的| 成人午夜高清在线视频| 免费观看精品视频网站| 国内揄拍国产精品人妻在线| 女的被弄到高潮叫床怎么办 | 麻豆av噜噜一区二区三区| 免费在线观看影片大全网站| 国产亚洲av嫩草精品影院| 欧美最新免费一区二区三区| 亚洲七黄色美女视频| 中国美白少妇内射xxxbb| 日韩强制内射视频| 国产亚洲精品av在线| 亚洲精品国产成人久久av| 啦啦啦韩国在线观看视频| 色噜噜av男人的天堂激情| 亚洲一区高清亚洲精品| av天堂在线播放| 国内精品久久久久久久电影| 身体一侧抽搐| 欧美黑人巨大hd| 婷婷亚洲欧美| 精品免费久久久久久久清纯| 欧美+日韩+精品| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 黄色欧美视频在线观看| 国产欧美日韩精品亚洲av| 中文字幕久久专区| 精品一区二区免费观看| 日本三级黄在线观看| 国产高潮美女av| 嫩草影院入口| 看片在线看免费视频| 色哟哟·www| 国产 一区 欧美 日韩| 日本 av在线| 老司机福利观看| avwww免费| 蜜桃亚洲精品一区二区三区| 深夜a级毛片| 国产精品嫩草影院av在线观看 | 日韩欧美一区二区三区在线观看| 别揉我奶头 嗯啊视频| www.色视频.com| 一本精品99久久精品77| 我的女老师完整版在线观看| av在线老鸭窝| 免费高清视频大片| 午夜日韩欧美国产| a级毛片a级免费在线| 国产亚洲精品综合一区在线观看| 中文字幕熟女人妻在线| 欧美绝顶高潮抽搐喷水| 丝袜美腿在线中文| 韩国av一区二区三区四区| 日韩中文字幕欧美一区二区| 99热这里只有精品一区| 97超视频在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆| 老司机福利观看| 色综合亚洲欧美另类图片| 国内精品久久久久精免费| 亚洲无线在线观看| 不卡视频在线观看欧美| 国产精品久久视频播放| av在线蜜桃| 久久久久性生活片| 成人三级黄色视频| 国产69精品久久久久777片| 欧美日韩精品成人综合77777| 欧美xxxx黑人xx丫x性爽| 在线观看av片永久免费下载| 免费看av在线观看网站| www.色视频.com| 国产在线精品亚洲第一网站| 欧美性猛交黑人性爽| 免费看光身美女| 少妇猛男粗大的猛烈进出视频 | 少妇丰满av| 天堂影院成人在线观看| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| av在线天堂中文字幕| 内射极品少妇av片p| 欧美黑人巨大hd| 全区人妻精品视频| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 国产成年人精品一区二区| 天堂av国产一区二区熟女人妻| 亚洲av免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲自拍偷在线| 九九爱精品视频在线观看| 亚洲一级一片aⅴ在线观看| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 中国美白少妇内射xxxbb| 狠狠狠狠99中文字幕| 一级黄色大片毛片| www.www免费av| 三级国产精品欧美在线观看| 精品欧美国产一区二区三| 日韩欧美 国产精品| 一区二区三区激情视频| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 男人舔女人下体高潮全视频| 别揉我奶头 嗯啊视频| 国产91精品成人一区二区三区| 国产精品永久免费网站| 久久中文看片网| 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 欧美人与善性xxx| 天天躁日日操中文字幕| 又紧又爽又黄一区二区| 午夜精品在线福利| 日韩欧美国产一区二区入口| 91精品国产九色| 丰满的人妻完整版| 一本精品99久久精品77| 国产高清视频在线观看网站| 18+在线观看网站| 成人无遮挡网站| 日本五十路高清| 久久久精品大字幕| 色播亚洲综合网| 此物有八面人人有两片| 久久人妻av系列| 日本爱情动作片www.在线观看 | 丰满的人妻完整版| 欧美人与善性xxx| 人妻少妇偷人精品九色| 他把我摸到了高潮在线观看|