• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A drifting trajectory prediction model based on object shape and stochastic motion features*

    2014-06-01 12:30:02WANGShengzheng王勝正NIEHaobing聶皓冰SHIChaojian施朝健
    關(guān)鍵詞:雜種病蟲發(fā)芽率

    WANG Sheng-zheng (王勝正), NIE Hao-bing (聶皓冰), SHI Chao-jian (施朝健)

    Merchant Marine College, Shanghai Maritime University, Shanghai 201306, E-mail: szwang.smu@gmail.com

    A drifting trajectory prediction model based on object shape and stochastic motion features*

    WANG Sheng-zheng (王勝正), NIE Hao-bing (聶皓冰), SHI Chao-jian (施朝健)

    Merchant Marine College, Shanghai Maritime University, Shanghai 201306, E-mail: szwang.smu@gmail.com

    (Received April 13, 2014, Revised July 24, 2014)

    There is a huge demand to develop a method for marine search and rescue (SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting prediction model to improve the accuracy of the drifting trajectory computation of the sea-surface objects. First, a new drifting kinetic model based on the geometry characteristics of the objects is proposed that involves the effects of the object shape and stochastic motion features in addition to the traditional factors of wind and currents. Then, a computer simulation-based method is employed to analyze the stochastic motion features of the drifting objects, which is applied to estimate the uncertainty parameters of the stochastic factors of the drifting objects. Finally, the accuracy of the model is evaluated by comparison with the flume experimental results. It is shown that the proposed method can be used for various shape objects in the drifting trajectory prediction and the maritime search and rescue decision-making system.

    sea-surface object searching, drifting model, drifting trajectory prediction, maritime search and rescue

    Introduction

    Rapidly approaching a drifting object is an important task in the marine search and rescue program. However, a drifting object is moving under the action of the net balance force acting on it from wind, currents and waves. Unless the trajectory or the most probable search area of the drifting object is predicted accurately, it would be difficult to find the drifting object. Theoretically speaking, it is possible to compute the evolution of the search area of any drifting object against time given all kinds of unknowns including the last known position, the object type and wind, waves, and currents affecting the motion of the object. In practice, however, it is difficult to design a mathematical model to predict the trajectories of the drifting objects because of the irregular shape of real-world objects and the stochastic motion of the objects resulted from wind, waves and currents.

    Therefore, over the past two decades, how to model the motion of a drifting object is always a research focus. Early studies focused on the LEEWAY method, a typical drifting model applied to compute the movements of the drifting objects. This model provides a basic principle of the object drifting, however, in actuality, there are many unknowns, such as the shape, the appearance, the weight of the object, the sea-states etc., so the model is limited to some simple applications. Breivik et al.[1]obtained the relationships between the drifting velocity of the LEEWAY and the real wind field by observing and recording the movements of the total 63 different categories of objects, and the related equation in the downwind and crosswind frames of reference for these 63 categories. They selected proper parameters from these experimental results to estimate the motion of the similar objects. In this method, a large error might be resulted due to the variability of the buoyancy and the initial state of the similar drifting objects, which limits the operational application of this method. On that basis, the Norwegian Meteorological Institute (NMI) developed the LEEWAY-based drifting model that was widely applied in the maritime SAR center, the marine traffic service and the environmental protection authorities[2],but this system mainly was used in the ship drifting model and for the oil spill fate modeling.

    In practice, there is a large ingredient of chance involved in the calculation of the object motion on the sea-surface[3-12]. Therefore, Hong et al.[13]employed Markov Chain to convert the drift trajectory prediction problem into a shortest path problem with the probability function as the weight of the model. Their model improved the searching accuracy and effectiveness, but the computational cost limited its application. Ni et al.[14]proposed a theoretical model for predicting the boat drift in search and rescue missions. The uncertainty of the boat drift was evaluated by interval analysis of the uncertainties of the characteristics of the drifting boat and external forcing fields. Breivik et al.[15]studied the leeway (windage) of five typical SAR/HAZMAT objects (person in water, mine, small sailboat, small open boat and a 20-feet container), In their experiments, the leeway was decomposed into downwind and crosswind components for every 10 min sample. The linear regression model was built both unconstrained and constrained through the zero and the linear regression parameters were used in the SAR planning tools. Isobe et al.[16]also observed the drifting of the objects in the flume experiments and derived a formulation of the leeway parameters to compute the leeway drift speed. Breivik et al.[1]proposed a method for conducting leeway field experiments to establish the drift properties of small objects (0.1 m-25 m) . The objective was to define a standardized and unambiguous procedure for condensing the drift properties down to a set of coefficients to be incorporated into existing stochastic trajectory forecast models for drifting objects of concern in search and rescue operations and other activities involving vessels lost at sea such as containers with hazardous material.

    Although the above-described techniques were successfully applied partially in some maritime search and rescue systems to assist operational users in forecasting the searching area, there are many limitations in these methods, which suffer at least in two aspects. (1) the geometry structure properties were not integrated into the model so that the system only tackled the specified objects and lacked the generality, (2) a large number of stochastic motion features were not involved in the model that affected the accuracy of the drifting trajectory predictions.

    In order to better model the movements of the drifting object, this paper proposes a novel method to integrate the shape properties of the objects into the model by using the weight coefficient vector that may be extracted from the experimental parameters. Then the probability functions of the uncertainty parameters are employed to simulate the stochastic motions of the objects, and two objects are tested under different external conditions.

    1. Drifting trajectory model based on object shape and stochastic motion

    1.1Object shape analysis

    In the drifting process, the movements of the objects in downwind and crosswind would be disturbed due to the inhomogeneous action of the external forces from wind, current and waves.

    (1) Object shape features

    Generally, the objects in search and rescue (SAR) and hazardous material (HAZMAT) have various shape and size. The leeway of 63 categories of objects, such as people, life raft, sailing, boat, fishing boats (small and large commercial fishing vessels), sport boat, container, tank and so on, was studied by Breivik et al.[1]. They identified parameters for the leeway speed as a function of the wind speed and a leeway divergence angle for all 63-leeway categories, and studied the leeway (windage) of five typical SAR/ HAZMAT objects (person in water, mine, small sailboat, small open boat and a 20-ft container). The relationships between the leeway speed and the object shape of all categories of objects are summarized, and it is shown that all categories of objects could be classified into two categories (sphere and square) in terms of the shape features.

    Fig.1 The object?s shape affects its drift and its leeway divergence

    The stochastic extent of the spherical objects is less than that of the square objects, and the disturbances of the drifting motion of the spherical objects under the different initial state are in a uniform distribution. Furthermore, the leeway divergence angle of the spherical objects changes only slightly with the wind/current disturbances and can keep in a stable range. On the other hand, the disturbances of the trajectory of the square objects are large and stochastic. Therefore, we will discuss the relationships between the initial state of the square objects and the direction of the external forces.

    (2) Stochastic disturbance of the square object

    For a square object, as shown in Fig.1, the angleθbetween the long axis of the object and the wind direction would influence the next direction of the deviation of the object. Whenθ∈ (0o,90o) ∪(180o, 270o), the next direction is to the left of the downwind direction, and whenθ∈ (90o,180o) ∪ (270o,360o), the next direction is to the right of the downwind direction.

    However, the initial angleθis unknown when we compute the drifting direction. Hence we have to simulate the stochastic process of the change of the angleθbased on the statistic analysis results of the various drifting objects.

    1.2Drifting trajectory prediction model

    whereρa(bǔ)is the air density,Cais the drag coefficient of the wind force,Aais the area of the exposed above-water part of the object,Vwis the wind speed.

    whereρwis the density of the seawater,Cwthe drag coefficient of the ocean current,Awis the area of the submerged part of the object,Vcis the current speed.

    Without the action of the wave force, the drift would eventually reach a stable drifting speedVounder the action of the relative wind and current drag forces. The drag force of the wind depends on the relative wind speedVw-Vopassing the object, and the drag force of the current depends on the relative current speedVo-Vcpast the object. According to the law of motion, these two forces must be equal in magnitude and opposite in direction, and therefore the balance equation can be deduced with respect to these two forces, and is written as follows.

    whereLais the effective length of the object,Cwavis the thrust coefficient of the wave,His the amplitude of the wave (generally is half of the wave height), andφis the encounter angle of the wave.

    Hence, the total balance equation of the drifting motion can be written as

    The stable average drifting speed can be obtained by solving Eq.(9), as

    However, according to Ref.[14,18], the impact of the waves on the drift can be ignored when the wave amplitude is much less than one 1/30th of the length of the object. Otherwise, the wave might significantly affect the coefficientλ. The reason is that the wave can change the area of the boat surface exposed to wind and current. It can also produce a local wind drift current.

    Therefore, the drifting speed of the object changes dynamically, since the coefficientλ, the encounter angleφof the wave or the divergence angleθwill change with the evolution of the drifting motion. Thus, the stochastic disturbance resulted from wind and current effects is considered, and the real-time drifting speed of the object is expressed as

    where ΔUis a stochastic perturbation of the drifting speed resulted from the effects of non-homogeneous external forces brought about by wind and current, which will be discussed in the next section.

    Finally, the real-time speed of the drifting object can be calculated by integrating all probability density functions and substituting the coefficient vector into the model, with the assumption that the initial position isP(0), the next position isP(1) after elapsing time Δt, then

    1.3Uncertainty analysis of the drifting model

    As shown in Fig.2,ais the equivalent width of the square object,bdenotes the equivalent length of the square object,1θis the divergence angle between the principal axis of the object and the wind direction, 2θis the divergence angle between the principal axis of the object and the current direction.

    Fig.2 The relationships beween the wind/current direction and the principal axis of the object

    The drifting speed of the object would continuously change due to the change of the effective action area of wind/current on the surface area of the object.

    The stochastic perturbation speed can be determined as shown in Ref.[19], as

    Besides the shape properties of the object, there is another issue to be considered. Each input variable of the model cannot always be the same in practice during the drifting process. Some variables such as the ratio of immersion and the divergence angleθare changing. Here we use the idea of the stochastic process to deal with this issue.

    Fig.3 Different divergence angles under different time

    For the divergence angle, as shown in Fig.3, the angle between the principal axis of the object and the wind/current will change with the moving of the drifting object. The prior distribution of the angleθobeys a uniform distributionθ~ ∪ (0,π) by observing the motions of different objects, the probability densityf(θ) is given by

    For the immersion ratioRA, as shown in Fig.4, the exposed above-water part of the object will repeatedly change with the motion of the object, and this process is stochastic. However, its change obeys a normal distribution and can be defined as

    whereμAis the mean value,σAis the standard deviation.

    The probability densityφ(RA) ofRAcan be determined as

    1.4Model optimization

    The motion of the object is not only related to the oceanographic conditions, but also to the geometrical structure features of the object. The objects of different shapes have different trajectories under the same external conditions. The reason is that the directions and the actions of the external drag force are different for different drifting objects. In this paper, we propose to use a weight for each variable that affects the drifting velocity of the object. The basic idea of the definition of the weight is to make the residual of each variable positively correlated to the shape properties of the object, reducing the impact caused by different objects? shapes on the real-time drifting speed and thus making the average speed to some extent robust to this variation between objects.

    Fig.4 Different immersion ratios under different time

    Table 1 Some properties of two models

    Fig.5 The experiments under different environmental conditions

    Fig.6 The real-time and averaged speeds (v/ms-1) of the drift under the current only by simulating the drifting of the object

    The strategy is to find an optimal combination of the ocean and atmospheric models based on past/ a priori information, and use the derived optimal weights to compute new predictions in a forecast process. There are many methods to retrieve these optimal weights. The most straightforward is to use a linear regression from a least squares approximation.

    2. Experiments and results

    To demonstrate the performance of our drifting trajectory prediction algorithm and evaluate the contributions of the components in the proposed approach, we conduct comprehensive experiments on two typical classes (sphere and square models), and compare the achieved results with the observed experimental results. Table 1 shows the basic properties of two models, and the general model parametersCw=2.563× 10-3,Ca=0.865× 10-3.

    The weight coefficient vector can be estimated by using least squares regression method to analyze the experimental data in Ref.[1]. Here we obtain the weighted coefficient vectorAof the input vector

    Fig.7 The real-time and averaged speeds of the drift under the current and waves (current speed: 0.3 m/s)

    Fig.8 The real-time and averaged speeds of the drift under wind, currents and waves (wind speed: 3.5 m/s, wave height 0.08 m)

    The 1strow and 2strow ofAis the weight coefficient vector of the mine and vessel models, respectively, andPwavdenotes the period of the wave,Tairdenotes the air temperature, andPairdenotes the pressure of the air.

    As shown in Fig.6, the stochastic disturbance of the real-time speedvof the square vessel model is larger than that of the sphere mine model. The reason is that the disturbance speed ΔUof the mine is different from that of the vessel model when the stochastic changes of the divergence angleθare under the same external conditions, as is explained in Eq.(14). In addition, the average speed of the square vessel model is less than that of the sphere mine model that accounts for the influence of the shape features on the drift under the same external conditions. Here, the weight coefficient vector is used to simulate the relationships between the drifting speed and the shape properties.

    As shown in Fig.7, waves are added into the experiments, but the average speed of the drift keeps a similar speed in the above experiment(See Fig.6). As shown in Fig.8, wind, currents and waves are added into the experiment, which leads to apparent changes.

    Fig.9 Comparisons between the observed speeds and the simulated speeds for two kinds of objects

    Fig.10 Comparisons between the observed trajectory and the simulated trajectory under the current only

    The simulated averaged speeds are compared with the observed speeds. It is apparent that the simulated speed as a whole agree quite well with the observed values, as shown in Fig.9.

    Experiments are designed to check the effectiveness by comparing the simulated trajectory and the observed trajectory of the drifts. As shown in Fig.10,xdenotes the distance of the downwind direction, andyis the distance of the crosswind direction, under the current only, the experimental results of the vessel and the mine are consistent with the predicted trajectories and the observed trajectories, and the drifting objects keep stably moving toward the initial direction.

    Fig.11 Comparisons between the observed trajectory and the simulated trajectory under wind, waves and currents

    After wind and waves are added into the system, both of trajectories diverge stochastically in the crosswind direction, but the simulated trajectory as a whole agrees with the observed trajectory, as shown in Fig.11.

    3. Conclusions

    This paper proposes some novel methodologies to carry out the simulation of the real-time speed of the drifting objects. The shape properties are embedded into the system to calculate the real-time speed to improve the accuracy of the average speed of the drift, and the weight coefficient vector is designed to describe the relationships between the shape properties and the stochastic motion of the object. Furthermore, the stochastic distribution density functions of the input variables are used to simulate the real-time state of the drifting objects, which provides estimations of the unknown variables.

    In order to validate the effectiveness of the proposed method, experiments are designed to compare the simulated speed and trajectories with the observed. The experimental results show that the simulated speed agrees well with the observed speed in both the vessel and the mine model experiments. Thus, the trajectory of the drifting object can be predicted accurately.

    先對(duì)種子進(jìn)行預(yù)處理再播種能有效提高種子的發(fā)芽率。對(duì)于農(nóng)民自繁自留的種子,形狀上大多都層次不齊,有的還摻混著少量的雜種,甚至還有帶病蟲的籽粒。因此,播種前篩選一遍,可以保證種子質(zhì)量,為小麥發(fā)苗奠定基礎(chǔ)。

    The proposed method provides an effective means to predict the drifting trajectory and can beapplied in the drifting trajectory prediction and the maritime search and rescue decision-making system. Further validation experiments on the open sea are needed.

    Acknowledgment

    The authors would like to thank editors and anonymous reviewers for their comments and suggestions, which helped improving the quality of this work greatly.

    [1] BREIVIK ?., ALLEN A. and CHRISTOPHE M. et al. Wind-induced drift of objects at sea: The leeway field method[J]. Applied Ocean Research, 2011, 33(2): 100-109.

    [2] HACKETT B., BREIVIK ?. and WETTRE C. Ocean Weather Forecasting: An integrated view of oceanography[M]. Berlin, Germany: Springer-Verlag, 2006, 507-524.

    [3] GASTGIFVARS M., LAURI H. and SARKANEN A. et al. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 2006, 70(4): 567-576.

    [4] KOD S., MARTIN P. J. and ROWLEY C. D. et al. A real-time coastal ocean prediction experiment for MREA04[J]. Journal of Marine Systems, 2008, 69(1-2): 17-28.

    [5] ULLMANN D. S., O'DONNELL J. and KOHUT J. Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties[J]. Journal of Geophysical Research, 2006, 111(C12): 1-14.

    [6] DANIEL P., JAN G. and CABIOC'H F. et al. Drift modeling of cargo containers[J]. Spill Science and Technology Bulletin, 2002, 7(5-6): 279-288.

    [7] ESSEN H. H., BREIVIK ?. and GUNTHER H. et al. Comparison of remotely measured and modeled currents in coastal areas of Norway and Spain[J]. The Global Atmosphere-Ocean System, 2003, 9(1-2): 39-64.

    [8] MONBETA V., AILLIOTA P. and PREVOSTOB M. Survey of stochastic models for wind and sea state time series[J]. Probabilistic Engineering Mechanics, 2007, 22(2): 113-126.

    [9] VANDENBULCKE L., BECKERS J. M. and LENARTZ F. et al. Super-ensemble techniques: Application to surface drift prediction[J]. Progress in Oceanography, 2009, 82(3): 149-167.

    [10] RIXEN M., FERREIRA-COELHO E. Operational surface drift prediction using linear and non-linear hyperensemble statistics on atmospheric and ocean models[J]. Journal of Marine Systems, 2007, 65(1-4): 105-121.

    [11] DAVIDSON F., ALLEN A. and BRASSINGTON G. et al. Applications of GODAE ocean current forecasts to search and rescue and ship routing[J]. Oceanography, 2009, 22(3): 176-181.

    [12] EIDE M., ENDRESEN ?. and BREIVIK ?. et al. Prevention of oil spill from shipping by modelling of dynamic risk[J]. Marine Pollution Bulletin, 2007, 54(10): 1619-1633.

    [13] HONG S. P., CHO S. J. and PARK M. J. et al. Optimal search-relocation trade-off in Markovian-target searching[J]. Computers and Operations Research, 2009, 36(6): 2097-2104.

    [14] NI Z., QIU Z. and SU T. On predicting boat drift for search and rescue[J]. Ocean Engineering, 2010, 37(13): 1169-1179.

    [15] BREIVIK ?., ALLEN A. An operational search and rescue model for the norwegian sea and the north sea[J]. Journal of Marine Systems, 2008, 69(1-2): 99-113.

    [16] ISOBE A., HINATA H. and KAKO S. et al. Interdisciplinary studies on environmental chemistry marine environmental modeling and analysis[M]. Tokyo, Japan: TERRAPUB, 2011, 239-249.

    [17] BREIVIK ?., SATRA ?. Real time assimilation of HF radar currents into a coastal ocean model[J]. Journal of Marine Systems, 2001, 28(3-4): 161-182.

    [18] ABDALLA S., CAVALERI L. Effect of wind variability and variable air density on wave modeling[J]. Journal of Geophysical Research. 2002, 107 (C7): 1-17.

    [19] NIE H. B. MCMC-based drifting trajectory prediction model and dynamic optimizing ship routeing algorithm[D]. Master Thesis, Shanghai, China: Shanghai Maritime University, 2013(in Chinese).

    10.1016/S1001-6058(14)60104-9

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 31100672, 51379121 and 61304230), the Shanghai Key Technology Plan Project (Grant Nos. 12510501800, 13510501600).

    Biography: WANG Sheng-zheng (1976-), Male, Ph. D.,

    Associate Professor

    猜你喜歡
    雜種病蟲發(fā)芽率
    湖羊及其雜種生產(chǎn)性能和瘤胃微生物差異研究
    果園病蟲無公害防治助農(nóng)提質(zhì)增效
    玉米中后期病蟲防控技術(shù)
    選用對(duì)口藥劑 適期防治病蟲
    探討低溫冷凍條件對(duì)玉米種子發(fā)芽率的影響
    種子科技(2018年11期)2018-09-10 00:56:48
    低溫及赤霉素處理對(duì)絲綿木種子萌發(fā)的影響
    果樹病蟲藏在哪過
    夏玉米種子發(fā)芽率對(duì)植株和產(chǎn)量性狀的影響
    不同氮效率茄子基因型及其雜種F1的氮素吸收特性
    親愛的雜種
    山花(2012年8期)2012-04-29 00:44:03
    日韩视频一区二区在线观看| 久久青草综合色| 成人亚洲精品一区在线观看| 国产在线精品亚洲第一网站| 亚洲第一青青草原| 嫩草影视91久久| 狠狠婷婷综合久久久久久88av| 中文字幕最新亚洲高清| 中文字幕人妻熟女乱码| 亚洲熟妇中文字幕五十中出 | 国产97色在线日韩免费| 自线自在国产av| 久久人妻av系列| 大香蕉久久网| 黑人欧美特级aaaaaa片| 亚洲精品中文字幕一二三四区| 叶爱在线成人免费视频播放| 国产成人精品在线电影| 老汉色av国产亚洲站长工具| 色播在线永久视频| 日韩大码丰满熟妇| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 人成视频在线观看免费观看| 欧美日韩中文字幕国产精品一区二区三区 | av国产精品久久久久影院| 欧美日韩亚洲综合一区二区三区_| 日本欧美视频一区| 少妇猛男粗大的猛烈进出视频| 色婷婷久久久亚洲欧美| 亚洲熟妇熟女久久| 国产欧美日韩一区二区三区在线| 欧美久久黑人一区二区| 久99久视频精品免费| 中文字幕精品免费在线观看视频| 欧美日韩一级在线毛片| 狠狠婷婷综合久久久久久88av| 两个人免费观看高清视频| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三区av网在线观看| 久久久精品国产亚洲av高清涩受| 日韩大码丰满熟妇| cao死你这个sao货| 精品电影一区二区在线| 亚洲avbb在线观看| x7x7x7水蜜桃| 黄色女人牲交| 亚洲精品自拍成人| 久久亚洲精品不卡| 精品亚洲成国产av| 一边摸一边抽搐一进一出视频| 国产精品免费大片| 国产伦人伦偷精品视频| 老司机在亚洲福利影院| 欧美日韩黄片免| 欧美最黄视频在线播放免费 | 999久久久精品免费观看国产| 美国免费a级毛片| 99久久99久久久精品蜜桃| av一本久久久久| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久久久免费视频 | 制服诱惑二区| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美一区二区综合| 成人手机av| 国产成人av教育| 国产成人欧美在线观看 | 国产无遮挡羞羞视频在线观看| 91麻豆av在线| 夜夜躁狠狠躁天天躁| 国产亚洲欧美精品永久| 18禁黄网站禁片午夜丰满| 日本vs欧美在线观看视频| 国产精品 欧美亚洲| 久久久国产一区二区| 国产成人欧美在线观看 | 激情在线观看视频在线高清 | 丝袜人妻中文字幕| 视频在线观看一区二区三区| 久久亚洲真实| 国产熟女午夜一区二区三区| 狂野欧美激情性xxxx| 国产高清videossex| 脱女人内裤的视频| 岛国在线观看网站| 免费黄频网站在线观看国产| 亚洲成av片中文字幕在线观看| 91成年电影在线观看| 高清黄色对白视频在线免费看| a级毛片在线看网站| 欧美在线一区亚洲| 国产精品一区二区在线观看99| 亚洲第一青青草原| 丝袜美腿诱惑在线| 国产精品久久视频播放| 99热国产这里只有精品6| 国产精品 欧美亚洲| 最新美女视频免费是黄的| 国产人伦9x9x在线观看| 日韩免费高清中文字幕av| 91字幕亚洲| 久久精品国产亚洲av香蕉五月 | 夫妻午夜视频| 丝袜美足系列| 国产成+人综合+亚洲专区| 国产精品1区2区在线观看. | 欧美av亚洲av综合av国产av| 欧美av亚洲av综合av国产av| 欧美激情 高清一区二区三区| 亚洲久久久国产精品| 少妇猛男粗大的猛烈进出视频| 欧美精品啪啪一区二区三区| 午夜视频精品福利| 国产精品综合久久久久久久免费 | 亚洲欧美一区二区三区黑人| 国产精品成人在线| 国产精品亚洲av一区麻豆| 欧美日韩亚洲国产一区二区在线观看 | 操美女的视频在线观看| 熟女少妇亚洲综合色aaa.| 亚洲avbb在线观看| 欧美 日韩 精品 国产| 日韩欧美国产一区二区入口| 国产一区二区三区视频了| 大片电影免费在线观看免费| 国产男女内射视频| 欧美大码av| 色播在线永久视频| 又黄又爽又免费观看的视频| 超碰97精品在线观看| 在线视频色国产色| 久久久精品免费免费高清| 一区二区日韩欧美中文字幕| 国产蜜桃级精品一区二区三区 | 日本黄色视频三级网站网址 | 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品无人区| tocl精华| 狂野欧美激情性xxxx| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 动漫黄色视频在线观看| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频| 久久久国产精品麻豆| 狠狠狠狠99中文字幕| 麻豆av在线久日| 制服诱惑二区| 黄色丝袜av网址大全| 99精品在免费线老司机午夜| 亚洲五月色婷婷综合| 国产精品影院久久| 久久久久精品人妻al黑| 性色av乱码一区二区三区2| 大香蕉久久成人网| av片东京热男人的天堂| 黄色丝袜av网址大全| 亚洲av成人一区二区三| 国产视频一区二区在线看| 日韩成人在线观看一区二区三区| 亚洲精品一二三| 51午夜福利影视在线观看| 99香蕉大伊视频| 在线播放国产精品三级| 亚洲精品久久午夜乱码| 欧美中文综合在线视频| av不卡在线播放| 动漫黄色视频在线观看| 亚洲三区欧美一区| 三上悠亚av全集在线观看| 18禁国产床啪视频网站| 免费人成视频x8x8入口观看| 成人国语在线视频| 亚洲国产欧美网| www.自偷自拍.com| 国产精品.久久久| 国产精品成人在线| 亚洲在线自拍视频| 国产精品免费视频内射| 精品亚洲成国产av| 免费高清在线观看日韩| av福利片在线| 亚洲国产中文字幕在线视频| 一边摸一边抽搐一进一出视频| 亚洲国产毛片av蜜桃av| 日韩欧美免费精品| 极品人妻少妇av视频| 一本大道久久a久久精品| a级片在线免费高清观看视频| 香蕉国产在线看| netflix在线观看网站| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 国产成人系列免费观看| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 成人三级做爰电影| 久久精品国产a三级三级三级| 交换朋友夫妻互换小说| 精品高清国产在线一区| av视频免费观看在线观看| 麻豆国产av国片精品| 好看av亚洲va欧美ⅴa在| 午夜福利一区二区在线看| 国产精品成人在线| 国产精品电影一区二区三区 | 国产成人av激情在线播放| 国产精品综合久久久久久久免费 | 80岁老熟妇乱子伦牲交| 夜夜夜夜夜久久久久| 精品少妇一区二区三区视频日本电影| 黄色视频,在线免费观看| 日韩欧美在线二视频 | 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 久久99一区二区三区| 啦啦啦在线免费观看视频4| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯 | 天堂中文最新版在线下载| 99久久综合精品五月天人人| 久久国产精品影院| 丝袜美腿诱惑在线| 在线观看免费高清a一片| 在线永久观看黄色视频| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 午夜免费观看网址| 亚洲人成电影免费在线| 日韩有码中文字幕| 男女床上黄色一级片免费看| 久久中文字幕一级| 日韩大码丰满熟妇| 9色porny在线观看| 亚洲专区国产一区二区| 国产淫语在线视频| 免费观看人在逋| ponron亚洲| 国产精品.久久久| 18禁黄网站禁片午夜丰满| 亚洲成人手机| 日韩成人在线观看一区二区三区| 亚洲av第一区精品v没综合| 亚洲avbb在线观看| 一级黄色大片毛片| 亚洲第一青青草原| 一区在线观看完整版| 真人做人爱边吃奶动态| 亚洲少妇的诱惑av| 国产成人精品无人区| 中文字幕最新亚洲高清| 亚洲五月色婷婷综合| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 嫩草影视91久久| 久久精品成人免费网站| 一边摸一边抽搐一进一出视频| 大香蕉久久网| 免费在线观看日本一区| 久久天堂一区二区三区四区| 亚洲国产中文字幕在线视频| 在线观看一区二区三区激情| 亚洲免费av在线视频| 在线观看免费视频日本深夜| 国产成人精品无人区| 亚洲av成人一区二区三| 五月开心婷婷网| 欧美国产精品一级二级三级| 丁香欧美五月| 精品无人区乱码1区二区| 在线观看免费视频日本深夜| 最近最新中文字幕大全免费视频| av电影中文网址| 一二三四社区在线视频社区8| 欧洲精品卡2卡3卡4卡5卡区| 久久精品熟女亚洲av麻豆精品| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕av电影在线播放| 国产蜜桃级精品一区二区三区 | 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 丁香欧美五月| 国产单亲对白刺激| av中文乱码字幕在线| 亚洲熟女精品中文字幕| 黄网站色视频无遮挡免费观看| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区三区四区第35| 中文字幕色久视频| videos熟女内射| 99香蕉大伊视频| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 成年版毛片免费区| 国产成人精品无人区| 搡老熟女国产l中国老女人| 捣出白浆h1v1| 正在播放国产对白刺激| 国产精品国产av在线观看| 大片电影免费在线观看免费| 精品一区二区三卡| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 自拍欧美九色日韩亚洲蝌蚪91| 国产深夜福利视频在线观看| 一区二区三区精品91| 精品国内亚洲2022精品成人 | 国产成人一区二区三区免费视频网站| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| 制服人妻中文乱码| 亚洲视频免费观看视频| 制服人妻中文乱码| 午夜福利,免费看| 欧美精品av麻豆av| 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 欧美成人免费av一区二区三区 | 天天操日日干夜夜撸| 欧美人与性动交α欧美软件| 国产精品.久久久| 欧美最黄视频在线播放免费 | 中文字幕另类日韩欧美亚洲嫩草| 欧美乱色亚洲激情| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 欧美日本中文国产一区发布| 夜夜躁狠狠躁天天躁| 在线免费观看的www视频| √禁漫天堂资源中文www| 国产不卡一卡二| 亚洲综合色网址| 亚洲欧美色中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 新久久久久国产一级毛片| x7x7x7水蜜桃| 色在线成人网| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人看| 丝袜在线中文字幕| 日本一区二区免费在线视频| 18禁观看日本| 操美女的视频在线观看| 亚洲欧美色中文字幕在线| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品第一综合不卡| 久99久视频精品免费| 欧美日韩亚洲高清精品| 无人区码免费观看不卡| 老熟女久久久| 三级毛片av免费| 自线自在国产av| 精品国产一区二区久久| 午夜影院日韩av| 很黄的视频免费| 精品国产亚洲在线| 99香蕉大伊视频| 久久久久久久国产电影| 热99re8久久精品国产| 女人被躁到高潮嗷嗷叫费观| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 精品午夜福利视频在线观看一区| 欧美黑人精品巨大| 久久久久精品国产欧美久久久| 村上凉子中文字幕在线| 一级作爱视频免费观看| 欧美日韩av久久| 99热只有精品国产| 欧美中文综合在线视频| 日韩免费高清中文字幕av| 一个人免费在线观看的高清视频| 亚洲精品av麻豆狂野| 日韩欧美一区视频在线观看| 99久久精品国产亚洲精品| 999精品在线视频| 国产精品成人在线| 久热爱精品视频在线9| а√天堂www在线а√下载 | 日韩欧美国产一区二区入口| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 久久人妻福利社区极品人妻图片| 窝窝影院91人妻| 国产一区二区三区综合在线观看| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频在线观看免费| 精品无人区乱码1区二区| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 午夜福利在线免费观看网站| 欧美最黄视频在线播放免费 | 国产麻豆69| 天天躁日日躁夜夜躁夜夜| 在线天堂中文资源库| 在线播放国产精品三级| 国产主播在线观看一区二区| aaaaa片日本免费| 好男人电影高清在线观看| 99香蕉大伊视频| 黄网站色视频无遮挡免费观看| 亚洲国产欧美一区二区综合| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 久久ye,这里只有精品| 国产又爽黄色视频| 精品欧美一区二区三区在线| 午夜影院日韩av| 精品熟女少妇八av免费久了| 一二三四在线观看免费中文在| 久久国产精品大桥未久av| 久久午夜综合久久蜜桃| 欧美黑人精品巨大| 高清av免费在线| 免费看a级黄色片| 国产极品粉嫩免费观看在线| 九色亚洲精品在线播放| 免费高清在线观看日韩| 国产在线精品亚洲第一网站| 欧美精品高潮呻吟av久久| 在线观看免费午夜福利视频| 法律面前人人平等表现在哪些方面| 亚洲欧美一区二区三区久久| 高清黄色对白视频在线免费看| 亚洲专区国产一区二区| 亚洲熟女精品中文字幕| 免费看a级黄色片| 大片电影免费在线观看免费| 在线免费观看的www视频| 日日爽夜夜爽网站| 18禁美女被吸乳视频| 久久久久国产精品人妻aⅴ院 | 91在线观看av| 欧美精品人与动牲交sv欧美| 999精品在线视频| x7x7x7水蜜桃| 久久精品熟女亚洲av麻豆精品| 成人18禁高潮啪啪吃奶动态图| 啦啦啦 在线观看视频| 欧美乱码精品一区二区三区| 亚洲一码二码三码区别大吗| 精品一区二区三区视频在线观看免费 | 国产精品二区激情视频| 丁香六月欧美| 精品国产一区二区三区久久久樱花| 超碰成人久久| 大香蕉久久成人网| 日本五十路高清| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线 | 亚洲熟妇中文字幕五十中出 | 欧美不卡视频在线免费观看 | 高潮久久久久久久久久久不卡| 久久香蕉国产精品| 欧美人与性动交α欧美软件| a在线观看视频网站| 亚洲专区中文字幕在线| 国产单亲对白刺激| 99热只有精品国产| 咕卡用的链子| 久久久久久久久久久久大奶| 欧美 日韩 精品 国产| 美女 人体艺术 gogo| 日韩 欧美 亚洲 中文字幕| 9色porny在线观看| 俄罗斯特黄特色一大片| 黑人巨大精品欧美一区二区mp4| 操出白浆在线播放| 国产又色又爽无遮挡免费看| 黄色怎么调成土黄色| 91精品三级在线观看| 香蕉久久夜色| 18禁裸乳无遮挡免费网站照片 | 成人黄色视频免费在线看| 亚洲av日韩精品久久久久久密| 中文欧美无线码| 好看av亚洲va欧美ⅴa在| 99re在线观看精品视频| 中出人妻视频一区二区| 搡老岳熟女国产| 日本wwww免费看| 老熟妇仑乱视频hdxx| 午夜福利在线免费观看网站| 高清av免费在线| 免费在线观看影片大全网站| 十八禁人妻一区二区| 不卡av一区二区三区| 老司机影院毛片| 亚洲av片天天在线观看| 亚洲欧美色中文字幕在线| 精品欧美一区二区三区在线| 日韩制服丝袜自拍偷拍| 超色免费av| 亚洲成人免费电影在线观看| 交换朋友夫妻互换小说| 我的亚洲天堂| 三上悠亚av全集在线观看| 大型av网站在线播放| 国产成人精品久久二区二区免费| 国产91精品成人一区二区三区| 成熟少妇高潮喷水视频| 国产又色又爽无遮挡免费看| 一区二区三区精品91| 日韩 欧美 亚洲 中文字幕| 婷婷丁香在线五月| 国产高清激情床上av| 久久久国产一区二区| 99久久人妻综合| 欧美色视频一区免费| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 男人舔女人的私密视频| 男人操女人黄网站| 亚洲一区中文字幕在线| 国产成人精品在线电影| 一本大道久久a久久精品| 极品教师在线免费播放| 国产精品久久久久成人av| 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕大全电影3 | 免费观看a级毛片全部| 在线观看舔阴道视频| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 十八禁高潮呻吟视频| 18禁裸乳无遮挡动漫免费视频| 无遮挡黄片免费观看| 中文欧美无线码| 在线观看www视频免费| 中国美女看黄片| 亚洲精品成人av观看孕妇| 国内毛片毛片毛片毛片毛片| 啦啦啦视频在线资源免费观看| 天天添夜夜摸| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 又黄又粗又硬又大视频| 啦啦啦 在线观看视频| 国产成人精品在线电影| www.熟女人妻精品国产| 国产精品久久久久久精品古装| 69av精品久久久久久| 欧美成人午夜精品| 午夜精品久久久久久毛片777| av天堂在线播放| 亚洲人成电影免费在线| 亚洲 国产 在线| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久| 精品久久久久久,| 母亲3免费完整高清在线观看| 王馨瑶露胸无遮挡在线观看| 日本精品一区二区三区蜜桃| 高潮久久久久久久久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新中文字幕大全免费视频| 一本综合久久免费| 天天操日日干夜夜撸| tocl精华| 成年版毛片免费区| 亚洲人成电影观看| 91字幕亚洲| 中出人妻视频一区二区| 午夜福利视频在线观看免费| 国产精品亚洲av一区麻豆| tube8黄色片| 成熟少妇高潮喷水视频| 在线免费观看的www视频| 色综合婷婷激情| cao死你这个sao货| av免费在线观看网站| 中亚洲国语对白在线视频| 身体一侧抽搐| 青草久久国产| 午夜免费成人在线视频| 日本wwww免费看| 一区二区日韩欧美中文字幕| 老司机福利观看| 日韩欧美一区视频在线观看| 午夜免费鲁丝| 日本黄色日本黄色录像| 免费一级毛片在线播放高清视频 | 精品少妇久久久久久888优播| 午夜福利乱码中文字幕| 亚洲欧洲精品一区二区精品久久久| 宅男免费午夜| 一级毛片女人18水好多| 一二三四社区在线视频社区8| 啦啦啦视频在线资源免费观看| 99精国产麻豆久久婷婷| 手机成人av网站| 久久性视频一级片| 老熟女久久久| 成人国语在线视频| 午夜免费观看网址| 欧美乱码精品一区二区三区| 欧美日韩成人在线一区二区| 麻豆乱淫一区二区| 两性夫妻黄色片| 午夜影院日韩av|