• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure transient behavior of a slanted well with an impermeable fault*

    2014-06-01 12:30:02FENGGuoqing馮國慶LIUQiguo劉啟國

    FENG Guo-qing (馮國慶), LIU Qi-guo (劉啟國)

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China, E-mail: fengguoqing@swpu.edu.cn

    Pressure transient behavior of a slanted well with an impermeable fault*

    FENG Guo-qing (馮國慶), LIU Qi-guo (劉啟國)

    State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China, E-mail: fengguoqing@swpu.edu.cn

    (Received March 29, 2013, Revised May 8, 2013)

    Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.

    slanted well, point source solution, impermeable fault, type curves

    Introduction

    In real life, we will have slanted wells when a vertical well penetrates a dipping formation, or when a directionally-drilled well penetrates a horizontal formation. Cinco Ley (1974) first studied the pressure distribution created by a slanted well. The pressure distribution created by a slanted well in a closed boundary rectangular reservoir was established and type curves were also calculated. Simultaneously, the pseudo-skin factor caused by the inclination angle of a slant well was computed.

    Abbaszadeh and Peter Hegeman[1]presented analytical solutions for the pressure response of a slanted limited-entry well in an infinite reservoir subject to a pressure support from a gas cap, a bottom water drive, or a combination of both. The method of source and Green’s functions was used to derive the solutions, and averaging the uniform-flux wellbore solutions over the producing interval is shown to yield good approximations to the more exact infinite-conductivity wellbore solutions. Khattab (1991) used the finite element method for calculating the wellbore pressure for a slanted well. The model can be used to compute the wellbore pressure created by a slanted well fully or partially perforated when a cross flow occurs between layers. The sensitivities of the wellbore storage, the skin factor and the anisotropy to the wellbore pressure were also calculated.

    Ozkan and Raghavan[2]provided an efficient algorithm to compute the transient pressure responses in inclined wells. The solution was derived in the Laplace domain and cast into computationally efficient forms for all inclination angles. The algorithm allowed the computation of the pressures and the derivatives at the wellbore as well as at observation points. Wang et al.[3]provided an efficient algorithm for the computation of the transient pressure responses of an inclined multi-well system, in which the inclination angle, the changeable production rate, the pattern arrangement, and the number of wells can all be set arbitrarily. The algorithm is verified by example computations. Harmohan et al.[4]presented numerical simulation studies designated to investigate the behavior of horizontal wells and slanted wells that intersect high permeability layers sandwiched between two lower permeability layers.

    Li et al.[5]provided a new efficient algorithm for computing transient pressure responses in inclined wells based on the source function and the Newman method which can be used for inclined wells with complex boundaries. Wang et al.[6]presented an efficient algorithm to compute transient pressure distributions caused by slanted wells with arbitrary inclinationin reservoirs.

    In addition, Onur[7]provided a technique for determining the formation parameters of spherical and/ or radial flows determined by packer and probe(s) pressure transient measurements in slanted wells for single layer systems. Chang (1989), Besson (1990), Chang (1995) and Chen[8,9]studied the productivity index for slanted wells. Abhijeet[10]studied the pressure transient data of horizontal, slanted and vertical wells in Indian offshore fields. Other scholars such as Avatasmark[11], Zhang et al.[12], Yang et al.[13], Zhang and Liu[14]also studied the pressure transient behavior of slanted wells.

    As shown by the previous studies, the calculation of the wellbore pressure for a slanted well is difficult. To our knowledge, little work has been done for the analytical solution in a slab reservoir with an impermeable fault. In this paper, the well test model for a slanted well in a reservoir with an impermeable fault and impermeable top and bottom boundaries is established. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed.

    1. The basic point-source solution in an infinite reservoir

    For an isotropic reservoir, the flow equation in porous media in spherical coordinates is as follows

    whereρDis the dimensionless distance betweenMDandMD',MDis the pressure response at the observation point,MD'is the point-source,sis the Laplace variable,γis the response of a unit strength source,γisγin the Laplace domain,Ris the radial distance between the point source and the field point.

    The general solution of Eq.(1) is

    Substituting the boundary condition of Eq.(1) into Eq.(2), the basic solution of the point-source function (Ozkan 1994) is obtained as

    Equation (3) is the solution proposed by Lord Kelvin when he studied the heat conduction equation by introducing an instantaneous source, which is the famous solution named the basic solution of Lord Kelvin. The basic point-source solution of different kinds of reservoir models can be obtained by the mirror image principle combined with Eq.(3).

    2. The basic solution of instantaneous point-source function in a reservoir with impermeable top and bottom boundaries

    The reservoir model with impermeable top and bottom boundaries is shown in Fig.1.

    Fig.1 A slab reservoir with impermeable top and bottom boundaries

    The instantaneous point-source diffusion equation is

    According to the mirror image principle, infinitely many symmetric and equal strength reflections are made along the top and bottom boundaries through the basic solution of Lord Kelvin. The basic solution of the point-source function in a reservoir with impermeable top and bottom boundaries is obtained by the superposition of these point-sources. As shown in Fig.1,M' is the position of the point source. The dimensionless distances atz=0 are 2nzeD+zD'and 2nzeD-zD' , respectively, wherenis an integer. Substituting the dimensionless distances in Eq.(3), the basic solution of the point source function in a reservoir with impermeable top and bottom boundaries becomeslis the characteristic length,Lis the Laplace transformation,x,y,zare the space coordinates of the field point in Cartesian coordinates,zeis the reservoir thickness,zeDis the dimensionless reservoir thickness.

    The following is the Poisson formula, which can be used to simplify Eq.(5)

    whereξ,ξeare the variables in the Poisson equation,K0is the modified Bessel function of second kind and order zero,tDis the dimensionless time.

    Fig.2 Model of a slanted well in a reservoir bounded with an impermeable fault

    3. Wellbore pressure analysis of a slanted well with an impermeable fault

    Figure 2 shows the configuration of a slanted well drilled in a slab reservoir under the following conditions:

    (1) With an impermeable fault and closed top and bottom boundaries, assumed to be laterally infinite.

    (2) The initial reservoir pressurepiis constant, with a uniform thickness ofze.

    (3) A single-phase fluid flows from the reservoir to the well at a constant rateq, and the gravity and the capacity pressure effect are ignored.

    (4) The oil reservoir is homogeneous and anisotropic.

    (5) The length of the well isl.

    A model of a slanted well in a reservoir with an impermeable fault and impermeable top and bottom boundaries is shown in Fig.2.

    The wellbore pressure can be calculated by the mirror image principle[15]. Supposing that the length between the slanted well’s center and the fault isL, and the fault is impermeable, the mirror image principle is applied to the fault. Now the center of the image well isM''. The basic point-source solution of the model of a slanted well with a fault can be deduced from the basic point-source solution (5) as

    wherexD'',yD'',zD'' are the dimensionless space coordinates of the image well in Cartesian coordinates,θis the inclination angle of the well measured from the vertical axis.

    Using the Poisson formula, Eq.(9) can be simplified as

    Substituting Eqs.(13), (14) into Eq.(10), and integrating along the trajectory of the slanted well, the dimensionless equation becomes[16,17]

    Equation (15) is the well bottom hole pressure response created by a slanted well in a slab reservoir with an impermeable fault and impermeable top and bottom boundaries. Similarly, the well bottom hole pressure of a slanted well in a slab reservoir with an impermeable fault and constant pressure boundaries at the top and bottom can also be solved.

    Fig.3 The type curves of a slanted well with an impermeable fault

    4. The type curves and analysis

    Figure 3 presented the log-log type curves of the dimensionless bottom hole pressure of a slanted well with different inclination angles in a closed boundary slab reservoir with an impermeable fault. As shown in the type curves, the pressure behavior characterization of a slanted well can be divided into six periods: the 1st period, the purely wellbore storage, is characterized by a unit slop in both the pressure and pressurederivative curves, the 2nd period, where the transition period, is dominated by the wellbore storage and the radial flow perpendicular to the well sidewall, the 3rd period, where the radial flow is perpendicular to the well sidewall, which is characterized by a horizontal straight line in the derivative curve and this period is affected by the inclination angle of the slanted well, the 4th period, the transition period, is dominated by the radial flow perpendicular to the sidewall and the intermediate stage radial flow, the 5th period, with the intermediate stage radial flow, which is characterized by the second horizontal straight line in the pressure derivative curve, and the line with the value “0.5”. It reflects the early radial flow in the horizontal direction. The 6th stage is the response of the fault, which is characterized by the horizontal line with the value “1”in the derivative curve.

    The inclination angle of a slanted well can affect the shape of the type curve. As shown in Fig.4, with the increase of the inclination angle, the value of the radial flow perpendicular to the well sidewall shown in the pressure derivative curve becomes smaller. When the inclination angle is small enough, the type curve of a slanted well is similar to that of a vertical well. With the increase of the inclination angle, the type curve gradually shows the flow characteristics of horizontal wells.

    Fig.4 Effect of inclination angle of slanted well on the type curves

    Fig.5 Effect of distance between slanted well’s center and fault on type curves

    Figure 5 shows the effect of the distance between the slanted well’s center and the fault on the pressure and pressure derivative curves. The larger the distance between the slanted well’s center and the fault is, the more delayed the response of the fault appears. The reason is that with the increase of the distance between the slanted well’s center and the fault, it will take more time for the impulse of the pressure wave to propagate to the fault. On the other hand, when the distance is small enough, the intermediate stage radial flow in the type curve will not appear.

    Figure 6 shows the effect of the wellbore storage constant,CD, on the pressure and pressure derivative curves. The wellbore storage constant has a significant effect on the radial flow perpendicular to the well sidewall. The largerCDis, the bigger the possibility that the early radial flow period perpendicular to the sidewall is masked by the wellbore storage effect.

    Fig.6 Effect of the wellbore storage constant to type curves

    Fig.7 Effect of skin factor to type curves

    Figure 7 shows the effect of the skin factor,S, on the pressure and pressure derivative curves. The largerSis, the more obvious the hump in the pressure derivative curve appears and the more delayed the radial flow perpendicular to sidewall becomes.

    5. Conclusions

    From our study and analysis, the following conclusions are drawn:

    (1) The well test model of a slanted well in a slab reservoir with an impermeable fault and impermeable top and bottom boundaries is established, and the solutions are derived by the basic point source in an infinite space combined with the mirror image principle.

    (2) The effect of the inclination angle on the pressure behavior for a slanted well is mainly on the 3rd stage in the pressure derivative curve, which is the radial flow perpendicular to the well sidewall. The larger the inclination angle is, the smaller the value of the radial flow perpendicular to the well sidewall is.

    (3) The distance between a slanted well’s center and a fault affects the later period in the pressure derivative curve. The pressure derivative curve tends to be a horizontal line of the value 1 in the later period, which is the refection by the impermeable fault boundary. The larger the distance is, the more delayed the flat response of the fault appears.

    [1] ABBASZADEH M., PETER HEGEMAN S. Pressuretransient analysis for a slanted well in a reservoir with vertical pressure support[J]. SPE Formation Evaluation, 1990, 5(3): 277-284.

    [2] OZKAN E., RAGHAVAN R. A Computationally efficient transient-pressure solution for inclined wells[J]. SPE Reservoir Evaluation and Engineering, 2000, 3(5): 414-425.

    [3] WANG De-shan, ZHANG Li and NIE Li-xin et al. A computationally efficient, transient-pressure solution for an inclined multiwell system[J]. Journal of Hydrodynamics, Ser. A, 2005, 20(4): 527-530(in Chinese).

    [4] HARMOHAN G., RAYED A. and MOHAMMED B. I. Pressure transient behavior of horizontal and slant wells intersecting a high permeability layer[C]. SPE Middle East Oil and Gas Show and Conference. Bahrain, Kingdom of Bahrain, 2007.

    [5] LI Wei, LU De-tang and WANG Lei et al. A transient pressure solution for inclined wells with complex boundaries[J]. Well Testing, 2009, 18(6): 1-5(in Chinese).

    [6] WANG Hai-tao, ZHANG Lie-hui and GUO Jing-jing et al. An efficient algorithm to compute transient pressure responses of slanted wells with arbitrary inclination in reservoirs[J]. Petroleum Science, 2012, 9(2): 212-222.

    [7] ONUR M., HEGEMAN P. S. and KUCHUK F. J. Pressure-transient analysis of dual packer-probe wireline formation testers in slanted wells[C]. SPE Annual Technical Conference and Exhibition. Houston, Texa, USA, 2004.

    [8] CHEN Z., HUAN G. andMA Y. Computational methods for multiphase flows in porous media, in the computational science and engineering Series 2[M]. Philadelphia, USA: Society for Industry and Applied Mathematics Press, 2006.

    [9] CHEN Z. Reservoir simulation: Mathematical techniques in oil recovery, in the CBMS-NSF regional conference series in applied mathematics 77[M]. Philadelphia, USA: Society for Industry and Applied Mathematics Press, 2007.

    [10] ABHIJEET A. Suitability of horizontal, inclined, and vertical wells on an Indian offshore platform using pressure transient analysis[C]. SPE Annual Technical Conference and Exhibition. San Antonio, Texa, USA, 2012.

    [11] AVATASMARK R. A. Klausen: Well index in reservoir simulation for slanted and slightly curved wells in 3D grids[J]. SPE Journal, 2003, 8(1): 41-48.

    [12] ZHANG Xiao-long., LI Xiao-ping and ZHANG Xu et al. Research on inclined well test model for orthographic fault slabby double porosity reservoir[J]. Well Testing, 2012, 21(6): 1-4(in Chinese).

    [13] YANG lei, HUANG Cheng and DUAN Yong-gang et al. Pressure transient interpretation of inclined well and lateral well[J]. Journal of Southwest Petroleum Institu- te, 2002, 24(2): 25-27(in Chinese).

    [14] ZHANG Xu, LIU Qi-guo. Research on inclined well test model for slabby fault reservoir[J]. Natural gas and oil, 2012, 30(5): 60-62(in Chinese).

    [15] RUBIN R. L. Duhamel solutions of non-homogeneous analogue wave equations[J]. Proceedings of the American Mathematical Society, 2007, 135(3): 777- 785.

    [16] UMAROV S. R., SAIDAMATOV E. M. A generalization of Duhamel’s principle for differential equations of fractional order[J]. Doklady Mathematics, 2007, 75(1): 94-96.

    [17] DOMINIC G. Analytical solution to the unsteady onedimensional conduction problem with two time-varying boundary conditions: Duhamel’s theorem and separation of variables[J]. Heat and mass transfer, 2010, 46(7): 707-716.

    10.1016/S1001-6058(14)60108-6

    * Biography: FENG Guo-qing (1974-), Male, Ph. D., Associate professor

    国产av一区在线观看免费| 少妇 在线观看| 午夜激情福利司机影院| 久久性视频一级片| 色精品久久人妻99蜜桃| 两个人视频免费观看高清| a级毛片a级免费在线| 十八禁网站免费在线| 久久精品aⅴ一区二区三区四区| 久久久久久九九精品二区国产 | 久久亚洲真实| 久久中文字幕一级| 亚洲熟妇中文字幕五十中出| 草草在线视频免费看| 午夜福利欧美成人| 欧美+亚洲+日韩+国产| 黄色 视频免费看| 亚洲中文字幕日韩| 在线观看免费视频日本深夜| 亚洲三区欧美一区| 少妇 在线观看| 黄网站色视频无遮挡免费观看| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区不卡视频| 精品卡一卡二卡四卡免费| 亚洲中文日韩欧美视频| 国产99久久九九免费精品| 热re99久久国产66热| 亚洲欧洲精品一区二区精品久久久| 在线看三级毛片| 国产精华一区二区三区| 欧美激情 高清一区二区三区| 曰老女人黄片| 国产区一区二久久| 听说在线观看完整版免费高清| 国内少妇人妻偷人精品xxx网站 | www.熟女人妻精品国产| 亚洲一码二码三码区别大吗| 久久欧美精品欧美久久欧美| 中文字幕高清在线视频| 亚洲欧美激情综合另类| 淫秽高清视频在线观看| 久久精品国产亚洲av香蕉五月| 91成人精品电影| 精华霜和精华液先用哪个| 美女午夜性视频免费| 亚洲国产精品999在线| 亚洲精品一区av在线观看| 美女大奶头视频| 日韩欧美一区二区三区在线观看| 99热只有精品国产| 免费电影在线观看免费观看| 午夜免费观看网址| 精品国产美女av久久久久小说| 18禁国产床啪视频网站| 精品久久久久久久人妻蜜臀av| 欧美一级a爱片免费观看看 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲天堂国产精品一区在线| 男女那种视频在线观看| 啦啦啦韩国在线观看视频| 亚洲av中文字字幕乱码综合 | 精品乱码久久久久久99久播| 香蕉av资源在线| avwww免费| 免费电影在线观看免费观看| 变态另类丝袜制服| 精品乱码久久久久久99久播| 男女床上黄色一级片免费看| 日韩欧美一区二区三区在线观看| 两个人免费观看高清视频| 在线永久观看黄色视频| 亚洲真实伦在线观看| 91字幕亚洲| 天天躁夜夜躁狠狠躁躁| 国产av在哪里看| 中文字幕人成人乱码亚洲影| 国产一区在线观看成人免费| 国产主播在线观看一区二区| 欧美黑人欧美精品刺激| 深夜精品福利| 19禁男女啪啪无遮挡网站| 日韩视频一区二区在线观看| 99国产综合亚洲精品| 国产精品av久久久久免费| 老鸭窝网址在线观看| 久99久视频精品免费| 两人在一起打扑克的视频| 久久久精品国产亚洲av高清涩受| 亚洲免费av在线视频| www.精华液| 精品国产乱子伦一区二区三区| 人人澡人人妻人| 国产精品野战在线观看| 国产1区2区3区精品| 欧美激情久久久久久爽电影| 黄网站色视频无遮挡免费观看| 国产精品影院久久| 99re在线观看精品视频| 草草在线视频免费看| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 精品久久久久久久毛片微露脸| 国产一区二区三区在线臀色熟女| 欧美黑人巨大hd| 最近在线观看免费完整版| 非洲黑人性xxxx精品又粗又长| 99久久综合精品五月天人人| 国产亚洲欧美精品永久| 亚洲欧美日韩高清在线视频| 看黄色毛片网站| 不卡av一区二区三区| 亚洲中文字幕日韩| 自线自在国产av| 日韩成人在线观看一区二区三区| 国产免费av片在线观看野外av| av有码第一页| 久久精品国产亚洲av高清一级| www.www免费av| 欧美日韩一级在线毛片| 亚洲欧美精品综合久久99| 久久久久久久久免费视频了| 欧美日本视频| 日韩中文字幕欧美一区二区| 欧美日本亚洲视频在线播放| 国产又爽黄色视频| 日本精品一区二区三区蜜桃| 久久久久久久精品吃奶| 欧美色欧美亚洲另类二区| 久久久久精品国产欧美久久久| 成人欧美大片| 婷婷亚洲欧美| 日韩欧美国产一区二区入口| 久久精品夜夜夜夜夜久久蜜豆 | 一进一出抽搐gif免费好疼| av欧美777| 亚洲av美国av| 亚洲av日韩精品久久久久久密| 欧美在线一区亚洲| 18禁裸乳无遮挡免费网站照片 | 国产精品电影一区二区三区| 国产熟女xx| 夜夜看夜夜爽夜夜摸| 久久久久久人人人人人| 搡老岳熟女国产| 99热只有精品国产| 国产一区二区三区在线臀色熟女| 欧美zozozo另类| 久久精品成人免费网站| 两性夫妻黄色片| 午夜激情福利司机影院| av片东京热男人的天堂| www.精华液| 亚洲av成人一区二区三| 国产亚洲av高清不卡| 成人国产一区最新在线观看| 国产在线观看jvid| 少妇被粗大的猛进出69影院| 男男h啪啪无遮挡| 不卡av一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 一本大道久久a久久精品| 少妇 在线观看| 波多野结衣高清无吗| 亚洲成人精品中文字幕电影| 国产精品,欧美在线| 长腿黑丝高跟| 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 夜夜夜夜夜久久久久| 观看免费一级毛片| 熟妇人妻久久中文字幕3abv| 精品国产亚洲在线| 日韩 欧美 亚洲 中文字幕| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 制服诱惑二区| √禁漫天堂资源中文www| 99国产精品99久久久久| 在线观看66精品国产| 人人妻,人人澡人人爽秒播| 美女高潮喷水抽搐中文字幕| 69av精品久久久久久| 午夜老司机福利片| 级片在线观看| 老司机在亚洲福利影院| 国产一区在线观看成人免费| 亚洲精品国产精品久久久不卡| 午夜免费激情av| 亚洲欧美精品综合久久99| 亚洲国产欧美网| 老司机在亚洲福利影院| 国内少妇人妻偷人精品xxx网站 | 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 女性被躁到高潮视频| 人人妻,人人澡人人爽秒播| 99热只有精品国产| 久久亚洲真实| av片东京热男人的天堂| 国产成+人综合+亚洲专区| 国产在线观看jvid| 国产黄色小视频在线观看| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 免费无遮挡裸体视频| 久久久久久九九精品二区国产 | 国产野战对白在线观看| 久久精品影院6| 国产成人精品久久二区二区91| 国产成人av教育| 亚洲人成网站高清观看| 日韩精品中文字幕看吧| 免费看a级黄色片| 国内精品久久久久久久电影| 又大又爽又粗| 亚洲人成伊人成综合网2020| 免费高清视频大片| 中亚洲国语对白在线视频| 男人的好看免费观看在线视频 | 中出人妻视频一区二区| 丁香欧美五月| 超碰成人久久| 操出白浆在线播放| 亚洲成av人片免费观看| 制服诱惑二区| 久久性视频一级片| 久久天躁狠狠躁夜夜2o2o| 这个男人来自地球电影免费观看| 成在线人永久免费视频| 亚洲九九香蕉| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 亚洲欧美精品综合久久99| 免费在线观看日本一区| 真人做人爱边吃奶动态| 国产人伦9x9x在线观看| 国产单亲对白刺激| 午夜福利视频1000在线观看| 久久精品国产亚洲av香蕉五月| 亚洲成人精品中文字幕电影| 女性被躁到高潮视频| 国产乱人伦免费视频| 757午夜福利合集在线观看| 久久香蕉精品热| 成人国产一区最新在线观看| 亚洲男人天堂网一区| 哪里可以看免费的av片| 黄频高清免费视频| 亚洲精华国产精华精| 久久精品国产99精品国产亚洲性色| www.熟女人妻精品国产| 中文字幕av电影在线播放| 日本熟妇午夜| 悠悠久久av| 亚洲真实伦在线观看| 久久中文看片网| 少妇裸体淫交视频免费看高清 | 免费高清在线观看日韩| av超薄肉色丝袜交足视频| 久久性视频一级片| 精品欧美国产一区二区三| 十八禁人妻一区二区| 高清毛片免费观看视频网站| 精品欧美国产一区二区三| 一本一本综合久久| 国产成人影院久久av| 99国产精品一区二区蜜桃av| 琪琪午夜伦伦电影理论片6080| 长腿黑丝高跟| 丰满的人妻完整版| avwww免费| 色哟哟哟哟哟哟| 可以在线观看毛片的网站| 成人亚洲精品av一区二区| 欧美成人一区二区免费高清观看 | 国产黄a三级三级三级人| 香蕉av资源在线| 国产av一区二区精品久久| 18禁黄网站禁片免费观看直播| 中文字幕人成人乱码亚洲影| 精品久久久久久,| 精品国产乱码久久久久久男人| 在线观看日韩欧美| 十分钟在线观看高清视频www| 欧美乱码精品一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲美女黄片视频| 欧美另类亚洲清纯唯美| 精品无人区乱码1区二区| 成熟少妇高潮喷水视频| 日日爽夜夜爽网站| 亚洲av五月六月丁香网| 久久久久亚洲av毛片大全| 国产一卡二卡三卡精品| 天天添夜夜摸| 久久精品成人免费网站| 国产成人av教育| 国产av一区在线观看免费| 一区二区三区国产精品乱码| 国产精品98久久久久久宅男小说| 国产一级毛片七仙女欲春2 | 久久性视频一级片| 老司机午夜福利在线观看视频| 日韩大尺度精品在线看网址| 欧美精品亚洲一区二区| 婷婷六月久久综合丁香| 国产精品九九99| 亚洲成av人片免费观看| 婷婷丁香在线五月| 啦啦啦韩国在线观看视频| 韩国av一区二区三区四区| 国产高清视频在线播放一区| 亚洲自拍偷在线| 久久中文看片网| 制服诱惑二区| 国产又黄又爽又无遮挡在线| 中文字幕精品免费在线观看视频| 黄色a级毛片大全视频| 国内久久婷婷六月综合欲色啪| 久久 成人 亚洲| 国产精品一区二区精品视频观看| 男女午夜视频在线观看| 变态另类丝袜制服| 桃红色精品国产亚洲av| 国产单亲对白刺激| 亚洲av片天天在线观看| 动漫黄色视频在线观看| 亚洲精品美女久久av网站| a在线观看视频网站| 国产v大片淫在线免费观看| 在线播放国产精品三级| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 满18在线观看网站| 三级毛片av免费| 人人澡人人妻人| 不卡一级毛片| 日韩 欧美 亚洲 中文字幕| 成在线人永久免费视频| 亚洲五月天丁香| 91麻豆av在线| 国产又黄又爽又无遮挡在线| 久久久久久久久中文| 搞女人的毛片| 亚洲一区中文字幕在线| 亚洲人成网站在线播放欧美日韩| 99久久久亚洲精品蜜臀av| 欧美+亚洲+日韩+国产| 免费看a级黄色片| 免费电影在线观看免费观看| 亚洲熟妇中文字幕五十中出| 久久久水蜜桃国产精品网| 国产精品自产拍在线观看55亚洲| 精品国产乱码久久久久久男人| 久久中文字幕人妻熟女| 99国产精品一区二区蜜桃av| 国产成人影院久久av| 可以在线观看的亚洲视频| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 黄色a级毛片大全视频| 国产精品电影一区二区三区| 在线观看舔阴道视频| 激情在线观看视频在线高清| 国产亚洲av高清不卡| 亚洲 欧美 日韩 在线 免费| 久久精品人妻少妇| 精品久久久久久,| 亚洲精品色激情综合| 亚洲精品美女久久久久99蜜臀| 91成年电影在线观看| 这个男人来自地球电影免费观看| tocl精华| 亚洲免费av在线视频| 欧美另类亚洲清纯唯美| 国产激情欧美一区二区| 国产熟女xx| 搞女人的毛片| 欧美精品亚洲一区二区| 国产亚洲精品久久久久久毛片| 精品国产超薄肉色丝袜足j| 亚洲国产欧美日韩在线播放| 国产成人系列免费观看| 国产一区二区在线av高清观看| 免费观看人在逋| 中文资源天堂在线| 亚洲午夜精品一区,二区,三区| 国产成人欧美| 色综合亚洲欧美另类图片| 天堂√8在线中文| 可以在线观看的亚洲视频| 777久久人妻少妇嫩草av网站| 久久精品国产清高在天天线| 无人区码免费观看不卡| 看黄色毛片网站| 日本三级黄在线观看| 韩国av一区二区三区四区| 波多野结衣高清作品| 丝袜美腿诱惑在线| 99热这里只有精品一区 | 国产一卡二卡三卡精品| 久9热在线精品视频| 曰老女人黄片| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 国产一区二区三区视频了| 国产精品久久久av美女十八| av超薄肉色丝袜交足视频| 欧美乱码精品一区二区三区| 精品乱码久久久久久99久播| 夜夜夜夜夜久久久久| 欧美成人午夜精品| 19禁男女啪啪无遮挡网站| 校园春色视频在线观看| 久久久久久人人人人人| 久久中文字幕人妻熟女| 久久热在线av| 97碰自拍视频| 日韩av在线大香蕉| 亚洲 欧美一区二区三区| 欧美日本亚洲视频在线播放| 日韩视频一区二区在线观看| 国产人伦9x9x在线观看| 国产成人欧美| 老鸭窝网址在线观看| 99国产精品99久久久久| 久热这里只有精品99| 午夜老司机福利片| 亚洲一区中文字幕在线| 国产一区二区三区在线臀色熟女| 特大巨黑吊av在线直播 | 岛国视频午夜一区免费看| x7x7x7水蜜桃| 婷婷亚洲欧美| 国产欧美日韩精品亚洲av| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| or卡值多少钱| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 搡老妇女老女人老熟妇| 村上凉子中文字幕在线| 老鸭窝网址在线观看| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 国产色视频综合| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 十分钟在线观看高清视频www| 少妇 在线观看| 久久久精品欧美日韩精品| 久久热在线av| 18禁黄网站禁片免费观看直播| 欧美人与性动交α欧美精品济南到| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 黄色 视频免费看| 午夜福利在线观看吧| 久久精品国产综合久久久| 国产精品一区二区三区四区久久 | 亚洲人成网站高清观看| 女人高潮潮喷娇喘18禁视频| 午夜福利视频1000在线观看| 香蕉久久夜色| 18禁国产床啪视频网站| 女人被狂操c到高潮| 麻豆久久精品国产亚洲av| 黄频高清免费视频| 成人欧美大片| 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看| 欧美日韩瑟瑟在线播放| or卡值多少钱| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| √禁漫天堂资源中文www| 国产精品久久久久久亚洲av鲁大| 中亚洲国语对白在线视频| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出| 日韩欧美在线二视频| 韩国精品一区二区三区| 免费看十八禁软件| 91在线观看av| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 一级毛片高清免费大全| 99re在线观看精品视频| 中文字幕精品亚洲无线码一区 | 国产在线观看jvid| 精品欧美国产一区二区三| 777久久人妻少妇嫩草av网站| 亚洲中文av在线| 级片在线观看| 免费看a级黄色片| 制服诱惑二区| 成人一区二区视频在线观看| 国内少妇人妻偷人精品xxx网站 | 午夜免费激情av| 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播| 亚洲无线在线观看| 精品午夜福利视频在线观看一区| 在线观看舔阴道视频| 男女下面进入的视频免费午夜 | 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 国内久久婷婷六月综合欲色啪| 国产黄片美女视频| 久久婷婷人人爽人人干人人爱| 视频在线观看一区二区三区| 日本在线视频免费播放| 国产精品1区2区在线观看.| 99热只有精品国产| 成年人黄色毛片网站| 丁香六月欧美| av天堂在线播放| 日本免费a在线| 亚洲成国产人片在线观看| 欧美一区二区精品小视频在线| www.www免费av| 色婷婷久久久亚洲欧美| 国产精品爽爽va在线观看网站 | 久久香蕉精品热| 久久久久久久精品吃奶| 看黄色毛片网站| 黄色视频不卡| 欧美大码av| 啦啦啦免费观看视频1| 国产国语露脸激情在线看| 色哟哟哟哟哟哟| 91国产中文字幕| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区免费欧美| 亚洲精品久久成人aⅴ小说| 欧美中文日本在线观看视频| 18禁观看日本| 视频在线观看一区二区三区| 成人国产综合亚洲| 国产一区二区三区在线臀色熟女| 人妻丰满熟妇av一区二区三区| 男女床上黄色一级片免费看| 国产高清videossex| 精品国产一区二区三区四区第35| 久久这里只有精品19| 亚洲专区中文字幕在线| 日韩有码中文字幕| 在线观看www视频免费| 欧美黑人巨大hd| 色婷婷久久久亚洲欧美| 亚洲av电影在线进入| 人人妻人人看人人澡| 一二三四社区在线视频社区8| 国产又黄又爽又无遮挡在线| 97人妻精品一区二区三区麻豆 | 亚洲免费av在线视频| 此物有八面人人有两片| 老司机午夜十八禁免费视频| ponron亚洲| 中文字幕人妻熟女乱码| 又紧又爽又黄一区二区| 亚洲国产欧美一区二区综合| 超碰成人久久| 最近最新中文字幕大全免费视频| 少妇熟女aⅴ在线视频| 欧美激情高清一区二区三区| 波多野结衣巨乳人妻| 精品久久久久久久毛片微露脸| 日日夜夜操网爽| 久久久久久国产a免费观看| 脱女人内裤的视频| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 免费高清视频大片| 久久热在线av| 国产欧美日韩精品亚洲av| 国产精品一区二区免费欧美| 亚洲av美国av| 我的亚洲天堂| 久久久久久国产a免费观看| 免费观看精品视频网站| 国产成年人精品一区二区| 最新美女视频免费是黄的| 欧美黑人欧美精品刺激| 国产在线精品亚洲第一网站| 亚洲av美国av| 啦啦啦韩国在线观看视频| 日韩视频一区二区在线观看| 久久久国产成人精品二区| 久久精品91蜜桃| 无人区码免费观看不卡| 在线观看一区二区三区| 日本一本二区三区精品| 久久久久久久午夜电影| 久久精品国产综合久久久| 色播亚洲综合网| 日韩中文字幕欧美一区二区| 给我免费播放毛片高清在线观看| 2021天堂中文幕一二区在线观 | 一区二区三区高清视频在线| 国产视频内射| 国产又色又爽无遮挡免费看| 日本在线视频免费播放| 精品乱码久久久久久99久播| 免费一级毛片在线播放高清视频| 国产精品自产拍在线观看55亚洲| 美女国产高潮福利片在线看|