• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Source and yearly distribution of PAHs in the snow from the Hailuogou glacier of Mountain Gongga,China

    2018-07-04 11:28:18ChaoqiYuMeihanLiYinlingCaoXianHeHongZhouTingtingZhangChongyingLi
    Acta Geochimica 2018年3期

    Chaoqi Yu?Meihan Li?Yinling Cao?Xian He?Hong Zhou?Tingting Zhang?Chongying Li

    1 Introduction

    Polycyclic aromatic hydrocarbons(PAHs)and their derivatives are associated with the incomplete combustion of organic material,arising from episodes of volcanic eruptions,forest fires(Bjorseth and Ramdahl 1985),and from human activities of burning fossil fuels(Baek et al.1991).Because of their inertness and volatility,PAHs can travel long distances in the air and be distributed in different environmental media,leading to widespread pollution(Wang et al.2006).

    In high latitude or high-altitude areas,PAHs are transferred and trapped in the ice and snow via wet atmospheric deposition(rain,snow,etc).Over time,significant amounts of PAHscanbeaccumulated insuchlocations.Wheniceand snow melt as a result of seasonal temperature changes,the accumulated PAHs will be released to other environmental compartmentssuch assurrounding water,soil,and air,thus causing adetrimental impact to theecosystem of theregion.The general trend of global warming is making this dire situationeven morepressing.Therefore,itisvery important to investigate PAHs in ice and snow from glacier(Li et al.2010)and study theirorigin,distribution,and transport.Until now,research on organic pollutants,particularly PAHs in snow and ice,have been mainly focused on the north and southpoles(Kangetal.2012;Herbertetal.2005;Gregorand Gummer 1989;Halsall 2004;Jaffrezo et al.1993),Greenland(Jaffrezo etal.1994),and the Alpsregion(Carreraetal.2001;Villaet al.2006;Finizo et al.2006).Studiesof PAHs in the Qinghai Tibet Plateau region started fairly late and publications on the topic are still scarce(Li et al.2010)although the sediment core and road dusts were carefully studied(Han etal.2015;Weietal.2015).Wangetal.(2008)studied levels and distribution of organochlorine pesticides and PAHsin iceand snow from the Dasuopu glacier.Wang et al.(2007)reported concentrations of organochlorine pesticidesin new snow samplesat four different altitudesin east Rongbuk glacier of the Everest region and studied their correlationswith altitude.Lietal.(2010)investigated on the distribution and source of the PAHs in ice and snow from four glaciersincluding the Qilian Mountain Qiyiglacier and the Tanggula Dongkemadiglacier.More recently,Yu et al.(2014)studied thedistributionand thesourceof the PAHsin snow over a short period in the Hailuogou glacier,Mt.Gongga.

    Inthiswork,snow samplesfromthe Hailuogou glacier of Mt.Gongga in China were collected over a 3-year period from 2012 to 2014,and their concentrations were analyzed for 16PAHs.Themainpurposeof thispreliminarystudywas to determine the levels of PAHs in this glacier and try to identify the distribution and source of these PAHs and‘to estimate their transport distance from origin.

    1.1 Sample collection

    In January of each year,three snow sampleswere collected from Hailuogou for a total of nine samples over the 3-year period from 2012 to 2014.The sampling sitesare shown in Fig.1.The thickness of snow cover was always greater than 25 cm.Snow samples were collected with a clean stainless-steel shovel and packed in a 10-L clean aluminum drum which was sealed with three layers of aluminum paper.The sample information is given in Table 1.The amount of each sample was equivalent to 3–4 L of water.

    2 Experimental

    2.1 Sample pretreatment

    A solid phasemembraneextraction method wasadopted for the enrichment of PAHsfrom snow samples.The C18solid phase extraction disks membrane(Supelco Analytical,diameter 47 mm)was fixed on a sand core suction filter device.The membrane was activated by passing through 5.0 mL of cyclohexane,n-hexane,methanol,and purewater each in sequence.All of the organic reagents used were HPLC grade.The snow sample was melted at room temperature and the upper clear liquid was loaded on the activated C18membrane.The flow rate was regulated between 12 and 30 mL·min-1.The eluent was discarded,and 5.0 mL of n-hexane was then added to the C18membrane and let soaking for 10 min before being eluted.This step was repeated three times.The combined eluent was passed through a chromatography column filled with anhydrous sodium sulfate(activated in a muffle furnace at 400°C for 24 h),and the volumewasfurther reduced to 1.0 mL under astream of high purity nitrogen.A procedureblank(3 L of pure water)was processed along with the snow samples.

    2.2 Sample analysis

    2.2.1 Reference standards and reagents

    Sixteen certified PAHs standards were purchased from AccuStandard(USA),including Naphthalene(Nap),Acenaphthylene(Ace),Acenaphthene(Acp),Fluorene(Fle),Phenanthrene(Phe),Anthracene(Ant),Fluoranthene(Fla),Pyrene(Pyr),Benzo(a)anthracene(BaA),Chrysene(Chry),Benzo(b)fluoranthene (BbF),Benzo [k]fluoranthene(BkF),Benzo[a]pyrene(BaP),Indeno[1,2,3-cd]pyrene(InP),Dibenz[a,h]anthracene(DahA),and Benzo(g,h,i)-perylene(BghiP).Individual stock solutions at concentrations of 100.00 μg·mL-1each were prepared in dichloromethane–acetone 50:50(v:v).The working standard solutions were prepared by mixing each of the PAH stock solutions and diluting with dichloromethane–acetone 50:50 for a final concentration of 2.00 μg·mL-1each.

    Fig.1 Map of sampling sites

    Table 1 Sample information

    All organic solventswere HPLCgradefrom Changzheng Chemical Reagent Co.Ltd.(Chengdu,China).Milli-Qwater was used as pure water.Unless otherwise stated,all the reagentsused inthisstudy wereof analytical gradeor higher.

    2.2.2 GC–MSconditions

    Analyses were performed using a 7890-5975 Gas Chromatography–Mass Spectrometer(GC–MS)(Agilent Technologies,Santa Clara,CA)equipped with an autosampler(Triplus Co.USA).Separations were facilitated using an HP-5MS analytical column,30 m×0.25 mm×0.25μm(SN:USB439554H,Agilent Technologies).

    Thecarrier gaswashelium(99.999%purity)with aflow rate of 2.0 mL·min-1at 164.6 kPa.Injections were made in the splitless mode with an injection volume of 2.00μL.The injector temperature was 290°C.The temperature program was as follows:holding initial temperature at 100 °C for 1 min,ramping to 240 °C at 10 °C·min-1(linear),holding for 5.0 min,ramp to 280°C at 20 °C·min-1(linear)and holding for 8.0 min.

    The mass spectrometry measurements were carried out through an electron impact(EI,70 eV,230°C)coupled with a full scan mode.Other parameters included scanning range of 0–500 amu,transmission temperature of 150 °C and solvent delay time of 2.0 min.

    3 Results and discussion

    3.1 Qualification of the method

    The analysis was performed using a five-point standard calibration curve.Linear correlation coefficients of the 16 PAHs varied from 0.9975 to 0.9998.Recoveries and relative standard deviations were 75.9%–99.2%and 2.8%–15.8%,respectively.Detection limits were ranged from 0.001 to 0.010 μg·L-1.

    3.2 Distribution of PAHs in sample area

    The results for individual 16 PAHs over the 3-year period from 2012 to 2014 are listed in Tables 2,3 and 4 of Appendix 1,and they are plotted in Fig.2.The amount of individual PAHs varies widely,ranging from non-detectable(DahA and BghiP)to~100 ng·L-1(Phe).Among the 16 PAHs that are reported here,nine PAHs(Nap,Ace,Acp,Fle,Phe,Fla,Pyr,BaA,BkF)were highest for the year 2012,four(Chry,BbF,BaP,INP)for 2013 and one(Ant)for 2014.This change in dominance possibly indicates a change in the source of PAHs over the 3-year period.

    The total concentration of the 16 measured PAHs was 452 ± 31 ng·L-1for 2012,305 ± 54 ng·L-1for 2013 and 290 ± 30 ng·L-1for 2014(Fig.3),seemingly suggesting a downward trend which would be in synchronization with the Chinese government’s environmental protection policies installed in energy-saving and emission-reduction.Although the results of year 2014 cannot be considered as significantly different from thoseof year 2013,thefact that apart from 2 exceptions,all other PAHs are lower in 2014 seems suggesting the downward trend of PAHs emission.Regardless of the trend,measured PAH concentrations are still much higher in the Hailuogou glacier in comparison to those from the Qinghai-Tibet Plateau glacier between 20.45 and 60.57 ng·L-1(Li et al.2010)and some remote mountains in Europe between 5.6 and 81 ng·L-1(Carrera et al.2001).

    3.3 Origin of PAHs

    3.3.1 Source of PAHs

    In spite of its limitations,many researchers have used ratiosof PAHsto tentatively identify their sourcesin whichthe same molecular weight but different structure(i.e.,isomers)are used in the calculation.Among them Phenanthrene(Phe)/Anthracene(Ant),Fluoranthene(Fla)/Pyrene(Pyr),Benzo[a]Anthracene(BaA)/Chrysene(Chry),and Benzo[b]Fluoranthene(BbF)/Benzo[k]Fluoranthene(BkF)are included(Guinan et al.2001;Lee et al.1977;Yunker et al.2002;Colmsjo et al.1986;Simoneit et al.1993;Dominguez et al.1996).It isimportant to select PAH isomerswhoseratiosare stable during their emission,migration,and deposition.In their simulating studies of atmospheric particles,Behymer and Hites(1985)showed that Fluoranthene(Fla)and Pyrene(Pyr),and Benzo[a]Anthracene(BaA)and Chrysene(Chry)have very similar half-lifes and are highly stable,and therefore they can be used reliably for pollution source identification.

    Fig.2 Concentration distribution of PAHs in snows

    Fig.3 Inter-annual distribution and trend of total PAHs in snow

    Fig.4 Cross chart of PAHs ratio

    The isomer ratio characteristics in ice and snow from Hailuogou are shown in Table 5.Research conducted by Yunker et al.(2002)has indicated that the ratio of Fla/(Pyr+Fla)from petroleum crude oil pollution istypically less than 0.4;this ratio gets greater than 0.5 for wood and coal burning and between 0.4 and 0.5 for petroleum refinery products.The ratio value from Hailuogou was greater than 0.5(see Table 2;Fig.4),suggesting that the PAHs in ice and snow from Hailuogou are mainly from coal and timber burning.

    According to Colmsjo et al.(1986),Simoneit et al.(1993),and Dominguez et al.(1996),theratio of BaA/Chry can be used to differentiate PAHsfrom automobileexhaust and coal combustion produces.The values are typically 0.53±0.06 and 1.11±0.06 for automobile exhaust and coal burning,respectively.Hailuogou snow samples show that the ratio of BaA/Chry in 2012 averaged 1.16,but decreased at 0.44 for 2013 and 2014,respectively(Table 5 in Appendix 1;Fig.4),thus suggesting an increase contribution from automobile activitiesover the 3-year period.

    In summary,datafrom Hailuogou snow samplesseem to suggest that the PAHswere mainly coming from wood and coal burning early on(2012),and automobile activities contributed more significantly in 2013 and 2014.Pollution from petroleum industries was much less than expected in the study area.This conclusion fits well with the characteristics of local industry,residence,and recent development of tourism in the surrounding areas.The Hailuogou glacier is located in the Ganzi district of the southeast Sichuan Province and surrounded by mining industry.It is also close to several largest cities in Western China,including Chengdu and Chongqing.Pollution from industrial emissions,mining in particular,has become a serious concern.In addition,it is estimated more than 1 million touriststravel to the Hailuogou glacier by automobileseach year,and this number has been steadily increasing in the last years(Administration of Hailuogou scenic spot 2015).Several hundred restaurants and hotels have been built recently,and nearly half of them burn coal and wood as their energy sources.Almost all local residents use coal and timber for their cooking and heating needs on an everyday basis.All these factors are leading to a much higher amount of PAHs as compared to Qinghai-Tibet Plateau glacier and the characteristic PAH ratio patterns in snow from the Hailuogou glacier.

    3.3.2 Estimation of distance from emission source

    In this study,2,3,and 4-ring PAHs have high loadings in snow from the Hailuogou glacier,and the sum of them accounted for 96.4%,91.6%,and 96.0%of total PAHs in 2012,2013,and 2014,respectively.The distance of migration,or mobility of PAHs is directly related to their molecular weights,as with a lower molecular weight,a PAH likely migrating further in the atmosphere.

    An accurate estimate of the distance travelled by PAHs isan important step in determining thelocation of emission and deciphering their origin to better protecting the environment.Li et al.(2014)have established a model to estimate PAH travel distance in the atmosphere,based on factors such as the ratio between the concentrations of Phenanthrene(Phe)and Anthracene(Ant)in the samples collected at the destination and at the emission source the concentration of OH free radicals and wind speed.The travel distance for Hailuogou was then estimated as follows:

    Fig.5 Backward trajectories for Hailuogou(left 2012;middle 2013;right 2014)

    Fig.6 The maximum range of emission sources of the Hailuogou snow PAHs

    where Dt(km)is the longest possible distance that a PAH can travel in the atmosphere;COH(mol·cm-3)is the average concentration of OH free radical in the atmosphere;SW(m·s-1)is the wind speed;is the concentration ratio of phenanthrene and anthracene at the site of emission;is the concentration ratio of anthracene and phenanthrene in snow samples(destination).

    The wind speed,Sw,used in our calculation was the maximum possible wind speed of 60 m·s-1(Gatey and Miller 2007)instead of the actual wind speed,since we intended to estimate the longest possible travel distance.Also,the lowest possible OH radical concentration of 0.3×106molecules cm-3in the atmosphere(Hewett and Harrison 1985)was used for the same reason.The value ofwastaken from coal burning,which isestimated at 5.67(Galarneau 2008,US EPA).The average values ofat the Hailuoguo sampling sites were 0.117,0.131,and 0.125 for 2012,2013,and 2014,respectively.The maximum distance between the emission source and Hialuogou was then estimated to be 492,357,and 413 km for 2012,2013,and 2014,respectively.

    The 120 h backward trajectories were calculated using the hybrid single-particle lagrangian integrated trajectory model and the NOAA data downloaded from http://ready.arl.noaa.gov/hypub-bin/traj1.pl.The trajectory end points were set at 500 m above the sampling site.Back trajectories showed that the air mass originates from different directions(Fig.5).

    Therefore,the concentrations of PAHs in the snow samples should reflect the PAHs emissions surrounding Hailuogou.Figure 6 shows areas and cities within 500 km radius of Hailuoguo,which cover part of Sichuan,Yunnan,Chongqing and Tibet.

    4 Conclusions

    Analyses of snow samples from the Hailuogou glacier revealed high concentrations of 16 PAHs,ranging from 452 ± 31 to 290 ± 30 ng·L-1over the years from 2012 to 2014,demonstrating a remarkable decreasing trend,which may suggest the possible consequence of implementation of more strict air pollution law(Air pollution prevention action plan,2013).Compounds with 2–4 rings are accounted for more than 90%of the total PAHs.The maximum travel distance of these PAHs was estimated to be~500 km.The main source of the PAHs is likely coming from coal combustion with increasing contributions from automobile emissions in more recent years.This conclusion is in agreement with the characteristics of coal as a main energy source and recent development in tourism around the Hailuogou area.

    AcknowledgementsThis study was supported by the National Natural Science Foundation of China(41073085,41573014)and the programof Sichuan Provincefor researchinnovationteamof universities(12TD001).The authors thank Prof.Belzile N and Chen YW at Laurentian University(Canada)and Dr.S.Huang at Mallinckrodt Biopharmaceuticals(USA)for the helpful edits and valuable discussions.

    Appendix 1:GC/MSresults of 16 PAHs in Hailuoguo snow samples

    See Tables 2,3,4 and 5.

    Table 2 PAH results for 2012

    Table 3 PAH results for 2013

    Table 4 PAH results for 2014

    Table 5 PAH isomer ratios in snow from Hailuogou

    Administration of Hailuogou scenic spot(2015)http://www.hailuo gou.com/html/info/about_us/

    Air pollution prevention action plan(2013)http://www.gov.cn/jrzg/2013-09/12/content_2486918.htm

    Baek SO,Field RA,Goldstone ME,Kirk PW,Lester JN,Perry R(1991)A review of atmospheric polycyclic aromatic hydrocarbons:sources,fate and behaviour.Water Air Soil Pollut 60:273–300

    Behymer TD,Hites RA(1985)Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates.Environ Sci Technol 19(10):1004–1006

    Bjorseth A,Ramdahl T(1985)Source and emissions of PAH,handbook of polycyclic aromatic hydrocarbons,vol 2.Marcel Dekker Inc,New York

    Carrera G,Fernandez P,Vilanova RM,Grimalt JO(2001)Persistent organic pollutants in snow from European high mountain areas.Atmos Environ 35(2):245–254

    Colmsjo AL,Ostman CE,Zebuhr YU,Soderstrom H,Wadding A(1986)Polynuclear aromatic compounds in the ambient air of Stockholm.Chemosphere 15(2):169–182

    Dominguez A,Alvarez R,Blanco CG,Diez MA(1996)Chromatographic evaluation of some selected polycyclic aromatic hydrocarbons of coal tars produced under different coking conditions and pitches derived from them.JChromatogr A 719(1):181–194

    Finizo A,Villa S,Raffaele F,Vighi M(2006)Variation of POP concentrations in fresh–fallen snow and air on an Alpine glacier(Monte Rosa).Ecotoxicol Environ Saf 63(1):25–32

    Galarneau E(2008)Source specificity and atmospheric processing of airborne PAHs:implications for source apportionment.Atmos Environ 42(35):8139–8149

    Gatey DA,Miller CA(2007)An investigation into 50-year return period wind speed differences for Europe.J Wind Eng Ind Aerodyn 95:1040–1052

    Gregor DJ,Gummer WD(1989)Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow.Environ Sci Technol 23(5):1528–1531

    Guinan J,Charlesworth M,Service M,Oliver T(2001)Sources and geochemical constraints of polycyclic aromatic hydrocarbons(PAHs)in sediments and mussels of two Northern Irish Sealoughs.Mar Pollut Bull 42(11):107–108

    Halsall CJ(2004)Investigating the occurrence of persistent organic pollutants(POPs)in the arctic:their atmospheric behaviour and interaction with the seasonal snow pack.Environ Pollut 28(1–2):163–168

    Han YM,Wei C,Bandowe BAM,Wilcke W,Cao JJ,Xu BQ,Gao SP,Tie XX,Li GH,Jin ZD,An ZS(2015)Elemental carbon and polycyclic aromatic compounds in a 150-year sediment core from Lake Qinghai,Tibetan Plateau,China:influence of regional and local sources and transport pathways.Environ Sci Technol 49(7):4176–4183

    Herbert BMJ,Halsall CJ,Villa S,Jones KC,Kallenborn R(2005)Rapid changes in PCB and OC pesticide concentration in arctic snow.Environ Sci Technol 39(9):2998–3005

    Hewett CN,Harrison RM(1985)Tropospheric concentrations of the hydroxyl radical–a review.Atmos Environ 19:545–554

    Jaffrezo JL,Masclet P,Clain MP,Wortham H,Beyne S,Cachier H(1993)Transfer function of polycyclic aromatic hydrocarbons from the atmosphere to the polar ice.I:determination of atmospheric concentrations at dye 3,Greenland.Atmos Environ 27(17):2781–2785

    Jaffrezo JL,Clain MP,Masclet P(1994)Polycyclic aromatic hydrocarbons in the polar ice of Greenland,geochemical use of these atmospheric tracers.Atmos Environ 28(6):1139–1145

    Kang JH,Son MH,Hur SD,Hong SM,Motoyama H,Fukui K,Chang YS(2012)Deposition of organochlorine pesticides into the surface snow of East Antarctica. Sci Total Environ 433(1):290–295

    Lee ML,Prado GP,Howard JB,Hites RA(1977)Source identification of urban airborne polycyclic aromatic hydrocarbons by chromatographic mass spectrometry and high resolution mass spectrometry.Biomed Mass Spectrom 4(3):182–185

    Li QL,Wang NL,Wu XB,Pu JC,He JQ,Zhang CW(2010)Distribution characteristics and sources of PAHs in snow from the Qinghai-Tibet Plateau.Sci Sin Terrae 40(10):1399–1409

    Li CY,Yu CQ,Li MH,Yin G(2014)Modelling the atmospheric transport distance of polycyclic aromatic hydrocarbons based on the photochemical breakdown.Int J Environ Eng Nat Resour 5:240–246

    Simoneit BR,Cass GR,Hildemann LM,Rogge WF,Mazurek MA(1993)Sources of fine organic aerosol.2.Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks.Environ Sci Technol 27(4):636–651

    Villa S,Negrelli C,Maggi V,Finizio A,Vighi M(2006)Analysisof a firn core for assessing POPseasonal accumulation on an Alpine glacier.Ecotoxicol Environ Saf 63(1):17–24

    Wang XP,Yao SD,Cong ZY,Yan XL,Kang SC,Zhang Y(2006)The content and altitudinal gradient distribution of polycyclic aromatic hydrocarbons in soil and vegetation in the Everest region.Chin Sci Bull 51(21):2517–2524

    Wang F,Zhu T,Xu BQ,Kang SC(2007)Organochlorine pesticides in new-fallen snow from East Rongbuk Glacier.Mt.Everest.Sci China(Ser D Earth Sci)37(5):670–675

    Wang XP,Yao TD,Wang PL,Wei Y,Tian LD(2008)The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier,Mt.Xixiabangma,central Himalayas.Sci Total Environ 394(1):134–143

    Wei C,Bandowe BAM,Han YM,Cao JJ,Zhan CL,Wilcke W(2015)Polycyclic aromatic hydrocarbons(PAHs)and their derivatives(alkyl-PAHs,oxygenated-PAHs,nitrated-PAHs and azaarenes)in urban road dusts from Xi’an,Central China.Chemosphere 134:512–520

    Yu CQ,He X,Cao YL,Zhou H,Liu B,Li CY(2014)Short-term distribution and sourceapportionment of PAHsin thesnow from Hailuogou.Gongga Mt.Geochim 43(4):358–364

    Yunker MB,Macdonald RW,Vingarzan R,Mitchell RH,Goyette D,Sylvestre S(2002)PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition.Org Geochem 33(4):489–515

    高清日韩中文字幕在线| 国产精品一区二区性色av| 联通29元200g的流量卡| 国产 精品1| 校园人妻丝袜中文字幕| 又粗又硬又长又爽又黄的视频| 3wmmmm亚洲av在线观看| 久久久亚洲精品成人影院| 亚洲av在线观看美女高潮| 久久6这里有精品| 一级片'在线观看视频| 婷婷色综合大香蕉| 只有这里有精品99| 久久久久久久久久成人| 久热这里只有精品99| 蜜桃亚洲精品一区二区三区| 日韩免费高清中文字幕av| 97在线视频观看| 国产精品国产三级国产av玫瑰| 91久久精品电影网| 黄色日韩在线| 久久精品国产亚洲av涩爱| 国产精品不卡视频一区二区| 国产 一区 欧美 日韩| 女人被狂操c到高潮| 下体分泌物呈黄色| 少妇猛男粗大的猛烈进出视频 | 神马国产精品三级电影在线观看| 99re6热这里在线精品视频| 国产综合懂色| 晚上一个人看的免费电影| 五月天丁香电影| 国产综合精华液| 久久人人爽人人爽人人片va| 成人黄色视频免费在线看| 国产乱人视频| 亚洲成人av在线免费| 伦精品一区二区三区| 欧美一级a爱片免费观看看| 午夜激情福利司机影院| 一个人观看的视频www高清免费观看| 我的女老师完整版在线观看| 国产乱人视频| 免费av不卡在线播放| 小蜜桃在线观看免费完整版高清| 久久久久精品性色| 少妇裸体淫交视频免费看高清| 亚洲欧洲日产国产| 男女边摸边吃奶| 国产精品久久久久久久电影| 国产成人精品福利久久| 亚洲性久久影院| 乱码一卡2卡4卡精品| 久久久色成人| 亚洲最大成人手机在线| 免费观看无遮挡的男女| 18禁在线播放成人免费| 国产成人精品婷婷| 日韩制服骚丝袜av| 国产爱豆传媒在线观看| 国产av码专区亚洲av| 欧美激情国产日韩精品一区| 涩涩av久久男人的天堂| 亚洲精品456在线播放app| 免费观看的影片在线观看| 亚洲,一卡二卡三卡| 噜噜噜噜噜久久久久久91| 国产成人福利小说| 国内揄拍国产精品人妻在线| 街头女战士在线观看网站| 亚洲成色77777| 国产精品不卡视频一区二区| 熟妇人妻不卡中文字幕| 水蜜桃什么品种好| 国产免费一区二区三区四区乱码| 久久精品久久精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 视频区图区小说| 成人欧美大片| 亚洲精品乱码久久久v下载方式| 国产精品国产三级国产专区5o| 久久久久久久久久久免费av| 黄色日韩在线| 亚洲人成网站在线观看播放| 亚洲美女搞黄在线观看| 亚洲人成网站在线播| 亚洲欧美中文字幕日韩二区| 国产免费视频播放在线视频| 亚洲精品国产成人久久av| 日本wwww免费看| 婷婷色综合大香蕉| 久久久亚洲精品成人影院| 国产有黄有色有爽视频| 高清视频免费观看一区二区| 精品久久久噜噜| 精品99又大又爽又粗少妇毛片| 一级黄片播放器| 国产人妻一区二区三区在| 国产亚洲精品久久久com| 国产高清有码在线观看视频| 国产精品爽爽va在线观看网站| 亚洲内射少妇av| 国产精品av视频在线免费观看| 亚洲欧美成人综合另类久久久| 少妇人妻一区二区三区视频| 国产精品国产三级专区第一集| 人妻夜夜爽99麻豆av| av.在线天堂| 在线天堂最新版资源| 99精国产麻豆久久婷婷| 伦精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 老师上课跳d突然被开到最大视频| 亚洲av在线观看美女高潮| 女的被弄到高潮叫床怎么办| 亚洲精品第二区| 51国产日韩欧美| 春色校园在线视频观看| 国产精品久久久久久av不卡| 91在线精品国自产拍蜜月| 校园人妻丝袜中文字幕| 亚洲内射少妇av| 精品国产露脸久久av麻豆| 搞女人的毛片| 人人妻人人看人人澡| 国产淫语在线视频| 久久久久久久亚洲中文字幕| 啦啦啦啦在线视频资源| 韩国av在线不卡| 99热6这里只有精品| 老司机影院成人| 久久韩国三级中文字幕| av国产精品久久久久影院| 亚洲伊人久久精品综合| 日本wwww免费看| 日本wwww免费看| 爱豆传媒免费全集在线观看| 精品久久久久久电影网| 3wmmmm亚洲av在线观看| 亚洲色图av天堂| 国产又色又爽无遮挡免| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品av一区二区| 又爽又黄无遮挡网站| 久久久久国产精品人妻一区二区| 最近的中文字幕免费完整| 狂野欧美激情性bbbbbb| 国产淫片久久久久久久久| 国产精品熟女久久久久浪| 亚洲av免费高清在线观看| 婷婷色综合www| 国模一区二区三区四区视频| 一级毛片我不卡| 插阴视频在线观看视频| 一级毛片我不卡| 色播亚洲综合网| 嫩草影院入口| 亚洲av福利一区| 18禁裸乳无遮挡动漫免费视频 | 免费播放大片免费观看视频在线观看| 91aial.com中文字幕在线观看| 亚洲精品视频女| 黄色日韩在线| 欧美xxⅹ黑人| 国产免费一级a男人的天堂| 国产乱人视频| 日韩一本色道免费dvd| 免费观看在线日韩| 国产成人精品久久久久久| 亚洲av日韩在线播放| 精品少妇黑人巨大在线播放| 精品久久久久久久人妻蜜臀av| 亚洲人成网站在线播| 久久精品国产鲁丝片午夜精品| 久久精品国产鲁丝片午夜精品| 亚洲欧美清纯卡通| 午夜激情久久久久久久| 一级片'在线观看视频| a级毛片免费高清观看在线播放| 在线观看美女被高潮喷水网站| 欧美国产精品一级二级三级 | 国产精品.久久久| 国产男女超爽视频在线观看| 高清午夜精品一区二区三区| 大话2 男鬼变身卡| 国产一区二区三区av在线| 一区二区av电影网| 黑人高潮一二区| 大码成人一级视频| 日韩强制内射视频| 一级a做视频免费观看| 一级a做视频免费观看| 国产黄片视频在线免费观看| 能在线免费看毛片的网站| 国产片特级美女逼逼视频| 男男h啪啪无遮挡| 六月丁香七月| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看| 欧美zozozo另类| 欧美日韩国产mv在线观看视频 | 久久久成人免费电影| 国产黄色免费在线视频| 久久久精品欧美日韩精品| 国产 精品1| 亚洲精品国产色婷婷电影| 99久久中文字幕三级久久日本| eeuss影院久久| 国产黄频视频在线观看| 精品人妻偷拍中文字幕| 日韩欧美 国产精品| 日韩一本色道免费dvd| 欧美亚洲 丝袜 人妻 在线| 深夜a级毛片| 亚洲色图av天堂| 久久鲁丝午夜福利片| 亚洲无线观看免费| 亚洲精品一二三| 免费看光身美女| 欧美区成人在线视频| 国内精品美女久久久久久| 午夜福利在线在线| 三级国产精品欧美在线观看| 男女边摸边吃奶| 日本色播在线视频| 18禁裸乳无遮挡动漫免费视频 | 久久久国产一区二区| 久久影院123| videossex国产| 国产精品一区www在线观看| 在线 av 中文字幕| 三级国产精品片| 中文字幕亚洲精品专区| 欧美日韩亚洲高清精品| 国产色爽女视频免费观看| 99久久精品一区二区三区| 国产毛片a区久久久久| 国内精品美女久久久久久| 国产真实伦视频高清在线观看| 亚洲国产av新网站| 少妇人妻一区二区三区视频| 啦啦啦在线观看免费高清www| 听说在线观看完整版免费高清| 大片免费播放器 马上看| 国产淫片久久久久久久久| 九九爱精品视频在线观看| 亚洲丝袜综合中文字幕| 大香蕉久久网| 国产av码专区亚洲av| 深夜a级毛片| 26uuu在线亚洲综合色| 国产成人91sexporn| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 毛片一级片免费看久久久久| 色视频在线一区二区三区| 色播亚洲综合网| 午夜福利视频精品| 国产精品熟女久久久久浪| 亚洲国产精品成人久久小说| 韩国高清视频一区二区三区| 国产大屁股一区二区在线视频| 丝袜喷水一区| 国产伦理片在线播放av一区| 看十八女毛片水多多多| 我的老师免费观看完整版| 亚洲成色77777| 网址你懂的国产日韩在线| 成人免费观看视频高清| 国产免费福利视频在线观看| 欧美+日韩+精品| 青春草视频在线免费观看| 伊人久久国产一区二区| 在线播放无遮挡| 久久久久久久久久人人人人人人| 日本黄大片高清| 国产午夜精品久久久久久一区二区三区| 国产成人免费观看mmmm| 在线观看美女被高潮喷水网站| 在现免费观看毛片| 男人狂女人下面高潮的视频| 国产精品国产三级国产专区5o| 成人亚洲精品av一区二区| 一级毛片aaaaaa免费看小| 不卡视频在线观看欧美| 肉色欧美久久久久久久蜜桃 | 久久精品综合一区二区三区| 国产精品秋霞免费鲁丝片| 麻豆国产97在线/欧美| 亚洲色图综合在线观看| av卡一久久| 激情 狠狠 欧美| 2021少妇久久久久久久久久久| 婷婷色av中文字幕| 男人添女人高潮全过程视频| 日韩成人伦理影院| 成人免费观看视频高清| 亚洲av欧美aⅴ国产| 日韩伦理黄色片| 一区二区av电影网| 亚洲精品国产色婷婷电影| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 亚洲精华国产精华液的使用体验| 色网站视频免费| 2022亚洲国产成人精品| 亚洲国产精品专区欧美| 国产男人的电影天堂91| 综合色丁香网| 亚洲综合精品二区| 国产精品久久久久久精品古装| 日韩视频在线欧美| 精品酒店卫生间| 国产精品一区二区在线观看99| 国产男女超爽视频在线观看| 欧美日韩精品成人综合77777| 亚洲内射少妇av| 国产免费视频播放在线视频| 少妇 在线观看| 午夜精品国产一区二区电影 | av又黄又爽大尺度在线免费看| 欧美少妇被猛烈插入视频| 最近手机中文字幕大全| 欧美丝袜亚洲另类| 亚洲av在线观看美女高潮| 欧美日本视频| 99精国产麻豆久久婷婷| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费观看性视频| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 少妇人妻一区二区三区视频| 日韩制服骚丝袜av| 久久97久久精品| 91精品国产九色| 日韩视频在线欧美| 白带黄色成豆腐渣| 2022亚洲国产成人精品| 精品一区二区免费观看| 精品午夜福利在线看| 女人十人毛片免费观看3o分钟| 少妇猛男粗大的猛烈进出视频 | 新久久久久国产一级毛片| 国产精品人妻久久久久久| 欧美激情久久久久久爽电影| 国产黄频视频在线观看| 日韩av免费高清视频| 美女cb高潮喷水在线观看| 午夜精品一区二区三区免费看| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 大香蕉97超碰在线| 老师上课跳d突然被开到最大视频| 欧美激情国产日韩精品一区| 91aial.com中文字幕在线观看| 久久久精品94久久精品| 亚洲国产色片| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱| 国产精品一区二区在线观看99| av.在线天堂| 亚洲av日韩在线播放| 国产精品偷伦视频观看了| 久久久精品欧美日韩精品| 女人十人毛片免费观看3o分钟| 18禁在线无遮挡免费观看视频| 嘟嘟电影网在线观看| 免费看光身美女| 久久女婷五月综合色啪小说 | 久久久久久久久久久免费av| 国产黄色免费在线视频| 26uuu在线亚洲综合色| 日本wwww免费看| 亚洲自偷自拍三级| 日本av手机在线免费观看| 精品一区二区三区视频在线| 欧美一级a爱片免费观看看| 直男gayav资源| 一级av片app| 最近最新中文字幕大全电影3| 大陆偷拍与自拍| 国产成人免费观看mmmm| 国产亚洲av嫩草精品影院| 涩涩av久久男人的天堂| 人体艺术视频欧美日本| 欧美日韩视频精品一区| 久久综合国产亚洲精品| 国产精品99久久99久久久不卡 | 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 少妇丰满av| 久久99热这里只频精品6学生| 嫩草影院入口| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 亚洲成人中文字幕在线播放| 亚洲精品久久午夜乱码| 国产视频内射| 成人美女网站在线观看视频| 国产男女超爽视频在线观看| 哪个播放器可以免费观看大片| 久久97久久精品| 内地一区二区视频在线| 美女脱内裤让男人舔精品视频| 欧美老熟妇乱子伦牲交| 国产有黄有色有爽视频| 大码成人一级视频| 国产老妇伦熟女老妇高清| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 成人特级av手机在线观看| 秋霞在线观看毛片| 尾随美女入室| 亚洲天堂av无毛| 91久久精品国产一区二区成人| 99热这里只有精品一区| 99视频精品全部免费 在线| 2018国产大陆天天弄谢| 人妻系列 视频| 日韩成人伦理影院| 熟女电影av网| 国产成年人精品一区二区| av国产久精品久网站免费入址| 嫩草影院入口| 乱码一卡2卡4卡精品| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 国产高清国产精品国产三级 | 精品少妇黑人巨大在线播放| 一级毛片黄色毛片免费观看视频| 国产老妇女一区| 国产精品久久久久久久电影| 你懂的网址亚洲精品在线观看| 免费av毛片视频| 欧美成人一区二区免费高清观看| 久久久久久久久久久丰满| 精品熟女少妇av免费看| 草草在线视频免费看| 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 亚洲怡红院男人天堂| 国产成人a∨麻豆精品| 欧美 日韩 精品 国产| 久久久久久久久久成人| 少妇人妻一区二区三区视频| 激情五月婷婷亚洲| 国产黄色视频一区二区在线观看| 亚洲四区av| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 赤兔流量卡办理| 2021天堂中文幕一二区在线观| 国产黄片视频在线免费观看| 成年免费大片在线观看| 欧美+日韩+精品| 日韩制服骚丝袜av| 观看美女的网站| 性色av一级| 99久久九九国产精品国产免费| 3wmmmm亚洲av在线观看| 一二三四中文在线观看免费高清| 国产在视频线精品| 亚洲国产精品999| 国产真实伦视频高清在线观看| 久久97久久精品| 99热这里只有是精品50| 伦理电影大哥的女人| 日韩一本色道免费dvd| 欧美日韩视频高清一区二区三区二| 久久精品国产鲁丝片午夜精品| 男的添女的下面高潮视频| 国产视频首页在线观看| 熟女人妻精品中文字幕| 久久久久久久久久成人| 亚洲综合色惰| 成人无遮挡网站| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| av线在线观看网站| 成人毛片a级毛片在线播放| 制服丝袜香蕉在线| 亚洲精品乱久久久久久| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂| 国产精品麻豆人妻色哟哟久久| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 黑人高潮一二区| 能在线免费看毛片的网站| 热99国产精品久久久久久7| 欧美日韩国产mv在线观看视频 | 免费看av在线观看网站| 国产成人午夜福利电影在线观看| 欧美人与善性xxx| 男女啪啪激烈高潮av片| 街头女战士在线观看网站| 亚洲av.av天堂| 国产精品成人在线| 搡老乐熟女国产| 在线 av 中文字幕| 国产综合懂色| 伦理电影大哥的女人| 最近最新中文字幕免费大全7| 欧美一区二区亚洲| 久久精品国产a三级三级三级| 日本熟妇午夜| 99热网站在线观看| 国产精品国产三级国产av玫瑰| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品| av在线观看视频网站免费| 日韩伦理黄色片| 丰满少妇做爰视频| 国产精品麻豆人妻色哟哟久久| 边亲边吃奶的免费视频| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕| 大陆偷拍与自拍| 永久网站在线| 纵有疾风起免费观看全集完整版| eeuss影院久久| 男女边吃奶边做爰视频| 女人被狂操c到高潮| 国产老妇女一区| 激情五月婷婷亚洲| 欧美3d第一页| 夫妻性生交免费视频一级片| 中文字幕av成人在线电影| 男女边吃奶边做爰视频| 下体分泌物呈黄色| 亚洲精品一二三| 国产成人freesex在线| 天天一区二区日本电影三级| 在线天堂最新版资源| 亚洲av国产av综合av卡| av国产久精品久网站免费入址| 伦精品一区二区三区| 亚洲欧美精品专区久久| 麻豆国产97在线/欧美| 18禁动态无遮挡网站| 日韩一本色道免费dvd| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 国产精品国产av在线观看| 成人亚洲精品一区在线观看 | 精品一区二区三卡| 亚洲欧美精品专区久久| 国产黄片视频在线免费观看| 成年女人在线观看亚洲视频 | 少妇丰满av| 国产成人aa在线观看| www.av在线官网国产| 我的女老师完整版在线观看| 色婷婷久久久亚洲欧美| 一个人看视频在线观看www免费| 1000部很黄的大片| 嫩草影院精品99| 一区二区三区免费毛片| 午夜精品国产一区二区电影 | 六月丁香七月| 男女那种视频在线观看| freevideosex欧美| 久久精品综合一区二区三区| 欧美 日韩 精品 国产| 制服丝袜香蕉在线| 精品久久国产蜜桃| 国产爽快片一区二区三区| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 51国产日韩欧美| av天堂中文字幕网| 青青草视频在线视频观看| 精品视频人人做人人爽| 2022亚洲国产成人精品| 美女cb高潮喷水在线观看| 天天一区二区日本电影三级| 国产视频首页在线观看| 男人添女人高潮全过程视频| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 九九爱精品视频在线观看| 五月伊人婷婷丁香| 国产久久久一区二区三区| 少妇人妻 视频| 国产日韩欧美亚洲二区| 97超视频在线观看视频| 欧美一级a爱片免费观看看| 一本色道久久久久久精品综合| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 亚洲国产色片| 男的添女的下面高潮视频| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| a级毛色黄片| 国产一区二区三区av在线| 欧美 日韩 精品 国产| 精品国产三级普通话版| 国产v大片淫在线免费观看| 日韩不卡一区二区三区视频在线| 99热这里只有精品一区| 国产 一区精品| 午夜激情福利司机影院| av在线蜜桃| 欧美日韩国产mv在线观看视频 | 国产黄a三级三级三级人| av在线app专区| 免费播放大片免费观看视频在线观看| 成人鲁丝片一二三区免费| 不卡视频在线观看欧美| 在线观看国产h片|