• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter estimation of continuous variable quantum key distribution system via artificial neural networks

    2022-02-24 09:38:50HaoLuo羅浩YiJunWang王一軍WeiYe葉煒HaiZhong鐘海YiYuMao毛宜鈺andYingGuo郭迎
    Chinese Physics B 2022年2期

    Hao Luo(羅浩), Yi-Jun Wang(王一軍), Wei Ye(葉煒), Hai Zhong(鐘海),?,Yi-Yu Mao(毛宜鈺), and Ying Guo(郭迎),?

    1School of Automation,Central South University,Changsha 410083,China

    2School of Computer Science and Engineering,Central South University,Changsha 410083,China

    3College of Applied Science,Jiangxi University of Science and Technology,Ganzhou 341000,China

    Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN), which can be merged in post-processing with less additional devices.The ANN-based training scheme, enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.

    Keywords: quantum key distribution,artificial neural networks,secret key rate,parameter estimation

    1.Introduction

    Quantum key distribution (QKD)[1]enables two legitimate parts, Alice and Bob, to exchange secret keys through an insecure channel controlled by a potential eavesdropper,Eve.This technology can be combined with the classical onetime-pad cryptographic system, thereby providing information transmission with unconditional security.[2]There are two branches for QKD,i.e., continuous-variable (CV) QKD and discrete-variable(DV)QKD.Unlike the latter using the singlephoton resources(or detectors),[1]the former has the potential of high-key rate and low-cost implementations as it can be compatible with current standard telecom components such as homodyne and heterodyne detectors.[3]Over the past few years,achievements have been made for CVQKD in both theories and experiments.[4–13]The most mature CVQKD protocol is the prestigious Gaussian-modulated coherent state(GMCS)protocol,[4]which has been proved secure against collective attacks and coherent attacks.[14–17]In the GMCS protocol,Alice first encodes the secret key information by modulating the quadraturesxandpof coherent states with independent Gaussian distributions[18]and then sends them to Bob through an insecure quantum channel.After that, Bob proceeds homodyne detection (measures one of the two quadratures randomly) or heterodyne detection (measures both the two quadratures).[6,19–21]After the post-processing process that involves sifting, parameter estimation, reconciliation and privacy amplification,Alice and Bob share the correlated raw keys.

    In order to estimate a bound on the maximum information that may have been eavesdropped by Eve, the channel transmittanceTand excess noise ξ need to be estimated.Traditional channel parameter estimation needs disclose parts of the raw keys.The more raw keys disclosed,the more accuracy the channel estimation would be.However, more disclosed raw keys leads to less capacity for carrying information,resulting in a lower secret key rate.Recent years, several works have been done on channel parameter estimation.For example, a parameter estimation was suggested for performance improvement of the CVQKD system,[22]which can be applied to low-Earth orbits and underwater communication scenarios by using the Monte Carlo approach.Chaiet al.proposed a parameter estimation method for implementation of the atmospheric GMCS CVQKD.[23]Guo[24]suggested a method for phase estimation and compensation of the CVQKD system,which can reconstruct the phase drifts even at low signal-to-noise ratio conditions.Wanget al.improved the accuracy of parameter estimation, realized by exchanging the order of parameter estimation and information reconciliation.[25]Yang suggested an improved four-state protocol in which the covariance matrix can be estimated from experimental data without using the linear channel assumption,guaranteeing its unconditional security in the asymptotical limits.[26]Liet al.considered an impact of denial-of-service attack on channel parameter estimation and suggested a method to prevent this attack.[27]However,the tradeoff between the secret key rate and the accuracy of parameter estimation is still unsolved.

    In this paper, we propose an ANN-based parameter estimation scheme for performance improvement of the CVQKD system.In post-processing, Alice and Bob have to do some pretreatment to the raw keys(data dividing and normalizing),which are sequentially sent to the ANN for the training,aiming to learn the relationship between the initially prepared and received data.The ANN has the capacity of predicting all the data that Alice holds with few errors.Using this method,Alice and Bob can proceed estimation without disclosing any raw key to Eve.It can be used for the parameter estimation and attack prediction without heavily loading any additional devices,which is feasible to implement for the traditional CVQKD system.

    This paper is organized as follows.In Section 2, we illustrate the framework of ANN-based parameter estimation scheme, and establish the ANN model for the CVQKD system.In Section 3, we show the performance of the ANNinvolved CVQKD system in terms of the secret key rate.In Section 4, the experimental results demonstrate the effect of the ANN-based parameter estimation scheme on the CVQKD system,including the secret key rate,the error range between the predicted values and the true values, as well as the relationship between the prediction accuracy and the block length.Finally,we make conclusions in Section 5.

    2.ANN-based parameter estimation of CVQKD

    For a traditional GMCS CVQKD protocol, it can be described as follows.Alice prepares the signal carriers with Gaussian modulation, which are sent to Bob through an unreliable quantum channel monitored by Eve.For the received signals, Bob proceeds the measurements by using homodyne or heterodyne detectors.Subsequently, Alice and Bob perform the data post-processing through an authenticated classical channel.As for the post-processing, Alice and Bob compare their encoding and measurement quadratures with each other and keep the data that they have performed with the same quadratures.By disclosing a subset of the raw keys, the parameter estimation is then proceeded to obtain an upper bound of the information that Eve can steal from.In the end, Alice and Bob could decorrelate their joint data from Eve via reconciliation and privacy amplification, while their data remain correlated.[28]The secret key rateKcan be given by

    whereICis the mutual information between Alice and Bob,IEthe upper bound of information that Eve can obtain, andMthe amount of the information revealed during the postprocessing.

    It is known that the post-processing has became a main restraint on the performance of CVQKD systems.Recently, the hardest issues have been devoted to parameter estimation,[23,25,29]reconciliation,[30–32]and privacy amplification,[33,34]but the tradeoff between the secret key rate and the accuracy of parameter estimation is still faced with challenges.

    Fortunately, the ANN, known as the MP model,[35]is now a popular machine learning technique[36,37]based on the principle of neural networks in biology and network topology,aiming to process complex information by simulating nervous system of human brain.[38]It is an operational model composing a large number of nodes(neurons).In Fig.1(a), it shows the structure of a multiple-input neuron.Thej-th outputojreads

    wherexiis thei-th input,wijis the weight ofxion thej-th path,bis bias that measures the difficulty of activation, and φ(·)represents the activation function.Figure 1(b)shows the structure of back propagation(BP)neural networks, which is employed in this paper.BP neural network is a multi-layer feed-forward neural networks, composed of input layer, hidden layer and output layer,the amount of the hidden layer can be one or more.

    Fig.1.(a)Structure of a multiple-input neuron.(b)Structure of the BP neural networks.

    The ANN-based CVQKD is shown in Fig.2.A set of coherent states,with desired modulation varianceVA,are prepared and multiplexed with the strong local oscillator(LO)by a polarization beam splitter.In the LO path, the delay line is employed to separate the LO from the signal in the time domain so that the time multiplexing can be realized.At the receiver,demultiplexing is executed by using polarization controller and polarization beam splitter.Through another delay line placed in the signal path, the delay of the LO due to the time multiplexing design is compensated so that both the signal and the LO can be precisely aligned.After Bob’s homodyne detection,Alice and Bob have two correlated sequencesxiandyi,respectively.Taking into account the additive white Gaussian noise(AWGN)channel,[39]xiandyican be related by

    whereNis the total number of the raw keys,zirepresents Gaussian noise,xi~N(0,VA),t=√is the quantum channel loss with transmittanceT∈[0,1],zi~N(0,σ2), andyi~N(0,t2VA+σ2).Here η represents the efficiency of the detector,σ2=N0+ηTξ+Vel,N0is the variance of the shot noise,andVeldenotes the detector’s electronic noise.

    Fig.2.Schematic diagram of the ANN-based CVQKD system.LD: Laser diode.BS: Beam splitter; LO: Local oscillator; AM: Amplitude modulator; PM: Phase modulator; VA: Variable attenuator; PBS: Polarization beam splitter; PC: Polarization controller; PIN: PIN photodiode;DPPC:Data pre-processing center;Alice and Bob do pretreatment(including data dividing and data normalizing)to their own original data through their respective DPPC,then the data are transmitted through an authenticated channel.ANN:Artificial neural networks;DTC:Data terminal center,including reconciliation and privacy amplification.

    For the parameter estimations, we take into account the transmittanceT, the excess noise ξ, and the maximum informationIE.Traditionally,we needs to disclose part of the raw keys,typically 50%,whereas in the proposed method none of the raw keys will be wasted.The ANN-based post-processing can be described as follows, it is worth noting that the data exchanged between Alice and Bob is achieved through the authentication channel, that is, the data may be eavesdropped,but cannot be tampered with.

    Theoretically, through the above-mentioned steps, Bob could have exactly all the sameXas Alice has.Then, along with his own raw keysY, he can proceed the parameter estimation without sacrificing any raw keys to the potential adversary, Eve.Consequently, Alice and Bob can achieve not only the high accuracy of parameter estimation but also the high secret key rate.But note that since the ANN algorithm is nothing more than an approximation of arbitrary function by learning the observed data and making prediction,it is impossible to obtain the completely correct results.Simply put,there are errors in the predicted data, which will lead to the deviation of parameter estimation, and eventually lead to the lower key rate than the ideal case.However, it is possible to achieve as high accuracy as possible by optimizing the structure of the ANN-involved CVQKD system and adjusting the suitable parameters.

    3.Security analysis

    After elaborating the schematic diagram of the ANNbased CVQKD system,we shall pay attention to the derivation of secret key rate.In the asymptotical case,[8]the key rate can be given by

    whereVξrepresents the variance of excess noise, β ∈[0,1]refers to the efficiency of the reconciliation,I(x:y)is the mutual information of Alice and Bob,(y:E) is the upper bound of information that Eve can obtain from Bob’s information, εPEis the probability that the true values of the parameters are not inside the confidence region.In order to ensure the security of the CVQKD system as much as possible without underestimating the eavesdropping,the worst case,that is,the case with the minimum key rate, needs to be considered.For this case,the minimum valueTminforTand the maximum valueshould be used.Then we can get the key rate in the finite-size case[39]

    wherenis the amount of the raw keys used for key extraction,whilem=N?nraw keys can be used for estimation,and Δ(n)is related to the security of the privacy amplification(PA).The parameter Δ(n)has the form

    where Hxis the Hilbert space of variablex,, and εPAare components of the failure probability of the whole CVQKD protocol.We assume dimHx=2, and a conservative value 10?10for.Thus,Δ(n)can be approximated as

    Note although theoretically there is no raw key disclosed for parameter estimation in this scheme, it does not mean thatn=N(details will be shown in Section 4).In homodyne detection,I(x:y)can be derived from[40]

    whereVBis Bob’s measured variance,VB|Ais the conditional variance, χtot= χline+χhom/Tminis the total noise,χline=1/Tmin?1+ξ is the channel-added noise,and χhom=[(1 ?η)+Vel]/η is detection-added noise.We note thatTmin=.

    To acquiretminand, the maximum-likelihood estimatorsandcan be used for the transmission model of Eq.(3)

    For the Holevo bound,[8]it can be simplified as

    whereG(x)=(x+1)log2(x+1)?xlog2x, λiis symplectic eigenvalue of the corresponding covariance matrix given by(in homodyne detection case)

    where we have

    Using Eq.(9),the estimatorsandcan be derived.After substituting them into Eq.(11), we obtaintminand.Combining Eq.(8) with Eq.(13), we getIhom(x:y) and,and hence derive the secret key rateKfrom Eq.(5).

    4.Numerical simulation

    In the ANN-based scenario, the value ofn/Nshould be one in theory as no raw key is sacrificed.But it is impossible for the actual neural networks to make the predicted value exactly the same as the real one, meaning thatnis always less thanN.Therefore, it is still valid in Eq.(4) for this scheme except thatnrepresents the amount of Alice’s raw keys that predicted correctly by Bob.We take into account

    which is the prediction accuracy.Then we have

    The value ofn/Nis usually assumed to be 0.5 in our experiment, as in the traditional scheme.However, the value ofSdepends on the performance of the ANN.

    We set the parameters of the ANN in Table 1,that is a BP neural networks which has a hidden layer with 12 neurons.In hidden layer,we take the activation function

    Table 1.Parameter settings.

    and the output layer activation function

    As for the training function,we take the Levenberg–Marquardt algorithm, which is used for solving the non-linear least squares problems.These can minimize the problems arise in training process of the ANN.

    At the beginning,all the variables and vectors are calculated and fed into the ANN,which randomly divides the data into three parts,i.e., training data, verification data, and test data, accounting for 70%, 15%,and 15%,respectively.After that, the networks begins to learn.The learning process will be repeated until the lowest level of error is achieved.(L=20 km,d=80,N=1.2×106).

    Fig.3.Regression diagram of the first learning for

    Figure 3 shows the regression graph of the first learning(for the relationship, while figure 4 represents the second learning(for the relationshipQ(‖yj‖)=‖xj‖).In these two graphs,the horizontal axis and the vertical axis represent the target value and the output value,respectively.Ideally,the output value should be equal to the target value,which is represented by a dotted line in the diagram.The black circles represent the data points,and the solid lines represent the fitting curves based on them.Theoretically,the closer the fitting curve is to the dotted line,the better the training effect of the ANN will be.After adequate training,the fitting curve of a perfect ANN should coincide with the “Y=T” curve, reflecting the most accurate description of the data relationship.But in reality,on the one hand,under the existing technology,such ideal ANN can not be constructed.On the other hand,if the fitting degree is too high(R=1),the overfitting occurs,that is, the training effect is perfect but the prediction effect is greatly deviated.During the two stages of training in our experiment, the fitting curve is close to the dotted line.The value ofRis greater than 0.8,meaning that the output and the target fit well.Besides,the values of minimum mean squared error(MSE)in two sequential training processes are relatively small,0.026163 and 0.023441,respectively.Both the regression diagram and the MSE reveal that the ANN is well trained.

    Fig.4.Regression diagram of the second learning for Q(‖yj‖)=‖xj‖(L=20 km,d=80,N=1.2×106).

    After sufficient training, we began with the prediction process.To demonstrate the effect of the prediction, we randomly select some of Alice’s raw keys,and compare them with the predicted values.As shown in Fig.5,it shows that the two values are relatively close.In fact, the final mean relative error (MRE) we obtain from the experiment is 0.0246, which indicates that the prediction works well.

    After Bob acquires all the predicted data (denoted asXout), the parameter estimation can be proceeded.In Fig.6,we performance of the ANN-based CVQKD system in terms of the secret key rate.ForS=1,it is the case of the ideal ANN scheme that the neural networks can predict all the data with complete accuracy.In addition, we also test the performance of secret key rate at different block lengths.We find that the ANN-based scheme has more advantages than the traditional one in terms of both transmission distance and secret key rate.The closer the value of prediction accuracySapproaches to 100%, the higher the secret key rate is, as shown in Eq.(17).The performance of the ANN-based scheme is closer to that of the ideal one,which results from the tunable parametern/N.

    The improvement ofSdepends much on block length.Within certain range,prediction accuracy,as well as transmission distance, can be improved by the increased block length since more data provide the sufficient training.In Fig.7, we show effect of block length (blue-solid line) on the prediction accuracyS.For the block length that is no less than 106,the value ofSis between [80%,83%], whereas for the data length less than 106, a significant decrease of prediction accuracy can be observed, which indicates that adequate data are required for the performance improvement.In addition,due to the finite-size effect,small amounts of data may lead to the decrease of the secret key rate.However, when the block length is up to 107,Scan be improved slightly.The reason is that once there is enough data for the training, without optimizing the ANN, increasing data length makes no sense to improve the training and predicting ability of the ANN.As the growth of the block length, it takes more time in the training and predicting, which will be a great challenge for the real-time performance of the system.The time spent in the post-processing of CVQKD system via ANN depends on the structure of ANN itself, the algorithm of training and prediction,and the performance of the computer running ANN.The most important factor is the block length of the data.When the blocks length are 105,106,and 107,the times required to complete the post-processing are about two minutes, ten minutes and two hours,respectively.The performance of the computer used in our experiments is middling,with following configuration: core i5-10400F, 16G RAM, and 500G SSD.Obviously,The training time can be significantly reduced with a more powerful computer.In addition, during one working process of CVQKD system in optical fiber,the fitting relationship obtained by training the first data block can also be used in the subsequent data blocks.Therefore,we do not need to train every data block.Meanwhile,in Fig.7,we can also find that with the increase of transmission distance,the prediction accuracy gradually decreases.This is because the longer the distance,the more distorted the signal.

    Fig.5.Comparison between X and Xout. X represents the true values of Alice’s raw keys, and Xout denotes the predicted values that Bob gets through the ANN.

    In order to illustrate the characteristics of our scheme better, the method-of-moments (MM) scheme[42]and the transformed scheme by changing the implementation order of estimation and reconciliation(we call it exchanging order scheme for short)[25]are selected,to compare with our scheme.All of them can be used for the parameter estimations.The principles of these three schemes are completely different, our scheme uses a trained ANN to predict raw keys,while the MM scheme and the exchanging order scheme uses MM method to find a new estimator for σ2and changes the implementation order of parameter estimation and reconciliation, respectively.Compared with the other two competitors, our scheme is algorithmically simpler.In terms of disadvantages,more time is needed to train the networks in the ANN-based scheme, the performance of the estimator in the MM scheme is poor in minimizing variance and bias, and the exchanging order scheme requires an additional parameter estimation for channel characteristics, which increases the system complexity.And in terms of applicable scenario, our scheme is suitable for medium block length and unstable channel scenarios, while MM scheme is appropriate for long block length and high-loss channel, and the remaining scheme is applied to the stable system with slowly changing characteristics.Finally, we compared the secret key rates of the three schemes when the block lengthN=108and the transmission distanceL=30 km,there are 0.0507,0.085,and 0.036,respectively.It is important to note that this is not the best performance of our scheme,we can increase the key rate by improving the structure of the neural networks, adjusting the parameters’value,and optimizing the training and predicting algorithm.For example, instead of BP neural networks, we can use the radial basis function (RBF) neural networks, which contains input layer,hidden layer(only one)and output layer.Various forms of RBF function can be used as the activation function in hidden layer, take Gaussian function for example, its expression can be written as follows:

    where φi(·)represents thei-th RBF function,xpis thep-th input,cirepresents the center ofi-th node in the hidden layer,andis the variance of the Gaussian function.Then thej-th output of the RBF neural networks reads

    wherewijis the connection weight of the hidden layer to the output layer.Compared with BP networks,RBF networks can approximate arbitrary function with higher precision.Our experiments show that the key rate can be increased by 3% or even more by using the RBF networks and selecting appropriate parameters, such as the dimension of the input data,the spread of radial basis function, and so on.It should be noted that although RBF networks can avoid the local minimum problem and thus achieve higher prediction accuracy,its structure can be more complex.Since there is no specific law to follow in neural networks design at present,quite a lot of continuous attempts are essential to improve the key rate.We believe that different approaches,or combinations of them,may lead to better performance.In general, although the key rate of the ANN-based scheme is not the highest,the complexity of the algorithm is low, and additional hardware is barely required.The property that ANN can approach any rational number in theory makes it have the most prominent advantage, that is, suitable for the complex, variable and unstable channels.

    Fig.6.Secret key rate as a function of transmission distance.From left to right,red-dotted lines,blue-dashed lines,and green-solid lines,correspond to the traditional scheme,the ANN-based scheme,and the ideal ANN scheme,respectively.

    Fig.7.The A–N curve shows how the prediction accuracy varies with the length of the data(blue-solid line,L=20 km).The A–L curve represents the variation of the prediction accuracy with transmission distance (red-dotted line,N=1.2×107).

    5.Conclusion

    We have presented an ANN-involved parameter estimation scheme for performance improvement of the CVQKD system,where BP neural networks are placed in the data postprocessing stage without disclosing the raw keys.After being preprocessed,Alice’s and Bob’s original data are fed into the ANN to start the training experiments, in which the structure and the parameters of the ANN are constantly adjusted until the regression curve and error curve show that the ANN has achieved its best performance.Relationship between the data is obtained at the end of the training experiments before the ANN’s prediction.It is secure from Eve’s eavesdropping since none of the original data is disclosed.Simulation results suggest that the ANN-based scheme has shown better performance in the parameter estimation, secret key rate, capacity for carrying information and the accuracy of prediction,compared with the traditional scheme and other schemes.Besides,the ANN-based scheme,which requires very few additional devices,can be expediently implemented in the practical CVQKD systems.

    黄频高清免费视频| 七月丁香在线播放| 国产精品久久久人人做人人爽| 国产在线一区二区三区精| 中文字幕亚洲精品专区| 久久精品国产a三级三级三级| 亚洲熟女毛片儿| 97人妻天天添夜夜摸| 热re99久久精品国产66热6| 日韩一区二区三区影片| 国产精品久久久久成人av| 在线天堂中文资源库| 国产高清不卡午夜福利| 亚洲精品美女久久久久99蜜臀 | 视频在线观看一区二区三区| 久久九九热精品免费| 亚洲欧洲国产日韩| 亚洲伊人久久精品综合| 亚洲综合色网址| 9色porny在线观看| 国产99久久九九免费精品| 一级毛片我不卡| 黄色 视频免费看| 久久亚洲国产成人精品v| av网站免费在线观看视频| 国产成人欧美在线观看 | 日本a在线网址| 亚洲国产av影院在线观看| 久久精品久久精品一区二区三区| 在线观看www视频免费| 人妻 亚洲 视频| 欧美在线一区亚洲| 丰满人妻熟妇乱又伦精品不卡| www日本在线高清视频| 精品亚洲成国产av| 51午夜福利影视在线观看| 精品一区二区三区四区五区乱码 | 热99久久久久精品小说推荐| 国产精品成人在线| 亚洲,一卡二卡三卡| 亚洲精品中文字幕在线视频| 免费看不卡的av| 母亲3免费完整高清在线观看| 各种免费的搞黄视频| 丰满少妇做爰视频| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| 一级毛片电影观看| 性色av一级| 国产精品国产av在线观看| 纵有疾风起免费观看全集完整版| 国产片内射在线| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 精品福利永久在线观看| 国产高清国产精品国产三级| 侵犯人妻中文字幕一二三四区| 男女无遮挡免费网站观看| 亚洲av日韩在线播放| 中文字幕色久视频| 国产精品一区二区精品视频观看| 亚洲av美国av| 人人妻人人澡人人看| 美女福利国产在线| 丝袜喷水一区| 美女大奶头黄色视频| 大片电影免费在线观看免费| 国产在视频线精品| av欧美777| 天天操日日干夜夜撸| 亚洲成国产人片在线观看| 天天躁日日躁夜夜躁夜夜| 精品人妻1区二区| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 夫妻性生交免费视频一级片| 国产一区二区在线观看av| 国产免费一区二区三区四区乱码| 国产成人系列免费观看| 免费观看人在逋| 国产精品秋霞免费鲁丝片| 国产免费一区二区三区四区乱码| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 成人三级做爰电影| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 欧美日韩视频精品一区| 在线观看免费高清a一片| 18禁观看日本| 免费观看av网站的网址| 欧美另类一区| 国产一级毛片在线| 叶爱在线成人免费视频播放| 日韩av免费高清视频| a 毛片基地| 午夜免费观看性视频| 亚洲国产欧美一区二区综合| 欧美久久黑人一区二区| 精品亚洲乱码少妇综合久久| 99国产精品一区二区蜜桃av | 老汉色av国产亚洲站长工具| 国产麻豆69| 久久精品国产综合久久久| 91成人精品电影| 日本a在线网址| 亚洲国产中文字幕在线视频| 美女视频免费永久观看网站| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 秋霞在线观看毛片| 日韩熟女老妇一区二区性免费视频| 日韩一卡2卡3卡4卡2021年| 天天躁日日躁夜夜躁夜夜| 日本欧美视频一区| 久久性视频一级片| 咕卡用的链子| 成人午夜精彩视频在线观看| 成人黄色视频免费在线看| 亚洲,一卡二卡三卡| 亚洲av在线观看美女高潮| 免费观看人在逋| 日韩av免费高清视频| 久久人人爽人人片av| 午夜福利,免费看| 在线观看免费午夜福利视频| 欧美国产精品va在线观看不卡| 成年动漫av网址| 亚洲精品自拍成人| 人人澡人人妻人| 飞空精品影院首页| 人人妻人人澡人人爽人人夜夜| 一级毛片 在线播放| 在现免费观看毛片| 亚洲久久久国产精品| 黄色片一级片一级黄色片| 美国免费a级毛片| 亚洲成人免费av在线播放| 国产福利在线免费观看视频| 久久精品久久精品一区二区三区| 天天影视国产精品| 波多野结衣一区麻豆| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 两性夫妻黄色片| 中文字幕av电影在线播放| 97在线人人人人妻| 国产男女超爽视频在线观看| 欧美少妇被猛烈插入视频| 丰满饥渴人妻一区二区三| 国产精品九九99| 国产精品秋霞免费鲁丝片| 咕卡用的链子| 欧美黄色片欧美黄色片| 首页视频小说图片口味搜索 | 欧美精品一区二区免费开放| 高清欧美精品videossex| 在线观看免费视频网站a站| 只有这里有精品99| 大片免费播放器 马上看| 无遮挡黄片免费观看| 久久天躁狠狠躁夜夜2o2o | 成在线人永久免费视频| 国产片内射在线| 中文字幕制服av| 免费观看av网站的网址| 欧美久久黑人一区二区| 天天影视国产精品| 久久99精品国语久久久| 老司机深夜福利视频在线观看 | 1024视频免费在线观看| 国产精品一区二区在线不卡| 久热爱精品视频在线9| 人人妻,人人澡人人爽秒播 | 99国产精品99久久久久| 久久影院123| 国产免费一区二区三区四区乱码| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费视频网站a站| 色网站视频免费| 国产极品粉嫩免费观看在线| 精品一区二区三区四区五区乱码 | 亚洲国产精品国产精品| 尾随美女入室| 亚洲av欧美aⅴ国产| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 九色亚洲精品在线播放| 青春草视频在线免费观看| 日本a在线网址| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| 欧美日韩亚洲高清精品| 老汉色av国产亚洲站长工具| 久久精品亚洲av国产电影网| 男女国产视频网站| 一级a爱视频在线免费观看| 精品国产一区二区三区四区第35| 国产av精品麻豆| 久久这里只有精品19| 亚洲,一卡二卡三卡| 老司机靠b影院| 国产精品九九99| 操出白浆在线播放| 岛国毛片在线播放| 日本a在线网址| 亚洲精品乱久久久久久| 91精品伊人久久大香线蕉| videos熟女内射| 国产成人精品久久久久久| 欧美中文综合在线视频| 亚洲熟女毛片儿| 国产精品二区激情视频| 国产麻豆69| 在线观看免费高清a一片| 日韩制服丝袜自拍偷拍| 国产高清不卡午夜福利| 可以免费在线观看a视频的电影网站| 男人爽女人下面视频在线观看| 91成人精品电影| www.999成人在线观看| 又大又爽又粗| 久久久久久久久免费视频了| 老汉色∧v一级毛片| 十八禁网站网址无遮挡| 亚洲五月婷婷丁香| 欧美另类一区| 国精品久久久久久国模美| 久久综合国产亚洲精品| 国产精品99久久99久久久不卡| 欧美国产精品一级二级三级| 久久人人爽av亚洲精品天堂| 亚洲国产精品成人久久小说| 制服人妻中文乱码| 欧美精品啪啪一区二区三区 | 人人妻人人澡人人看| 国产高清videossex| www日本在线高清视频| 欧美97在线视频| 纵有疾风起免费观看全集完整版| 成人三级做爰电影| 狂野欧美激情性bbbbbb| 精品人妻在线不人妻| 久久精品成人免费网站| 青春草亚洲视频在线观看| 亚洲精品在线美女| 欧美激情极品国产一区二区三区| 操出白浆在线播放| 精品国产国语对白av| 精品亚洲成a人片在线观看| 免费观看av网站的网址| 一级片'在线观看视频| 曰老女人黄片| 热99久久久久精品小说推荐| 久久精品亚洲av国产电影网| 精品少妇久久久久久888优播| tube8黄色片| 日本av免费视频播放| 日韩免费高清中文字幕av| 国产精品二区激情视频| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 91麻豆av在线| 国产亚洲精品第一综合不卡| 亚洲av成人精品一二三区| 欧美成人午夜精品| 国产精品 国内视频| 久久久久久久大尺度免费视频| 麻豆av在线久日| 女人爽到高潮嗷嗷叫在线视频| 欧美人与善性xxx| 国产精品免费大片| 久久精品国产a三级三级三级| 一区二区三区精品91| 在线 av 中文字幕| 最近中文字幕2019免费版| 91老司机精品| 国产又色又爽无遮挡免| 日韩av免费高清视频| 精品人妻1区二区| 一区在线观看完整版| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 夜夜骑夜夜射夜夜干| 国产在线免费精品| 50天的宝宝边吃奶边哭怎么回事| 免费看不卡的av| 亚洲国产欧美在线一区| 丝袜喷水一区| 最新在线观看一区二区三区 | 又大又爽又粗| 狂野欧美激情性bbbbbb| 精品福利永久在线观看| 中文乱码字字幕精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 精品第一国产精品| 免费看不卡的av| 啦啦啦在线观看免费高清www| 亚洲伊人色综图| 日本午夜av视频| 日韩一区二区三区影片| 日韩人妻精品一区2区三区| 免费在线观看视频国产中文字幕亚洲 | 好男人电影高清在线观看| 嫁个100分男人电影在线观看 | 久久免费观看电影| 亚洲午夜精品一区,二区,三区| 老司机影院毛片| 日本av手机在线免费观看| 在线观看免费视频网站a站| 免费不卡黄色视频| 亚洲av成人不卡在线观看播放网 | 日本av手机在线免费观看| 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 日本欧美视频一区| xxx大片免费视频| 欧美日韩亚洲高清精品| 亚洲一码二码三码区别大吗| 国产精品三级大全| 91国产中文字幕| 欧美少妇被猛烈插入视频| 国产成人欧美| www.999成人在线观看| 国产国语露脸激情在线看| 中文字幕精品免费在线观看视频| 欧美av亚洲av综合av国产av| 最近最新中文字幕大全免费视频 | 婷婷成人精品国产| 成人亚洲欧美一区二区av| 一级毛片电影观看| 新久久久久国产一级毛片| 日韩大码丰满熟妇| 黄色毛片三级朝国网站| 十八禁高潮呻吟视频| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 在线观看人妻少妇| 亚洲人成电影观看| av电影中文网址| 亚洲第一青青草原| 日韩一卡2卡3卡4卡2021年| 国产视频一区二区在线看| 色94色欧美一区二区| 日本猛色少妇xxxxx猛交久久| 悠悠久久av| 大型av网站在线播放| 一级片免费观看大全| 永久免费av网站大全| 狠狠精品人妻久久久久久综合| 男女床上黄色一级片免费看| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 国产精品一区二区在线观看99| 成人影院久久| 久久精品国产a三级三级三级| 亚洲精品日韩在线中文字幕| 男女边摸边吃奶| 国产免费现黄频在线看| 欧美大码av| www.自偷自拍.com| 欧美日本中文国产一区发布| 国产97色在线日韩免费| 男人舔女人的私密视频| 国产精品成人在线| 国产片特级美女逼逼视频| 成人亚洲精品一区在线观看| 久久久精品94久久精品| 久久久久久久大尺度免费视频| cao死你这个sao货| 搡老乐熟女国产| 日本欧美视频一区| 美女主播在线视频| 一区二区三区乱码不卡18| 宅男免费午夜| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品在线电影| 国产精品一区二区免费欧美 | 女人久久www免费人成看片| 国产97色在线日韩免费| 高清欧美精品videossex| 人妻一区二区av| 久久久国产一区二区| 国产日韩欧美亚洲二区| 久久九九热精品免费| 国产男女内射视频| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 可以免费在线观看a视频的电影网站| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 婷婷丁香在线五月| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 亚洲av电影在线观看一区二区三区| 欧美+亚洲+日韩+国产| 午夜av观看不卡| 日本欧美国产在线视频| 国产欧美日韩一区二区三 | 免费高清在线观看视频在线观看| 天天躁日日躁夜夜躁夜夜| 熟女av电影| 高清视频免费观看一区二区| 久久久久精品国产欧美久久久 | 免费日韩欧美在线观看| 99久久人妻综合| 国产又爽黄色视频| 七月丁香在线播放| av天堂在线播放| bbb黄色大片| 婷婷成人精品国产| 久久精品亚洲av国产电影网| a级毛片黄视频| 少妇裸体淫交视频免费看高清 | a级毛片黄视频| 少妇裸体淫交视频免费看高清 | 嫩草影视91久久| 两性夫妻黄色片| 国产片特级美女逼逼视频| 一本一本久久a久久精品综合妖精| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 99热国产这里只有精品6| 黄色 视频免费看| 最新的欧美精品一区二区| www日本在线高清视频| 香蕉丝袜av| 日日爽夜夜爽网站| 深夜精品福利| 国产一区二区 视频在线| 在线观看免费视频网站a站| av网站在线播放免费| 巨乳人妻的诱惑在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕制服av| 99精品久久久久人妻精品| netflix在线观看网站| 熟女av电影| 多毛熟女@视频| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人| 大片免费播放器 马上看| 老汉色av国产亚洲站长工具| 黄片播放在线免费| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 亚洲精品一区蜜桃| 精品一区二区三区四区五区乱码 | 美女高潮到喷水免费观看| 欧美少妇被猛烈插入视频| 每晚都被弄得嗷嗷叫到高潮| cao死你这个sao货| 欧美人与性动交α欧美精品济南到| 久久久久网色| 亚洲黑人精品在线| 中文字幕最新亚洲高清| 2018国产大陆天天弄谢| 操美女的视频在线观看| 国产黄色视频一区二区在线观看| 亚洲人成77777在线视频| 日本av手机在线免费观看| 国产免费又黄又爽又色| 一级片免费观看大全| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精| 亚洲av男天堂| 又紧又爽又黄一区二区| 亚洲一码二码三码区别大吗| 国产av国产精品国产| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 久久久精品区二区三区| 亚洲欧美一区二区三区黑人| 国产高清videossex| 午夜福利乱码中文字幕| 女警被强在线播放| 亚洲欧美精品综合一区二区三区| 男女下面插进去视频免费观看| 亚洲欧美日韩高清在线视频 | 一级,二级,三级黄色视频| 2021少妇久久久久久久久久久| www.精华液| 美女国产高潮福利片在线看| 一级毛片我不卡| 国产又爽黄色视频| 国产精品一国产av| 国产片特级美女逼逼视频| 国产精品.久久久| 国产亚洲欧美精品永久| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 亚洲中文字幕日韩| 性色av乱码一区二区三区2| 王馨瑶露胸无遮挡在线观看| 亚洲第一青青草原| 又粗又硬又长又爽又黄的视频| 久久久国产欧美日韩av| 亚洲美女黄色视频免费看| 国产精品一二三区在线看| 日韩大码丰满熟妇| 精品少妇一区二区三区视频日本电影| 色网站视频免费| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 一级毛片电影观看| 亚洲成色77777| 天堂8中文在线网| 中文字幕人妻丝袜一区二区| 国产人伦9x9x在线观看| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区久久| 又大又爽又粗| 飞空精品影院首页| 久久久久视频综合| 久久天堂一区二区三区四区| 多毛熟女@视频| av有码第一页| av电影中文网址| 久久精品成人免费网站| 国产成人欧美| 久久久国产一区二区| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频 | 午夜免费鲁丝| 亚洲精品美女久久av网站| 又黄又粗又硬又大视频| 男的添女的下面高潮视频| 中文字幕制服av| 99久久精品国产亚洲精品| 赤兔流量卡办理| 91老司机精品| 欧美xxⅹ黑人| 曰老女人黄片| 国产国语露脸激情在线看| 精品亚洲成a人片在线观看| 制服人妻中文乱码| 亚洲国产日韩一区二区| 9热在线视频观看99| 美女大奶头黄色视频| 久久人人97超碰香蕉20202| 少妇人妻久久综合中文| 久久久欧美国产精品| 久久综合国产亚洲精品| 精品国产乱码久久久久久男人| 曰老女人黄片| 一区二区av电影网| 欧美精品高潮呻吟av久久| 黄片播放在线免费| 国产精品.久久久| 亚洲欧美一区二区三区国产| 嫁个100分男人电影在线观看 | 精品久久久久久电影网| 欧美变态另类bdsm刘玥| 久久热在线av| 免费观看av网站的网址| 欧美精品亚洲一区二区| 性少妇av在线| 国产精品久久久av美女十八| 亚洲 欧美一区二区三区| 国产免费现黄频在线看| 亚洲欧美日韩另类电影网站| 欧美日韩成人在线一区二区| 国产成人系列免费观看| 国精品久久久久久国模美| 欧美日韩亚洲综合一区二区三区_| 婷婷色综合www| 国产精品久久久久久人妻精品电影 | 日韩,欧美,国产一区二区三区| 99久久99久久久精品蜜桃| 亚洲人成电影观看| 在线亚洲精品国产二区图片欧美| 国产精品 欧美亚洲| 一本一本久久a久久精品综合妖精| 欧美国产精品va在线观看不卡| 久久免费观看电影| videos熟女内射| 一级毛片电影观看| 国产熟女欧美一区二区| 欧美乱码精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 两性夫妻黄色片| 中文字幕亚洲精品专区| 国产高清videossex| 亚洲av美国av| 热re99久久国产66热| 在线观看免费日韩欧美大片| 99久久人妻综合| 久久热在线av| 午夜福利免费观看在线| 久久精品久久久久久久性| 国产精品成人在线| 美女午夜性视频免费| 国产高清videossex| 免费观看人在逋| 老司机在亚洲福利影院| 亚洲人成电影免费在线| 国产日韩欧美亚洲二区| 久久精品久久精品一区二区三区| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 国产亚洲午夜精品一区二区久久| 成人午夜精彩视频在线观看| 亚洲av片天天在线观看| 天天操日日干夜夜撸| 新久久久久国产一级毛片| 男女高潮啪啪啪动态图|