• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neighborhood Contingency Logic:A New Perspective*

    2018-12-26 03:40:18JieFan
    邏輯學(xué)研究 2018年4期

    Jie Fan

    School of Humanities,University of Chinese Academy of Sciences

    jiefan@ucas.ac.cn

    Abstract.In this paper,we propose a new neighborhood semantics for contingency logic,by introducing a simple property in standard neighborhood models.This simplifies the neighborhood semantics given in Fan and van Ditmarsch(2015),but does not change the set of valid formulas.Under this perspective,among various notions of bisimulation and respective Hennessy-Milner Theorems,we show that c-bisimulation is equivalent to nbh-?-bisimulation in the literature,which guides us to understand the essence of the latter notion.This perspective also provides various frame definability and axiomatization results.

    1 Introduction

    Under Kripke semantics,contingency logic(CL for short)is non-normal,less expressive than standard modal logic(ML for short),and the five basic frame properties(seriality,reflexivity,transitivity,symmetry,Eucludicity)cannot be defined in CL.This makes the axiomatizations of CL nontrivial:although there have been a mountain of work on the axiomatization problem since the 1960s[15,9,10,11,12],overK,D,T,4,5 and any combinations thereof,no method in the cited work can uniformly handle all the five basic frame properties.This job has not been addressed until in[5],which also contains an axiomatization of CL onBand its multi-modal version.This indicates that Kripke semantics may not be suitable for CL.

    Partly inspired by the above motivation(in particular,the non-normality of CL),and partly by a weaker logical omniscience in Kripke semantics(namely,all theorems are known to be true or known to be false),a neighborhood semantics for CL is proposed in[4],which interprets the non-contingency operator?in a way such that its philosophical intuition,viz.necessarily true or necessarily false,holds.However,under this(old)semantics,as shown in[4],CL is still less expressive than ML on various classes of neighborhood models,and many usual neighborhood frame properties are undefinable in CL.Moreover,based on this semantics,[1]proposes a bisimulation(called ‘nbh-?-bisimulation’there)to characterize CL within ML and within first-order logic(FOL for short),but the essence of the bisimulation seems not quite clear.

    In retrospect, no matter whether the semantics for CL is Kripke-style or neigborhoodstyle in the sense of[4],there is an asymmetry between the syntax and models of CL:on the one hand,the language is too weak,since it is less expressive than ML over various model classes;on the other hand,the models are too strong,since its models are the same as those of ML.This makes it hard to handle CL.1Analogous problem occurs in the setting of knowing-value logic[13,14].

    Inspired by[6],we simplify the neighborhood semantics for CL in[4],and meanwhile keep the logic(valid formulas)the same by restricting models.This can weaken the too strong models so as to balance the syntax and models for CL.Under this new perspective,we can gain a lot of things,for example,bisimulation notions and their corresponding Hennessy-Milner Theorems,and frame definability.Moreover,we show that one of the bisimulation notions is equivalent to the notion of nbh-?-bisimulation,which helps us understand the essence of nbh-?-bisimulation.We also obtain some simple axiomatizations.

    2 Preliminaries

    2.1 Language and old neighborhood semantics

    First,we introduce the language and the old neighborhood semantics of CL.Fix a countable set Prop of propositional variables.The language of CL,denotedL?,is an extension of propositional logic with a sole primitive modality?,wherep∈Prop.

    ?φis read “it is non-contingent thatφ”.?φ,read “it is contingent thatφ”,abbreviates??φ.

    A neighborhood model forL?is defined as that for the languageL□of ML.That is,to sayM=?S,N,V?is a neighborhood model,ifSis a nonempty set of states,N:S→22Sis a valuation assigning each propositional variable inSa set of neighborhoods,andV:Prop→2Sis a valuation assigning each propositional variable in Prop a set of states in which it holds.A neighborhood frame is a neighborhood model without any valuation.

    There are a variety of neighborhood properties.The following list is taken from[4,Def.3].

    Definition 1(Neighborhood properties)

    (n):N(s)contains the unit,ifS∈N(s).

    (r):N(s)contains its core,if∩N(s)∈N(s).

    (i):N(s)is closed under intersections,ifX,Y∈N(s)impliesX∩Y∈N(s).

    (s):N(s)issupplemented,orclosed under supersets,ifX∈N(s)andX?Y?SimpliesY∈N(s).We also call this property ‘monotonicity’.

    (c):N(s)isclosed under complements,ifX∈N(s)impliesSX∈N(s).

    (d):X∈N(s)impliesSX/∈N(s).

    (t):X∈N(s)impliess∈X.

    (b):s∈Ximplies{u∈S|SX/∈N(u)}∈N(s).

    (4):X∈N(s)implies{u∈S|X∈N(u)}∈N(s).

    (5):X/∈N(s)implies{u∈S|X/∈N(u)}∈N(s).

    FrameF=?S,N?(and the corresponding model)possesses such a propertyP,ifN(s)has the propertyPfor eachs∈S,and we call the frame(resp.the model)P-frame(resp.P-model).

    Given a neighborhood modelM=?S,N,V?ands∈S,the old neighborhood semantics ofL?[4]is defined as follows,whereφM?={t∈S|M,t?φ}.

    2.2 Existing results on old neighborhood semantics

    Under the above old neighborhood semantics,it is shown in[4,Props.2-7]that on the class of(t)-models or the class of(c)-models,L?is equally expressive asL□;however,on other class of models in Def.1,L?is less expressive thanL□;moreover,noneof frame properties in the above list are definable in CL.

    Based on the above semantics for CL,a notion of bisimulation is proposed in[1],which is inspired by the definition ofprecocongruencesin[8]and the old neighbourhood semantics of?.

    Definition 2(nbh-?-bisimulation)LetM=?S,N,V?andM′=?S′,N′,V′?be neighborhood models.A nonempty relationZ?S×S′isanbh-?-bisimulationbetweenMandM′,if for all(s,s′)∈Z,

    (Atoms)s∈V(p)iffs′∈V′(p)for allp∈Prop;

    (Coherence)if the pair(U,U′)isZ-coherent,2Let R be a binary relation.We say(U,U′)is R-coherent,if for any(x,y)∈ R,we have x ∈ U iff y ∈ U′.We say U is R-closed,if(U,U)is R-coherent.It is obvious that(?,?)is R-coherent for any R.then

    (M,s)and(M′,s′)isnbh-?-bisimilar,notation(M,s)~?(M′,s′),if there is a nbh-?-bisimulation betweenMandM′containing(s,s′).3In fact,the notion of nbh-?-bisimilarity is defined in a more complex way in[1].It is easy to show that our definition is equivalent to,but simpler than,that one.

    Although it is inspired by both the definition ofprecocongruencesin[8]and the old neighbourhood semantics of?,the essence of nbh-?-bisimulation seems not so clear.

    It is then proved that Hennessy-Milner Theorem holds for nbh-?-bisimulation.For this,a notion of?-saturated model is required.

    Definition 3(?-saturated model) [1,Def.11]LetM=?S,N,V?be a neighborhood model.A setX?Sis?-compact,if every set ofL?-formulas that is finitely satisfiable inXis itself also satisfiable inX.Mis said to be?-saturated,if for alls∈Sand all≡L?-closed neighborhoodsX∈N(s),bothXandSXare?-compact.

    Theorem 1(Hennessy-Milner Theorem for nbh-?-bisimulation) [1,Thm.1]On?-saturated modelsMandM′and statessinMands′inM′,if(M,s)≡L?(M′,s′),then(M,s)~?(M′,s′).

    3 A new semantics for CL

    As mentioned above,there is an asymmetry between the syntax and neighborhood models of CL,which makes it hard to tackle CL.In this section,we propose a new neighborhood semantics for this logic.This semantics is simpler than the old one,but the two semantics are equivalent in that their logics(valid formulas)are the same.

    The new neighborhood semantics?and the old one?differ only in the case of non-contingency operator.

    whereφM={t∈M|M,t?φ}.To say two models with the same domain arepointwise equivalent,if every world in both models satisfies the same formulas.

    We hope that although we change the semantics,the validities are still kept the same as the old one.So how to make it out?Recall that non-contingency means necessarily true or necessarily false,which implies that?p???pshould be valid.However,although the formula is indeed valid under the old neighborhood semantics,it is invalid under the new one.In order to make this come about,we need make some restriction to the models.Look at a proposition first.

    Proposition 1Under the new semantics,?p???pdefines the property(c).

    ProofLetF=?S,N?be a neighborhood frame.

    First,supposeFpossesses(c),weneedtoshowF??p???p.Forthis,assume any modelMbased onFands∈Ssuch thatM,s??p,thuspM∈N(s).By(c),SpM∈N(s),i.e.,(?p)M∈N(s),which means exactlyM,s???p.Now assumeM,s? ??p,we have(?p)M∈N(s),that isSpM∈N(s).By(c),S(SpM)∈N(s),i.e.pM∈N(s),and thusM,s? ?p.HenceM,s? ?p???p,and thereforeF??p???p.

    Conversely,supposeFdoes not possess(c),we need to showF?? ?p???p.By supposition,there existsXsuch thatX∈N(s)butSX/∈N(s).Definea valuationVonFasV(p)=X.We have nowpM=V(p)∈N(s),thusM,s? ?p.On the other side,V(?p)=SX/∈N(s),thusM,s?p.HenceM,sp→??p,and thereforeF?? ?p???p. □

    This means that in order to guarantee the validity?p???punder new semantics,we(only)need to ‘force’the model to have the property(c).Thus from now on,we assume(c)to be theminimalcondition of a neighborhood model,and call this type of model‘c-models’.

    Definition 4(c-structures) A model is ac-model,if it has the property(c);intuitively,if a proposition is non-contingent at a state in the domain,so is its negation.A frame is ac-frame,if the models based on it arec-models.

    The following proposition states that onc-models,the new neighborhood semantics and the old one coincide with each other in terms ofL?satisfiability.

    Proposition 2LetM=?S,N,V?be ac-model.Then for allφ∈L?,for alls∈S,we haveM,s?φ??M,s?φ,i.e.,φM=φM?.

    ProofBy induction onφ∈L?.The only nontrivial case is?φ.

    First,supposeM,s? ?φ,thenφM∈N(s).By induction hypothesis,φM?∈N(s).Of course,φM?∈N(s)or(?φ)M?∈N(s).This entails thatM,s??φ.

    Conversely,assumeM,s? ?φ,thenφM?∈N(s)or(?φ)M?∈N(s).SinceMis ac-model,we can obtainφM?∈N(s).By induction hypothesis,φM∈N(s).Therefore,M,s??φ. □

    Definition 5(c-variation)LetM=?S,N,V?be a neighborhood model.We sayc(M)is ac-variationofM,ifc(M)=?S,cN,V?,where for alls∈S,cN(s)={X?S:X∈N(s)orSX∈N(s)}.

    The definition ofcNis very natural,in that just as“X∈N(s)orSX∈N(s)”corresponds to the old semantics of?,X∈cN(s)corresponds to the new semantics of?.It is easy to see that every neighborhood model has a solec-variation,that every suchc-variation is a c-model,and moreover,for any neighborhood modelM,ifMis already ac-model,thenc(M)=M.

    Proposition 3LetMbe a neighborhood model.Then for allφ∈L?,for alls∈M,we haveM,s?φ??c(M),s?φ,i.e.,φM?=φc(M).

    ProofThe proof is by induction onφ,where the only nontrivial case is?φ.We have

    Let Γ ?cφdenote that Γ entailsφover the class of allc-models,i.e.,for eachc-modelMand eachs∈M,ifM,s?ψfor everyψ∈Γ,thenM,s?φ.With Props.2 and 3 in hand,we obtain immediately that

    Corollary 1For all ?!葅φ}?L?,Γ?cφ??Γ?φ.Therefore,for allφ∈L?,?cφ???φ.

    In this way,we strengthened the expressive power of CL,since it is now equally expressive as ML,and kept the logic(valid formulas)the same as the old neighborhood semantics.The noncontingency operator? can now be seen as a package of□ and?in the old neighborhood semantics;under the new neighborhood semantics,on the one hand,it is interpreted just as□;on the other hand,it retains the validity?p???p.

    4 c-Bisimulation

    Recall that the essence of the notion of nbh-?-bisimulation proposed in[1]is not so clear.In this section,we introduce a notion ofc-bisimulation,and show that this notion is equivalent to nbh-?-bisimulation.Thec-bisimulation is inspired by both Prop.1 and the definition ofprecocongruencesin[8,Prop.3.16].Intuitively,the notion is obtained by just adding the property(c)into the notion of precocongruences.

    Definition 6(c-bisimulation)LetM=?S,N,V?andM′=?S′,N′,V′?becmodels.A nonempty relationZ?S×S′is ac-bisimulationbetweenMandM′,if for all(s,s′)∈Z,

    (i)s∈V(p)iffs′∈V′(p)for allp∈Prop;

    (ii)if the pair(U,U′)isZ-coherent,thenU∈N(s)iffU′∈N′(s′).

    We say(M,s)and(M′,s′)arec-bisimilar,written(M,s)?c(M′,s′),if there is a c-bisimulationZbetweenMandM′such that(s,s′)∈Z.

    Notethatbothc-bisimulation andc-bisimilarity are defined betweenc-models,rather than between any neighborhood models.L?formulas are invariant underc-bisimilarity.

    Proposition 4LetMandM′bec-models,s∈Mand

    ProofLetM=?S,N,V?andM′=?S′,N′,V′?be bothc-models.By induction onφ∈L?.The nontrivial case is?φ.

    (?)follows from the fact that-coherent plus the condition(ii)ofcbisimulation.To see why-coherent,the proof goes as follows:if for anythen by induction hypothesis,M,x?φiff

    Now we are ready to show the Hennessy-Milner Theorem forc-bisimulation.Sincec-bisimulation is defined betweenc-models,we need also to add the propertycinto the notion of?-saturated models in Def.3.

    Definition 7(?-saturatedc-model) LetM=?S,N,V?be ac-model.A setX?Sis?-compact,if every set ofL?-formulas that is finitely satisfiable inXis itself also satisfiable inX.Mis said to be?-saturated,if for alls∈Sand all≡L?-closed neighborhoodX∈N(s),Xis?-compact.4Note that we do not distinguish≡L? here from that in Def.3 despite different neighborhood semantics.This is because as we show in Prop.2,on c-models the two neighborhood semantics are the same in terms of L?satisfiability.Thus it does not matter which semantics is involved in the current context.

    In the above definition of?-saturatedc-model,we write“Xis?-compact”,rather than “bothXandSXare?-compact”,since under the condition thatX∈N(s)and the property(c),these two statements are equivalent.Thus each?-saturatedc-model must be a?-saturated model.

    We will demonstrate that on?-saturatedc-models,L?-equivalence impliesc-bisimilarity,for which we prove that the notion of c-bisimulation is equivalent to that of nbh-?-bisimulation,in the sense that every nbh-?-bisimulation(between neighborhood models)is a c-bisimulation(betweenc-models),and vice versa.By doing so,we can see clearly the essence of nbh-?-bisimulation,i.e.precocongruences with property(c).

    Proposition 5LetM=?S,N,V?andM′=?S′,N′,V′?be neighborhood models.IfZis a nbh-?-bisimulation betweenMandM′,thenZis a c-bisimulation betweenc(M)andc(M′).

    ProofSuppose thatZis a nbh-?-bisimulation betweenMandM′,to showZis a c-bisimulation betweenc(M)andc(M′).

    First,one can easily verify thatc(M)andc(M′)are bothc-models.

    Second,assume that(s,s′)∈Z.SinceMandc(M)have the same domain and valuation,item(i)can be obtained from the supposition and(Atoms).For item(ii),let(U,U′)beZ-coherent.We need to show thatU∈cN(s)iffU′∈cN′(s′).For this,we have the following line of argumentation:U∈cN(s)iff(by definition ofcN)(U∈N(s)orSU∈N(s))iff(by(Coherence))(U′∈N′(s′)orS′U′∈N′(s′))iff(by definition ofcN′)U′∈cN′(s′). □

    Proposition 6LetM=?S,N,V?andM′=?S′,N′,V′?bec-models.IfZis a c-bisimulation betweenMandM′,thenZis a nbh-?-bisimulation betweenMandM′.

    ProofSuppose thatZis a c-bisimulation betweenc-modelsMandM′,to showZis a nbh-?-bisimulation betweenMandM′.Assume that(s,s′)∈Z,we only need to show(Atoms)and(Coherence)holds.(Atoms)is clear from(i).

    For(Coherence),letthepair(U,U′)isZ-coherent.Thenby(ii),U∈N(s)iffU′∈N′(s′).We also have that(SU,S′U′)isZ-coherent.Using(ii)again,we infer thatSU∈N(s)iffS′U′∈N′(s′).Therefore,(U∈N(s)orSU∈N(s))iff(U′∈N′(s′)orS′U′∈N′(s′)),as desired. □

    Since everyc-variation of ac-model is just the model itself,by Props.5 and 6,we obtain immediately that

    Corollary 2LetM=(S,N,V)andM′=?S′,N′,V′?be bothc-models.ThenZis ac-bisimulation betweenMandM′iffZis an nbh-?-bisimulation betweenMandM′.

    Theorem 2(Hennessy-Milner Theorem forc-bisimulation) LetMandM′be?-saturatedc-models,ands∈M,s′∈M′.If for all

    ProofSupposeMandM′are?-saturatedc-modelssuchthatforallφ∈L?,M,s?By Prop.2,we have that for allM′,s′?φ.Since each?-saturatedc-model is a?-saturated model,by Hennessy-Milner Theorem of nbh-?-bisimulation(Thm.1),we obtain(M,s)~?(M′,s′).Then by Coro.2,we conclude that

    5 Monotonic c-bisimulation

    This section proposes a notion of bisimulation for CL over monotonic,c-models.This notion can be obtained via two ways:one is to add the property of monotonicity(s)intoc-bisimulation,the other is to add the property(c)into monotonic bisimulation(for ML).5For the notion of monotonic bisimulation,refer to[7,Def.4.10].For the sake of reference,we call the notion obtained by the first way‘monotonicc-bisimulation’,and that obtained by the second way ‘c-monotonic bisimulation’.We will show that the two notions are indeed the same.

    Definition 8(Monotonicc-bisimulation)LetM=?S,N,V?andM′=?S′,N′,V′?bebothmonotonic,c-models.A nonempty binary relationZisamonotonicc-bisimulationbetweenMandM′,ifsZs′implies the following:

    (i)sands′satisfy the same propositional variables;

    (ii)If(U,U′)isZ-coherent,thenU∈N(s)iffU′∈N′(s′).

    (M,s)and(M′,s′)is said to bemonotonic c-bisimilar,written(M,s)?sc(M′,s′),if there is a monotonicc-bisimulation betweenMandM′such thatsZs′.

    Definition 9(c-monotonic bisimulation)LetM=?S,N,V?andM′=?S′,N′,V′?be both monotonic,c-models.A nonempty binary relationZis ac-monotonic bisimulationbetweenMandM′,ifsZs′implies the following:

    (Prop)sands′satisfy the same propositional variables;

    (c-m-Zig)ifX∈N(s),then there existsX′∈N′(s′)such that for allx′∈X′,there is anx∈Xsuch thatxZx′;

    (c-m-Zag)ifX′∈N′(s′),then there existsX∈N(s)such that for allx∈X,there is anx′∈X′such thatxZx′.

    (M,s)and(M′,s′)is said to bec-monotonic bisimilar,writtens′),if there is ac-monotonic bisimulation betweenMandM′such thatsZs′.

    Note that both monotonicc-bisimulation andc-monotonic bisimulation are defined between monotonic,c-models.

    Proposition 7Everyc-monotonic bisimulation is a monotonicc-bisimulation.

    ProofSuppose thatZis ac-monotonic bisimulation betweenMandM′,both of which are monotonic,c-models,to show thatZis also a monotonicc-bisimulation betweenMandM′.For this,assume thatsZs′,it suffices to show the condition(ii).

    Assume that(U,U′)isZ-coherent.IfU∈N(s),by(c-m-Zig),there existsX′∈N′(s′)such that for allx′∈X′,there is ax∈Usuch thatxZx′.By assumption andx∈UandxZx′,we havex′∈U′,thusX′?U′.Then by(s)andX′∈N′(s′),we conclude thatU′∈N′(s′).The converse is similar,but by using(c-m-Zag)instead. □

    Proposition 8Every monotonicc-bisimulation is ac-monotonic bisimulation.

    ProofSuppose thatZis a monotonicc-bisimulation betweenMandM′,both of which are monotonic,c-models,to show thatZis also ac-monotonic bisimulation betweenMandM′.For this,given thatsZs′,we need to show the condition(c-m-Zig)and(c-m-Zag).We show(c-m-Zig)only,since(c-m-Zag)is similar.

    Assume thatX∈N(s),defineX′={x′|xZx′for somex∈X}.It suffices to show thatX′∈N′(s′).The proof is as follows:by assumption and monotonicity ofM,we haveS∈N(s),then by(c),?∈N(s).Since(?,?)isZ-coherent,by(ii),we infer?∈N′(s′).From this and monotonicity ofM′,it follows thatX′∈N′(s′),as desired.□

    As a corollary,the aforementioned two ways enable us to get the same bisimulation notion.

    Corollary 3The notion of monotonicc-bisimulation is equal to the notion ofc-monotonic bisimulation.

    So we can choose either of the two bisimulation notions to refer to the notion of bisimulation of CL over monotonic,c-models.In the sequel,we choose the simpler one,that is,monotonicc-bisimulation.One may easily see that this notion is stronger than monotonic bisimulation(for ML).

    Similar to the case forc-bisimulation in Sec.4,we can show that

    Proposition 9LetMandM′be monotonic,c-models,s∈Mands′∈M′.Ifthen for all

    Theorem 3(Hennessy-Milner Theorem for monotonicc-bisimulation)LetMandM′be monotonic,?-saturatedc-models,s∈Mands′∈M′.If for allφ∈L?,M,s?

    Similarly,we can define regularc-bisimulation,which is obtained by adding the property(i)intomonotonicc-bisimulation,and show the corresponding Hennessy-Milner Theorem.We omit the details due to space limitation.

    6 Quasi-filter structures

    We define a class of structures,called ‘quasi-filter structures’.6Note that our notion of quasi-filter is different from that in[2,p.215],where quasi-filter is defined as(s)+(i).For example,the latter notion is not necessarily closed under complements.

    Definition 10(Quasi-filter frames and models) A neighborhood frameF=?S,N?is aquasi-filter frame,ifforalls∈S,N(s)possesses the properties(n),(i),(c),and(ws),where(ws)means being closed under supersets or co-supersets:for allX,Y,Z?S,X∈N(s)impliesX∪Y∈N(s)or(SX)∪Z∈N(s).

    We say a neighborhood model is aquasi-filter model,if its underlying frame is a quasi-filter frame.

    Note that in the above definition,the property(n)can be replaced with the property of“N(s)being nonempty”;in symbol,N(s)?=?.

    The main result of this section is the following:for CL,every Kripke model has a pointwise equivalent quasi-filter model,butnotvice versa.

    Definition 11(qf-variation) LetM=?S,R,V?is a Kripke model.qf(M)is said to be aqf-variationofM,ifqf(M)=?S,qfN,V?,where for anys∈S,qfN(s)={X?S:for anyt,u∈S,ifsRtandsRu,then(t∈Xiffu∈X)}.

    The definition ofqfNis also quitenatural,sincejustas“for anyt,u∈S,ifsRtandsRu,then(t∈Xiffu∈X)”corresponds to the Kripke semantics of?,X∈qfN(s)corresponds to the new neighborhood semantics of the operator,as will be seen more clearly in Prop.10.Note that the definition ofqfNcan be simplified as follows:

    It is easy to see that every Kripke model has a(sole)qf-variation.We will demonstrate that,every such qf-variation is a quasi-filter model.

    The following proposition states that every Kripke model and its qf-variation are pointwise equivalent.

    Proposition 10LetM=?S,R,V?be a Kripke model.Then for allφ∈L?,for alls∈S,we haveM,s?φ??qf(M),s?φ,i.e.,φM?=φqf(M),whereφM?={t∈S|M,t?φ}.

    ProofBy induction onφ.The nontrivial case is?φ.

    Proposition 11LetMbe a Kripke model.Thenqf(M)is a quasi-filter model.

    ProofLetM=?S,R,V?.For anys∈S,we show thatqf(M)has those four properties of quasi-filter models.

    (n):it is clear thatS∈qfN(s).

    (i):assume thatX,Y∈qfN(s),we showX∩Y∈qfN(s).By assumption,for alls,t∈S,ifsRtandsRu,thent∈Xiffu∈X,and for alls,t∈S,ifsRtandsRu,thent∈Yiffu∈Y.Therefore,for allt,u∈S,ifsRtandsRu,we have thatt∈X∩Yiffu∈X∩Y.This entailsX∩Y∈qfN(s).

    (c):assume thatX∈qfN(s),to showSX∈qfN(s).By assumption,for alls,t∈S,ifsRtandsRu,thent∈Xiffu∈X.Thus for alls,t∈S,ifsRtandsRu,thent∈SXiffu∈SX,i.e.,SX∈qfN(s).

    (ws):assume,for a contradiction,that for someX,Y,Z?Sit holds thatX∈qfN(s)butX∪Y/∈qfN(s)and(SX)∪Z/∈qfN(s).W.l.o.g.we assume that there aret1,u1such thatsRt1,sRu1andt1∈X∪Ybutu1/∈X∪Y,and there aret2,u2such thatsRt2,sRu2andt2/∈(SX)∪Zbutu2∈(SX)∪Z.Thent2∈Xandu1/∈X,which is contrary to the fact thatX∈qfN(s)andsRu1,sRt2.□

    The following result is immediate by Props.10 and 11.

    Corollary4ForCL,every Kripke model has a pointwise equivalent quasi-filter model.

    However,for CL,not every quasi-filter model has a pointwise equivalent Kripke model.The point is that quasi-filter models may not be closed underinfinite(i.e.arbitrary)intersections(see the property(r)in Def.1).

    Proposition 12For CL,there is a quasi-filter model that has no pointwise equivalent Kripke model.

    ProofConsider an infinite modelM=?S,N,V?,where

    7{2n for some n∈N}denotes the union of finitely many sets of the form{2n for some n∈N},e.g.{0}∪{2}∪{4}.

    It is not hard to check thatMis a quasi-filter model.8To verify(ws),we need only show the nontrivial caseFor this,we show a stronger result:for allThe cases for Z=S or Z=?are clear.For other cases,we partition the elements in Z nto three disjoint(possibly empty)parts:odd numbers,even numbers in even numbers inNote that the first and third parts all belong;moreover,the union of the second part andis also in N(s).Note that for alls∈S,pM/∈N(s),thusIn particular

    Suppose that there is a pointwise equivalent Kripke modelM′,thenThus there must be 2mand 2n+1 that are accessible from 0,wherem,n∈N.Since

    However,when we restrict quasi-filter models to finite cases,the situation will be different.

    Proposition 13For every finite quasi-filter modelM,there exists a pointwise equivalent Kripke modelM′,that is,for allφ∈L?,for all worldss,M′,s?φ??M,s?

    ProofLetM=?S,N,V?be a finite quasi-filter model.DefineM′=?S,R,V?,whereRis defined as follows:for anys,t∈S,

    We will show that for allφ∈L?and alls∈S,we have that

    The proof proceeds with induction onφ∈L?.The nontrivial case is?φ,that is to show,M′,s??φ??M,s??φ.

    “?=:”Suppose,for a contradiction,thatM,s? ?φ,butM′,s? ?φ.ThenφM∈N(s),and there aret,u∈Ssuch thatsRtandsRuandM′,t?φandM′,u?φ.SinceφM∈N(s),by(c),we getSφM∈N(s);moreover,by(ws),we obtain thatφM∪{u}∈N(s)orSφM∪{t}∈N(s).IfφM∪{u}∈N(s),then bySφM∈N(s)and(i),we derive that(φM∪{u})∩SφM∈N(s),i.e.,{u}∩SφM∈N(s),by induction hypothesis,{u}={u}∩SφM∈N(s),contrary tosRuand the definition ofR.IfSφM∪{t}∈N(s),similarly we can show that{t}∈N(s),contrary tosRtand the definition ofR.

    “=?:”Suppose thatto show thatthat is,there aret,u∈Ssuch thatsRt,sRuandM′,t?φandM′,u??φ.By supposition,φM/∈N(s).We show that there is at∈φMsuch that{t}/∈N(s)as follows:if not,i.e.,for allt∈φMwe have{t}∈N(s),then by(c),we getS{t}∈N(s),and using(i)we obtainviz.SφM∈N(s).9Since M is finite,we need only use the property that N is closed under finite intersections,which is equivalent to the property(i).This is unlike the case in Prop.12.Therefore using(c)again,we conclude thatφM∈N(s),which contradicts with the supposition.

    Therefore,there is at∈φMsuch that{t}/∈N(s).Sincet∈SandS∈N(s)(by(n)),by the definition ofR,it follows thatsRt;furthermore,fromt∈φMand induction hypothesis,it follows thatM′,t?φ.

    Similarly,we can show that there is au∈(?φ)Msuch that{u}/∈N(s).ThussRuandM′,u??φ,as desired. □

    In spite of Prop.12,as we shall see in Coro.5,logical consequence relations over Kripke semantics and over the new neighborhood semantics on quasi-filter models coincide with each other for CL.

    7 qf-Bisimulation

    This section proposes the notion of bisimulation for CL over quasi-filter models,called ‘qf-bisimulation’.The intuitive idea of the notion is similar to monotoniccbisimulation andc-bisimulation,i.e.the notion of precocongruences with particular properties(in the current setting,those four properties of quasi-filter models).

    Definition 12(qf-bisimulation)LetM=?S,N,V?andM′=?S′,N′,V′?be quasifilter models.A nonempty relationZ?S×S′is aqf-bisimulationbetweenMandM′,if for all(s,s′)∈Z,

    (qi)s∈V(p)iffs′∈V′(p)for allp∈Prop;

    (qii)if the pair(U,U′)isZ-coherent,thenU∈N(s)iffU′∈N′(s′).

    We say(M,s)and(M′,s′)areqf-bisimilar,writtenif there is a qf-bisimulationZbetweenMandM′such that(s,s′)∈Z.

    Note that the notion ofqf-bisimulation is defined between quasi-filter models.It is clear that every qf-bisimulation is ac-bisimulation,but it is not necessarily a monotonicc-bisimulation,since it is easy to find a quasi-filter model which is not closed under supersets.

    Analogous to the case forc-bisimulation in Sec.4,we can show that

    Proposition 14LetM,M′be both quasi-filter models,s∈M,s′∈M′.If(M,s)then for all

    Theorem 4(Hennessy-Milner Theorem for qf-bisimulation)LetMandM′be?-saturated quasi-filter models,ands∈M,s′∈M′.If for allφ∈L?,M,s?φ??

    We conclude this section with a comparison between the notion of qf-bisimulation and that of rel-?-bisimulation in[1,Def.6].

    Definition 13(rel-?-bisimulation) LetM=?S,R,V?andM′=?S′,R′,V′?be Kripke models.A nonempty relationZ?S×S′is arel-?-bisimulationbetweenMandM′,if for all(s,s′)∈Z,

    (Atoms)s∈V(p)iffs′∈V′(p)for allp∈Prop;

    (Coherence)if the pair(U,U′)isZ-coherent,then

    We say(M,s)and(M′,s′)arerel-?-bisimilar,writtenif there is a rel-?-bisimulationZbetweenMandM′such that(s,s′)∈Z.

    The result below asserts that every rel-?-bisimulation between Kripke models can be transformed to a qf-bisimulation between quasi-filter models.

    Proposition 15LetM=?S,R,V?andM′=?S′,R′,V′?be Kripke models.IfZis a rel-?-bisimulation betweenMandM′,thenZis a qf-bisimulation betweenqf(M)andqf(M′).

    ProofSupposeZisarel-?-bisimulation betweenMandM′.ByProp.11,qf(M)andqf(M′)are both quasi-filter models.It suffices to show thatZsatisfies the two conditions of a qf-bisimulation.For this,assume that(s,s′)∈Z.(qi)is clear from(Atoms).

    For(qii):let(U,U′)beZ-coherent.We have the following line of argumentation:U∈qfN(s)iff(by definition ofqfN)(R(s)?UorR(s)?SU)iff(by Coherence)(R′(s′)?U′orR′(s′)?S′U′)iff(by definition ofqfN′)U′∈qfN′(s′). □

    In the current stage,we do not know whether every qf-bisimulation between quasifilter models can be transformed to a rel-?-bisimulation between Kripke models.Note that this is important,since if it holds,then we can see clearly the essence of rel-?-bisimulation,i.e.precocongruences with those four quasi-filter properties.We leave it for future work.

    8 Frame definability

    Recall that under the old neighborhood semantics,all the ten neighborhood properties in Def.1are undefinable inL?.In contrast,under the new semantics,almost all these properties are definable in the same language.The following witnesses the properties and the corresponding formulas defining them.Recall that(c)is the minimal condition of neighborhood frames.

    Proposition16The right-hand formulas define the corresponding left-hand properties.

    ProofBy Prop.1,?p???pdefines(c).For other properties,we take(d)and(b)as examples,which resort to the property(c).Given anyc-frameF=?S,N?.

    Suppose thatFhas(d),to show thatF??p.Assume,for a contradiction that there is a valuationVonF,ands∈S,such thatwhereM=?F,V?.ThenpM∈N(s).On the one hand,by supposition,SpM/∈N(s);on the other hand,by(c),SpM∈N(s),contradiction.Conversely,assume thatFdoes not have(d),to show thatF???p.By assumption,there is anXsuch thatX∈N(s)andSX∈N(s).Define a valuationVonFsuch thatV(p)=X,and letM=?F,V?.ThuspM∈N(s),i.e.,M,s? ?p,and hence

    SupposeFhas(b),to showF?p→??p.For this,given anyM=?S,N,V?ands∈S,assume thatM,s?p,thens∈pM.By supposition,{u∈S|SpM/∈N(u)}∈N(s).By(c),this is equivalent to that{u∈S|pM/∈N(u)}∈N(s),i.e.,{u∈S|M,u??p}∈N(s),viz.,(?p)M∈N(s),thusM,s? ??p.Conversely,supposeFdoes not have(b),to showBy supposition,there is ans∈SandX?S,such thats∈Xand{u∈S|SX/∈N(u)}/∈N(s).Define a valuationVonFsuch thatV(p)=X,and letM=?F,V?.ThenM,s?p,and{u∈S|SpM/∈N(u)}/∈N(s).By(c)again,this means that{u∈S|pM/∈N(u)}/∈N(s),that is,{u∈S|M,u??p}/∈N(s),i.e.,(?p)M/∈N(s),thereforeM,s??p. □

    The following result will be used in the next section.

    Proposition 17?p→?(p→q)∨?(?p→r)defines the property(ws),where(ws)is as defined in Def.10.

    ProofLetF=?S,N?be a neighborhood frame.

    First supposeFhas(ws),we need to showF??p→?(p→q)∨?(?p→r).For this,assume for any modelMbased onFands∈SthatM,s??p.ThenpM∈N(s).By supposition,pM∪rM∈N(s)or(?p)M∪qM∈N(s).The former implies(?p→r)M∈N(s),thusM,s? ?(?p→r);the latter implies(p→q)M∈N(s),thusM,s? ?(p→q).Either case impliesM,s? ?(p→q)∨?(?p→r),henceM,s??p→?(p→q)∨?(?p→r).ThereforeF??p→?(p→q)∨?(?p→r).

    Conversely,supposeFdoes not have(ws),we need to showF?? ?p→?(p→q)∨?(?p→r).From the supposition,it follows that there areX,YandZsuch thatX∈N(s),X?YandY/∈N(s),SX?ZandZ/∈N(s).DefineVas a valuation onFsuch thatV(p)=X,V(q)=ZandV(r)=Y.SincepM=V(p)∈N(s),we haveM,s??p.SinceX?Y,(?p→r)M=X∪Y=Y/∈N(s),thusM,?(?p→r).SinceSX?Z,(p→q)M=(SX)∪Z=Z/∈N(s),and thusM,s?(p→q).HenceM,s?p→?(p→q)∨?(?p→r),and thereforeF?? ?p→?(p→q)∨?(?p→r). □

    Note that in the above proposition,we do not use the property(c),that is to say,it holds for the class of all neighborhood frames.

    9 Axiomatizations

    This section presents axiomatizations ofL?over various classes of frames.The minimal system E?consists of the following axiom schemas and inference rule.

    Note that E?is the same as CCL in[4,Def.7].Recall that(c)is the minimal neighborhood property.

    Theorem 5E?is sound and strongly complete with respect to the class ofc-frames.

    ProofImmediate by the soundness and strong completeness of E?w.r.t.the class of all neighborhood frames under?[4,Thm.1]and Coro.1. □

    Now consider the following extensions of E?,which are sound and strongly complete with respect to the corresponding frame classes.We omit the proof detail since it is straightforward.

    notation axioms systems frame classes?M ?(φ∧ψ)→?φ∧?ψ M?=E?+?M cs?C ?φ∧?ψ→?(φ∧ψ)R?=M?+?C csi

    One may ask the following question:is R?+??sound and strongly complete with respect to the class of filters,i.e.the frame classes possessing(s),(i),(n)?The answer is negative,since the soundness fails,although it is indeed sound and strongly complete with respect to the class of filters satisfying(c).

    Now consider the following axiomatization K?,which is provably equivalent to CL in[5,Def.4.1].

    Definition 14(Axiomatic system K?) The axiomatic system K?is the extension of E?plus the following axiom schemas:

    Theorem 6K?is sound and strongly complete with respect to the class of quasi-filter frames.

    ProofSoundness is immediate by frame definability results of the four axioms.

    For strong completeness,since every K?-consistent set is satisfiable in a Kripke model(cf.e.g.[5]),by Coro.4,every K?-consistent is satisfiable in a quasi-filter model,thus also satisfiable in a quasi-filter frame. □

    Note that the strong completeness of E?and of K?can be shown directly,by defining the canonical neighborhood functionNc(s)={|φ||?φ∈s}.

    As claimed at the end of Sec.6,for CL,although not every quasi-filter model has a pointwise equivalent Kripke model,logical consequence relations over Kripke semantics and over the new neighborhood semantics on quasi-filter models coincide with each other.Now we are ready to show this claim.

    Corollary 5The logical consequence relations?qfand?coincide for CL.That is,for all ?!葅φ}?L?,Γ ?qfφ??Γ?φ,where,by Γ ?qfφwe mean that,for every quasi-filter modelMandsinM,ifM,s? Γ,thenM,s?φ.Therefore,for allφ∈L?,?qfφ???φ,i.e.,the new semantics over quasi-filter models has the same logic(valid formulas)on CL as the Kripke semantics.

    ProofBy the soundness and strong completeness of K?with respect to the class of all Kripke frames(cf.e.g.[5]),Γ?K?φiff Γ ?φ.Then using Thm.6,we have that Γ ?qfφiff Γ ?φ. □

    10 Conclusion and Discussions

    In this paper,we proposed a new neighborhood semantics for contingency logic,which simplifies the original neighborhood semantics in[4]but keeps the logic the same.This new perspective enables us to define the notions of bisimulation for contingency logic over various model classes, one of which can help us understand the essence of nbh-Δ-bisimulation, and obtain the corresponding Hennessy-Milner Theorems, in a relatively easy way.Moreover,we showed that for this logic,almost all the ten neighborhood properties,which are undefinable under the old semantics,are definable under the new one.And we also had some simple results on axiomatizations.Besides,under the new semantics,contingency logic has the same expressive power as standard modal logic.It also gives us a neighborhood perspective that necessity is amount to non-contingency plus the property(c).We conjecture that our method may apply to other non-normal modal logics,such as logics of unknown truths and of false beliefs.We leave it for future work.

    Another future work would be axiomatizations of monotonic contingency logic and regular contingency logic under the old neighborhood semantics. Note that our axiomatizations M?and R?are not able to be transformed into the corresponding axiomatizations under the old semantics, since our underlying frames arec-frames.For example,although we do have?cs?(φ∧ψ)→?φ∧?ψ,we donothave?s?(φ∧ψ)→?φ∧?ψ;consequently,although M?is sound and strongly complete with respect to the class ofcs-frames under the new neighborhood semantics,it isnotsound with respect to the class ofs-frames under the old one.Thus the axiomatizations of these logics under the old neighborhood semantics are still open.10Update:These two open questions were raised in[1]and have been answered in[3].

    亚洲成人国产一区在线观看| 首页视频小说图片口味搜索| 国产男靠女视频免费网站| 一本综合久久免费| 夜夜躁狠狠躁天天躁| 精品久久久久久成人av| aaaaa片日本免费| 在线观看免费午夜福利视频| 视频在线观看一区二区三区| 久久性视频一级片| 亚洲精品中文字幕一二三四区| 午夜a级毛片| 久久人人精品亚洲av| 国产区一区二久久| 久久伊人香网站| 我的亚洲天堂| 热re99久久国产66热| 9热在线视频观看99| 9热在线视频观看99| 欧美精品亚洲一区二区| 看片在线看免费视频| 在线观看舔阴道视频| 最新美女视频免费是黄的| 久9热在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 精品日产1卡2卡| 久久久久国产一级毛片高清牌| 亚洲成a人片在线一区二区| 三级毛片av免费| 人人妻人人澡人人看| 黄色片一级片一级黄色片| 欧美日韩福利视频一区二区| 女警被强在线播放| 免费不卡黄色视频| 久久精品国产99精品国产亚洲性色 | 日韩大尺度精品在线看网址 | 国产精品 国内视频| 女生性感内裤真人,穿戴方法视频| 国产av在哪里看| 国产精品久久久久久精品电影 | 好男人电影高清在线观看| 成人18禁在线播放| 99精品欧美一区二区三区四区| 国产精品,欧美在线| 欧美黄色片欧美黄色片| 亚洲熟妇熟女久久| 欧美激情极品国产一区二区三区| 国产一区在线观看成人免费| 国产免费av片在线观看野外av| 99国产精品免费福利视频| 欧美日韩乱码在线| 久9热在线精品视频| 日韩一卡2卡3卡4卡2021年| 性欧美人与动物交配| 91麻豆av在线| 欧美大码av| 啦啦啦观看免费观看视频高清 | 国产成人欧美| 午夜精品国产一区二区电影| 啦啦啦免费观看视频1| 国产av在哪里看| 免费看a级黄色片| 少妇被粗大的猛进出69影院| 久久久国产精品麻豆| 日韩三级视频一区二区三区| 久久精品国产清高在天天线| 极品教师在线免费播放| a在线观看视频网站| aaaaa片日本免费| 多毛熟女@视频| 怎么达到女性高潮| 一级毛片高清免费大全| 精品卡一卡二卡四卡免费| 一本综合久久免费| 国产人伦9x9x在线观看| 亚洲天堂国产精品一区在线| 真人做人爱边吃奶动态| 欧美 亚洲 国产 日韩一| av免费在线观看网站| 老汉色∧v一级毛片| 亚洲人成网站在线播放欧美日韩| 一本大道久久a久久精品| 亚洲一区二区三区不卡视频| 老司机深夜福利视频在线观看| 国产成+人综合+亚洲专区| 欧美精品啪啪一区二区三区| 一级a爱视频在线免费观看| 亚洲三区欧美一区| 精品国产亚洲在线| 少妇粗大呻吟视频| 最好的美女福利视频网| 国产又爽黄色视频| 亚洲成av片中文字幕在线观看| 少妇 在线观看| 国产亚洲av高清不卡| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 日韩一卡2卡3卡4卡2021年| 亚洲在线自拍视频| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| 禁无遮挡网站| 啦啦啦观看免费观看视频高清 | 嫩草影院精品99| 热99re8久久精品国产| 中文字幕久久专区| 国产一级毛片七仙女欲春2 | 后天国语完整版免费观看| 级片在线观看| 欧美日韩黄片免| 国产精品二区激情视频| 国产精品秋霞免费鲁丝片| 成人欧美大片| 成人av一区二区三区在线看| 黄色视频,在线免费观看| 三级毛片av免费| 丝袜美足系列| 久久人人精品亚洲av| 香蕉丝袜av| 99久久精品国产亚洲精品| 看片在线看免费视频| 韩国精品一区二区三区| 18禁美女被吸乳视频| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸| 亚洲男人天堂网一区| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 91九色精品人成在线观看| 涩涩av久久男人的天堂| 色播亚洲综合网| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 黄色女人牲交| 久久精品成人免费网站| 亚洲情色 制服丝袜| 不卡一级毛片| 国产欧美日韩精品亚洲av| 一级作爱视频免费观看| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 黄色视频,在线免费观看| 性欧美人与动物交配| 超碰成人久久| 亚洲男人天堂网一区| 在线观看日韩欧美| 色婷婷久久久亚洲欧美| 国产精品免费一区二区三区在线| aaaaa片日本免费| 超碰成人久久| 他把我摸到了高潮在线观看| 国产亚洲av嫩草精品影院| 成人欧美大片| 亚洲成人精品中文字幕电影| 中亚洲国语对白在线视频| 级片在线观看| 日本五十路高清| 日韩欧美免费精品| 国产精品 欧美亚洲| 亚洲 欧美 日韩 在线 免费| 天天添夜夜摸| 国产av一区在线观看免费| 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 亚洲国产高清在线一区二区三 | 丝袜美腿诱惑在线| √禁漫天堂资源中文www| 亚洲欧美激情在线| 久久久精品欧美日韩精品| 大码成人一级视频| 色哟哟哟哟哟哟| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| 熟妇人妻久久中文字幕3abv| 亚洲电影在线观看av| 国产一级毛片七仙女欲春2 | 麻豆国产av国片精品| 男人的好看免费观看在线视频 | 亚洲少妇的诱惑av| 他把我摸到了高潮在线观看| 两个人视频免费观看高清| 别揉我奶头~嗯~啊~动态视频| 久久人人爽av亚洲精品天堂| 国产精品乱码一区二三区的特点 | 淫秽高清视频在线观看| 国内毛片毛片毛片毛片毛片| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频| 午夜激情av网站| 亚洲国产毛片av蜜桃av| 成在线人永久免费视频| 禁无遮挡网站| 国产欧美日韩一区二区精品| 99久久精品国产亚洲精品| 午夜久久久久精精品| 一本综合久久免费| 国产欧美日韩一区二区三区在线| 国产一卡二卡三卡精品| 高清黄色对白视频在线免费看| 国内精品久久久久久久电影| 欧美另类亚洲清纯唯美| 韩国av一区二区三区四区| 亚洲国产欧美日韩在线播放| 国产免费av片在线观看野外av| 久久人妻熟女aⅴ| 18禁黄网站禁片午夜丰满| 久久人妻av系列| 九色亚洲精品在线播放| 午夜福利18| 国产成人av激情在线播放| 熟妇人妻久久中文字幕3abv| 99精品欧美一区二区三区四区| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| 免费在线观看日本一区| 中文字幕人成人乱码亚洲影| 非洲黑人性xxxx精品又粗又长| 女性被躁到高潮视频| 日韩欧美三级三区| 欧美色欧美亚洲另类二区 | 1024视频免费在线观看| 亚洲国产日韩欧美精品在线观看 | 18禁美女被吸乳视频| 黑人欧美特级aaaaaa片| 午夜a级毛片| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 国产精品,欧美在线| 成人手机av| 9色porny在线观看| 美女免费视频网站| 精品一区二区三区四区五区乱码| 亚洲熟女毛片儿| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频| 搞女人的毛片| 看片在线看免费视频| 日本 欧美在线| 国产成人影院久久av| 老司机福利观看| 熟妇人妻久久中文字幕3abv| 婷婷精品国产亚洲av在线| 国产欧美日韩精品亚洲av| 国产精品爽爽va在线观看网站 | 一进一出好大好爽视频| 岛国视频午夜一区免费看| 久久精品91无色码中文字幕| 日本在线视频免费播放| 国语自产精品视频在线第100页| 欧美黑人精品巨大| 一级,二级,三级黄色视频| 国产成人啪精品午夜网站| 欧美日韩精品网址| 男人舔女人下体高潮全视频| 久久久久久久精品吃奶| 精品久久久久久成人av| 欧美日韩精品网址| 国产xxxxx性猛交| av在线天堂中文字幕| av片东京热男人的天堂| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 久久影院123| 国产三级在线视频| 国产精品美女特级片免费视频播放器 | av中文乱码字幕在线| av超薄肉色丝袜交足视频| 色播在线永久视频| 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| tocl精华| 国产精品亚洲一级av第二区| 久久中文字幕人妻熟女| 久久久久久久久中文| 国产一卡二卡三卡精品| 亚洲国产精品久久男人天堂| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 日韩精品青青久久久久久| 久久久久国内视频| 国产精品国产高清国产av| 色综合站精品国产| 两个人看的免费小视频| 亚洲专区中文字幕在线| av在线天堂中文字幕| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 日本在线视频免费播放| 午夜视频精品福利| 亚洲黑人精品在线| 免费一级毛片在线播放高清视频 | 午夜老司机福利片| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久亚洲av鲁大| 最近最新免费中文字幕在线| 国产成人免费无遮挡视频| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 黑人欧美特级aaaaaa片| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 国产黄a三级三级三级人| 在线观看日韩欧美| 看黄色毛片网站| 国产不卡一卡二| 亚洲精华国产精华精| 欧美大码av| 国产99白浆流出| 久久人妻福利社区极品人妻图片| 国产片内射在线| 久久久久久人人人人人| 日本免费a在线| 999久久久国产精品视频| 国产午夜精品久久久久久| 夜夜夜夜夜久久久久| 又黄又爽又免费观看的视频| 老汉色av国产亚洲站长工具| 精品一区二区三区四区五区乱码| 国产免费男女视频| 国产免费av片在线观看野外av| 成人手机av| 久久人人爽av亚洲精品天堂| 天天躁狠狠躁夜夜躁狠狠躁| 一夜夜www| 怎么达到女性高潮| 亚洲伊人色综图| 国产亚洲精品久久久久5区| 丰满人妻熟妇乱又伦精品不卡| 女人被躁到高潮嗷嗷叫费观| 少妇裸体淫交视频免费看高清 | 精品少妇一区二区三区视频日本电影| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 日韩精品青青久久久久久| 制服丝袜大香蕉在线| 午夜福利成人在线免费观看| 欧美成人午夜精品| videosex国产| 性欧美人与动物交配| 又黄又爽又免费观看的视频| 88av欧美| 日本vs欧美在线观看视频| 亚洲自偷自拍图片 自拍| 深夜精品福利| 波多野结衣一区麻豆| 黄色a级毛片大全视频| 老熟妇仑乱视频hdxx| 久久精品人人爽人人爽视色| 久9热在线精品视频| 欧美日本视频| 国产不卡一卡二| 欧美乱妇无乱码| 欧美 亚洲 国产 日韩一| 丁香欧美五月| 给我免费播放毛片高清在线观看| 成人永久免费在线观看视频| 黄片小视频在线播放| 桃色一区二区三区在线观看| 黄网站色视频无遮挡免费观看| 国产精品爽爽va在线观看网站 | 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产在线观看| 黄网站色视频无遮挡免费观看| 99国产精品免费福利视频| 亚洲人成电影免费在线| 91在线观看av| 在线观看免费视频网站a站| 在线观看免费日韩欧美大片| 热re99久久国产66热| 日韩成人在线观看一区二区三区| 亚洲国产欧美一区二区综合| 国产精品野战在线观看| 精品久久久久久,| 在线观看免费日韩欧美大片| 久久精品国产综合久久久| 精品一品国产午夜福利视频| 久久九九热精品免费| av电影中文网址| 久久亚洲精品不卡| 香蕉国产在线看| 久久精品国产综合久久久| 国产一卡二卡三卡精品| 亚洲精品久久国产高清桃花| 黄色视频,在线免费观看| 99香蕉大伊视频| 老熟妇乱子伦视频在线观看| 深夜精品福利| 久久这里只有精品19| 精品卡一卡二卡四卡免费| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 麻豆av在线久日| 亚洲一区二区三区不卡视频| 免费av毛片视频| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 天天躁夜夜躁狠狠躁躁| 18禁美女被吸乳视频| 成人18禁在线播放| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 女人精品久久久久毛片| 国产乱人伦免费视频| 国产午夜精品久久久久久| 国产成人啪精品午夜网站| 色在线成人网| 午夜福利视频1000在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 国产精品亚洲av一区麻豆| 黄色成人免费大全| 久久久久久大精品| 色尼玛亚洲综合影院| 精品国产亚洲在线| 18禁美女被吸乳视频| 一级毛片女人18水好多| 天天一区二区日本电影三级 | 亚洲精品在线观看二区| cao死你这个sao货| 波多野结衣巨乳人妻| 一进一出好大好爽视频| 久久草成人影院| 国产又色又爽无遮挡免费看| svipshipincom国产片| 色综合亚洲欧美另类图片| 国产日韩一区二区三区精品不卡| 国产午夜精品久久久久久| 色播在线永久视频| av视频在线观看入口| 亚洲色图av天堂| 午夜免费激情av| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 法律面前人人平等表现在哪些方面| 精品国产美女av久久久久小说| 亚洲情色 制服丝袜| 19禁男女啪啪无遮挡网站| 精品高清国产在线一区| 少妇裸体淫交视频免费看高清 | 可以免费在线观看a视频的电影网站| 久久狼人影院| 人人澡人人妻人| 女性生殖器流出的白浆| 国产精品乱码一区二三区的特点 | 麻豆久久精品国产亚洲av| 午夜老司机福利片| 国产真人三级小视频在线观看| 桃色一区二区三区在线观看| ponron亚洲| 一区在线观看完整版| 日本黄色视频三级网站网址| 最近最新免费中文字幕在线| 岛国在线观看网站| 亚洲狠狠婷婷综合久久图片| 看免费av毛片| 国产精品免费一区二区三区在线| 欧美中文综合在线视频| 国产野战对白在线观看| 久99久视频精品免费| 999久久久精品免费观看国产| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 青草久久国产| 国产精品亚洲一级av第二区| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品亚洲av一区麻豆| 97碰自拍视频| 精品熟女少妇八av免费久了| 亚洲 欧美 日韩 在线 免费| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | 少妇熟女aⅴ在线视频| 国产精品自产拍在线观看55亚洲| 黄色丝袜av网址大全| 色综合亚洲欧美另类图片| 国内久久婷婷六月综合欲色啪| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 亚洲欧美激情在线| 中亚洲国语对白在线视频| 超碰成人久久| 叶爱在线成人免费视频播放| 亚洲中文日韩欧美视频| 久久精品影院6| 久久久国产成人精品二区| 精品少妇一区二区三区视频日本电影| 在线天堂中文资源库| 极品人妻少妇av视频| 一二三四在线观看免费中文在| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 又紧又爽又黄一区二区| 国产精品爽爽va在线观看网站 | 一级a爱片免费观看的视频| 午夜免费激情av| 亚洲av片天天在线观看| 精品国产美女av久久久久小说| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 日韩欧美一区二区三区在线观看| 亚洲精品久久国产高清桃花| 一级毛片高清免费大全| 亚洲欧美日韩无卡精品| 香蕉国产在线看| 老司机深夜福利视频在线观看| 国产精品久久久人人做人人爽| 别揉我奶头~嗯~啊~动态视频| 亚洲国产日韩欧美精品在线观看 | 99久久久亚洲精品蜜臀av| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频| 日韩欧美免费精品| 国产激情欧美一区二区| 女生性感内裤真人,穿戴方法视频| 欧美最黄视频在线播放免费| 亚洲av美国av| 国产人伦9x9x在线观看| 男女做爰动态图高潮gif福利片 | 亚洲专区字幕在线| 大陆偷拍与自拍| 久久国产亚洲av麻豆专区| 91av网站免费观看| 一区二区三区国产精品乱码| 午夜免费观看网址| 亚洲男人的天堂狠狠| 涩涩av久久男人的天堂| 99久久精品国产亚洲精品| 亚洲成人精品中文字幕电影| 首页视频小说图片口味搜索| 在线视频色国产色| 中文字幕色久视频| 久久国产精品男人的天堂亚洲| 人妻久久中文字幕网| 两个人免费观看高清视频| 天堂影院成人在线观看| 精品国产美女av久久久久小说| 级片在线观看| 一二三四社区在线视频社区8| 国产激情欧美一区二区| 露出奶头的视频| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 不卡av一区二区三区| 满18在线观看网站| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看 | 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 两人在一起打扑克的视频| 国产成人系列免费观看| 成年女人毛片免费观看观看9| 一级a爱片免费观看的视频| www.精华液| 丰满的人妻完整版| 人人澡人人妻人| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频 | 亚洲在线自拍视频| 色综合站精品国产| 9191精品国产免费久久| 午夜亚洲福利在线播放| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 亚洲精品在线美女| 日韩有码中文字幕| 乱人伦中国视频| 国产成人一区二区三区免费视频网站| 国产三级在线视频| 亚洲av电影不卡..在线观看| 男女做爰动态图高潮gif福利片 | 正在播放国产对白刺激| 亚洲av成人av| 韩国av一区二区三区四区| 免费人成视频x8x8入口观看| 侵犯人妻中文字幕一二三四区| a在线观看视频网站| 精品国产亚洲在线| 一级作爱视频免费观看| 韩国精品一区二区三区| 欧美黄色淫秽网站| 午夜a级毛片| 日本三级黄在线观看| 91成人精品电影| av福利片在线| 国产成人欧美| 午夜福利视频1000在线观看 | 88av欧美|