• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    How can saline and hypersaline lakes contribute to aquaculture development? A review*

    2018-12-22 06:59:54ElenaANUFRIIEVA
    Journal of Oceanology and Limnology 2018年6期

    Elena V. ANUFRIIEVA

    The A. O. Kovalevsky Institute of Marine Biological Research of RAS, 2 Nakhimov av., Sevastopol 299011, Russia

    Abstract A considerable part of the world’s population is currently experiencing a severe scarcity of freshwater and nutrition. Inland aquaculture has the fastest growth in fresh waters, and this contributes to the eutrophication of freshwater bodies. The increase in freshwater aquaculture impacts on the increasing demand for fresh water. A way to overcome this is to develop aquaculture in saline lakes. This article discusses how saline and hypersaline lakes may contribute to overcome this problem and gives a list of fish and shrimp species that can be cultivated in saline lakes. Successful development of aquaculture depends on a healthy cultured stock of commercial fish and shrimps. A sustainable healthy stock of fish and shrimps can be only maintained using live food for the cultured fish larvae, fry and fingerlings. As well as Artemia spp. there are many other crustacean species with the potential for growing in hypersaline waters. At least 26 copepod species around the world can live at a salinity above 100 g/L with 12 species at a salinity higher than 200 g/L, and these all have excellent nutritional value. There is a high potential to use eukaryotic organisms of different taxa in saline / hypersaline aquaculture for food, agri-aquaculture, different industries and as food supplements.

    Keyword: aquaculture; saline lakes; shrimps; fish; Copepoda

    1 INTRODUCTION

    The current world population of 7.6 billion is expected to reach 8.6 billion in 2030, 9.8 billion in 2050 and 11.2 billion in 2100 (UN, 2017). The growing population faces many challenges. Currently,a considerable part of the world’s population is experiencing scarcity of freshwater and nutrition and these problems are among the most important challenges of the developing humanity (FAO et al.,2015; WWAP, 2015). Currently agriculture supplies about 97.5% of the total food mass production, wild fisheries more than 1.5%, and aquaculture about 1%(FAO et al., 2015). Usage of fresh water by agriculture,municipalities and industries has risen from less than 580 km3in 1900 to more than 3 900 km3in 2010, and agriculture consumes approximately 70% of the total freshwater consumption in the world (FAO, 2015).Human population growth leads to an increase in the demand for food and irrigation water for agriculture by 60% to 65%. In 1995–2015, the production growth rate for crops was 2.4% per year, for livestock it was 2.6%, and for aquaculture it was 13.7% (FAO, 2009,2014, 2016). Total aquaculture production increased from about 20 million tonnes in 1995 to 73.8 million tonnes in 2014.

    To meet the food demand of humankind there is only one way: to increase aquaculture production(Duarte et al., 2009; FAO, 2016). On a global scale,over the past decade, there has been no significant increase in marine aquaculture production (FAO,2016). World aquaculture production in inland waters increased from 24.5 million tonnes in 2004 to 47.1 million tonnes in 2014 (Fig.1), and its share in total aquaculture production increased from 58% to 64%(FAO, 2009, 2014, 2016). Inland aquaculture has the fastest growth in fresh waters, and this contributes to the eutrophication of freshwater bodies (Findlay et al., 2009; FAO, 2016), thus reducing the reserve for drinking water and other human needs. The question must be asked whether it will be possible for humanity to meet the food demands of its growing population by aquaculture development without damage to fresh water resources. The increase in freshwater aquaculture impacts on the problem of the increasing demand for fresh water. A way to overcome this is to develop aquaculture in saline lakes and cultivation of salt-tolerant crops around them without compromising the supply of drinking water (Rozema and Flowers,2008; Shadrin and Anufriieva, 2016).

    Fig.1 Changes of total marine and inland aquaculture production in the world, mln. tonnes

    The use of aquaculture in inland saline waters may have great potential to be explored by the development of aquaculture trials in different inland saline waters.The first stage of such aquaculture development should be based on “l(fā)earning by doing” (Holling,1978). Conducting such experiments requires the integration of efforts by stakeholders who would include not only scientists, but also the users of lakes,aquaculture specialists, and environmental managers.The main goal of this paper is to stimulate cooperation between those stakeholders to explore the potential of saline and hypersaline lakes to contribute to aquaculture development.

    2 THE WORLD DIVERSITY OF SALINE LAKES AND THEIR AQUACULTURAL POTENTIAL

    Continental waters consist of both fresh and saline waters (defined as containing >3.0–3.5 g/L salt)(Williams, 1996; Zheng, 2014); their total global volumes are similar with 126 thousand km3of freshwater lakes and rivers and 104 thousand km3saline lakes (Hammer, 1986; Williams, 1996). Salt lakes are more varied in physicochemical features than freshwater lakes including ion composition.Some of them are closer to marine (thalassic) waters and others have very different dominant salts, for example soda and sulfate lakes (Zheng, 2014). In the lakes of varying salt composition there is often different faunal structure (Belmonte et al., 2012).Environmental filtering by salt composition, biotic interactions and stochastic factors together determine such faunal differences (Poff , 1997; Tolonen et al.,2018). Often it is difficult to separate the role of a single factor. Data from the long-term study (2000–2017) of the Crimean salt lakes shows that abundant species such as the anostracanArtemiaspp. (Shadrin and Anufriieva, 2017), copepodArctodiaptomus salinus(Daday, 1885) (Anufriieva and Shadrin,2014a) and chironomid larvaeBaeotendipes noctivagus(Kieffer, 1911) (Shadrin et al., 2017),which are possibilities for aquaculture, may reach high abundance both in marine and sulfate lakes under salinity range 30–250 g/L. Salt composition is an important factor but there is not enough published data in literature to comment on the role of salt composition in this paper. Saline lakes are widespread on all continents (Zheng, 2014); they played and still play an important role in the history of civilization(Adshead, 1992; Kurlansky, 2002). Salt is one of the essential products for humans; its extraction from salt lakes began more than 5 000 years ago and was widespread in the ancient civilizations of Asia,Europe, Africa and America with the oldest human settlements growing beside those lakes and becoming villages then towns (Lovejoy, 1986; Adshead, 1992;Williams, 1999; Kurlansky, 2002). The use of the therapeutic and cosmetic capabilities of the mud of salt lakes was known in the ancient world and currently lake muds are widely used for therapeutics and cosmetics in different countries (Ma’or et al.,1996; Du et al., 2006; Baschini et al., 2012).Aquaculture is a new potential way to use saline lakes which can generate profit in addition to salt production and mud use. There are good examples of such integrated sustainable use of saline lakes (Zheng,2014; Shadrin et al., 2016; Shaalan et al., 2018). Most saline lakes are in arid areas (Zheng, 2014) and often people inhabiting those areas have very low incomes;aquaculture development in those areas may improve their economic situation (Jia et al., 2015a; Kavembe et al., 2016).

    Due to global climate change and anthropogenic activity, salinity is increasing in natural and artificial water bodies in various regions of the world (Williams,2001; Shadrin et al., 2015). There is also a high potential for aquaculture development using saline ground water (Shearer et al., 1997). Both freshwater and saline waters are used in continental aquaculture with successful examples of aquaculture in saline lakes in different countries (Jain et al., 2003;Kolkovski, 2011; De Los Rios-Escalante and Salgado,2012; Jia et al., 2015a, b; Shaalan et al., 2018).However, saline waters are still used for this purpose in a lesser degree than freshwaters. This is not due to the low biological productivity of saline and hypersaline waters, since many of them are among the most productive aquatic ecosystems on the planet(Hammer, 1986; Shadrin et al., 2015). The reason is mainly the inertia of our thinking and activity patterns,traditions and habits. We need to change current aquaculture development priorities. Development of aquaculture in saline lakes must be among our main priorities (Shadrin and Anufriieva, 2016). Freshwater usage conflicts are common in arid countries or places where freshwater is pumped from groundwater or aquifers (WWAP, 2015). A way to overcome this is to develop aquaculture in saline lakes without compromising the supply of drinking water. Saline lake aquaculture may be one of the key elements of a new approach to environmental management of arid/semi-arid zones (Zheng, 2014; Jia et al., 2015a, b;Shadrin and Anufriieva, 2016).

    For the development of aquaculture in saline lakes we must take into account the diversity of such lakes(Zheng, 2014). This diversity could provide different opportunities for aquaculture, which need to be considered. The conditions for the existence of organisms and the potential for aquaculture development in water bodies are determined by a complex interlacing of factors (total salinity, salt composition, pH, oxygen regimes, mixing regimes,temperature regimes, etc.). Classification of saline lakes according to their chemical composition(proportions between main ions) has been described many times (Kurnakov et al., 1936; Zheng, 2014;Schagerl and Renaut, 2016). For example, in Crimea,there are two chemical types of saline lakes—chloride and sulphate-chloride (Kurnakov et al., 1936) and there are differences in their biotic composition(Belmonte et al., 2012). The salinity regime of a lake is one of most important factors determining what kind of aquaculture can be developed in it (Williams,1998; Khlebovich and Aladin, 2010; Shadrin, 2017).There are several classifications of water bodies based on salinity, which have minor differences (Williams,1996; Zheng, 2014) and they will not be discussed here. Averaging these classification systems, all saline waters may be conditionally divided into hyposaline/brakish water (3–17 g/L), mesosaline/marine salinity(17–35 g/L) and hypersaline water/brine (>35 g/L).The yearly average salinity and also seasonal and interannual salinity fluctuations need to be taken into account to plan a strategy of aquaculture development in a lake. Every species is adapted to live in a certain salinity range (Khlebovich and Aladin, 2010). The halotolerance of the potential aquaculture fauna needs to be known to develop a strategy and technology for culture. Halotolerance of hydrobionts was mostly studied in chloride (chloride-sulphate) waters. Many commercially valuable fish and shrimp species can be successfully cultivated in saline / hypersaline lakes.The ranges of their halotolerance in chloride (chloridesulphate) waters are given in Table 1. Currently only a small number of these are used in inland aquaculture.Not all species suitable for cultivation in saline lakes are listed in the table. Currently it is impossible to compile a full list because the aquaculture potential and halotolerance range for most species have not been yet studied. Based on the analysis of the literature and own field studies the author concludes that many species of fish and shrimp that are considered as freshwater organisms can be successfully cultivated in the salinity range 3–17 g/L. A salinity range of 17–35 g/L is a good prospect for cultivation of many species of marine origin. Inland Lake Qarun (Egypt)is a good example of this (Shadrin et al., 2016).However, there is a scarcity of studies in this direction.Only few shrimp and fish species can grow at salinity higher than 50 g/L; more such species may be discovered during further experiments. As an example, 71 fish species are found in the East Africa soda lakes, six of these species live at salinity up to 40 g/L, and three live at salinity up to 100 g/L(Kavembe et al., 2016).

    Monoculture of fish and shrimps negatively impacts the natural environment and biodiversity(Xie and Yu, 2007; FAO, 2016). Polyculture of organisms of different trophic levels is a way to overcome or mitigate this problem. Now ‘Integrated Multi-Trophic Aquaculture’ (IMTA) is recognized as one of the main topics in aquaculture development(Alexander et al., 2015; Guerra-García et al., 2017).The IMTA approach allows simultaneously cultivating different species of two or more trophic levels in same pond / lake while the waste of one species is consumed as food by other species. Growth of cultivated animals can be co-limited by the supply of different biochemical essential components (PUFA, vitamins,etc.); a biochemically diverse food organism composition should promote their consumer growth(Marzetz et al., 2017). As an example, consumption of different osmolytes synthesized by different bacteria and algae can significantly increase halotolerance of animals-osmoconformers(Anufriieva, 2015; Shadrin et al., 2017). In addition to fish and shrimps many eukaryotic organisms of different taxa can be cultivated in saline/hypersaline lakes/ponds to be used in agriculture and aquaculture,different industries and as food supplements, etc. In the wide salinity range up to more than 50–200 g/L,they include different species of filamentous green algae, Crustacea (Amphipoda, Isopoda, Mysida), and larvae of Diptera. For example, among amphipods there are halotolerant species which can live at high salinity (Bayly, 1972; Britton and Johnson, 1987; the author’s own data):GammarusaequicaudaMartynov,1931 at more than 150 g/L,G.mucronatus Say, 1818 at 50 g/L,ParhyaleinyackaK. H. Barnard, 1916 at 90 g/L,GrandidierellabonnieroidesStephensen,1947 andEricthoniuspunctatusBate, 1857 at 80 g/L.A review on a possible use of halophilic bacteria was published previously (Oren, 2010).

    Table 1 Common fish and shrimp species which can be cultivated in saline chloride (chloride-sulphate) lakes and ponds

    3 LARVICULTURE OF COMMERCIAL FISH AND SHRIMP AND A PROBLEM OF LIVE FOOD ORGANISMS

    Successful development of aquaculture depends on healthy cultured stock of commercial fish and shrimps.A sustainable healthy stock of fish/shrimp can be only maintained while using live food for the cultured fish larvae, fry and fingerlings (Evjemo et al., 2003; Das et al., 2012). Artificial feed solely cannot meet all the elements required for their normal development and growth. Food organisms can be cultivated in a wide salinity range from 0 to 250 g/L (He et al., 2001;Kolkovski, 2011; Anufriieva, 2015; Shadrin et al.,2017). The focus of this paper is mostly on the highest salinity where commercial fish and shrimp cannot be grown, in hypersaline waters with salinity higher than 100 g/L.

    When talking about food organisms, people generally remember onlyArtemiaspp. (Anostraca),which are a key element of our current aquaculture practice (Das et al., 2012). There is a large potential for development ofArtemiacultivation in lakes and ponds in arid areas (Kolkovski, 2011; De los Rios-Escalante and Salgado, 2012; Jia et al., 2015a, b). As well as forArtemiaspp. there are many other crustacean species that can be grown in hypersaline waters. At least 26 copepod species around the world can live at salinity above 100 g/L; 12 species at salinity higher than 200 g/L (Anufriieva, 2015). The most halotolerant among them are:Cletocamptus retrogressusShmankevitch, 1875 (Harpacticoida) at salinity 350 g/L,Arctodiaptomussalinus(Calanoida)at 300 g/L, andMeridiecyclopsbaylyiFiers, 2001(Cyclopoida) at 240 g/L (Anufriieva, 2015). Copepods have excellent nutritional value; they are rich in highly unsaturated fatty acids (HUFA) with a high omega-3 fatty acid (docosahexaenoid acid; DHA)content (Evjemo et al., 2003; Das et al., 2012).A.salinusalso has a high content of the valuable carotenoid astaxanthin and is now harvested in some saline lakes (Anufriieva and Shadrin, 2014b). Some copepod species can reach a high abundance in hypersaline waters and produce thermo- and halotolerant resting eggs that can easily be cultivated(Jiménez-Melero et al., 2013; Anufriieva and Shadrin,2014a; Annabi-Trabelsi et al., 2018). Among the Cladocera,MoinasalinaDaday 1888 is the most widespread halotolerant species that can live at salinity up to 220 g/L (Amarouayache et al., 2012).Currently some copepod, cladoceran and rotifera species are successfully cultivated in saline waters(He at al., 2001; Evjemo et al., 2003; Das et al., 2012;Reyes et al., 2017).

    Crustacean groups of larger size such as Amphipoda, Mysida and Isopoda also have a potential for cultivation in saline waters as food organisms for fish and shrimp; they are cultivated in some countries(Herrera et al., 2009; Schmalenbach et al., 2009;Guerra-García et al., 2017). Chironomidae larvae are valuable food for fry, fingerlings and adults of fish and shrimps; cultivation of chironomid larvae was started in the USSR in 1940–1950 (Ivleva, 1969), and today it is developing in several countries and gives high profit (Shaw and Mark, 1980; Sahandi, 2011).The widespreadBaeotendipesnoctivagus, occurring in waters with salinity up to 280 g/L, and AustralianTanytarsusbarbitarsisFreeman, 1961, reaching high abundance at salinity up to 177 g/L, are the most halotolerant chironomids in the world (Shadrin et al.,2017).

    All the above relates to chloride and/or chloridesulphate waters. Animal species richness in soda lakes is lower than in other saline lakes but animal abundance may reach the highest values (Mengistou,2016; Schagerl and Burian, 2016). Some invertebrate species may be successfully cultivated as food organisms. For example, animals occurring in the East Africa soda lakes are: 1. Rotifera (Brachionus plicatilis(Müller, 1786),BrachionusdimidiatusBryce, 1931) at salinity up to 100 and 70 g/L respectively; 2. Copepoda (Lovenulaafricana(Daday,1910),Afrocyclopsgibsoni(Brady, 1904),Eucyclops serrulatus(Fischer, 1851),Mesocyclopssp.) at salinity up to 40–50 g/L; 3. Cladocera (Diaphanosoma excisumG.O. Sars, 1885,Moinaspp.) at salinity up to 40 g/L; 4. Chironomidae larvae (12 species) at salinity above 40–60 g/L; 5. Diptera (Ephydraspp.) at salinity up to 160 g/L (Mengistou, 2016; Schagerl and Burian,2016).

    4 CONCLUSION

    To develop aquaculture in inland saline waters we need to take into account that there is no one best strategy, design and technology. The optimum strategy and design should be based on the environmentally and economic conditions prevailing in the locality. While learning from experiments a sustainable, environmental friendly and ecosystembased aquaculture must be developed. Sustainable and ecosystem-based aquaculture is independent of the biomass produced by natural ecosystems and includes representatives of all trophic levels in reasonable proportions. This means that aquaculture farms / production facilities must be diverse and include algae, small invertebrates, shrimp and fish.

    Every lake / water body has its own individuality,with its abiotic and ecosystem peculiarities. To develop a sustainable strategy of aquaculture development we need to take the lake’s individuality into account. Lakes are dynamic, and can transit from one state to another, shifting from one aquacultural potential to a different one (Shadrin, 2014). This must be taken into account for the long-term strategic development of an aquaculture farm/production facility in every lake. To do this we need deeper and wider knowledge of saline lakes, their ecosystems and objects of cultivation. The keystone for successful development of aquaculture in saline inland waters must be a strong social order and effective cooperation between science and lake user stakeholders.

    5 ACKNOWLEDGMENT

    The author thanks three anonymous reviewers for valuable comments and Bindy Datson (Australia) for her help to improve English.

    日韩精品青青久久久久久| 亚洲18禁久久av| 免费电影在线观看免费观看| 欧美一区二区国产精品久久精品| 一级毛片久久久久久久久女| 色播亚洲综合网| 男人的好看免费观看在线视频| 国产真实乱freesex| 嘟嘟电影网在线观看| 成年av动漫网址| 久久精品国产亚洲av天美| 亚洲图色成人| 国产探花在线观看一区二区| 久久这里有精品视频免费| 成人欧美大片| 看片在线看免费视频| 免费av观看视频| 国产精品99久久久久久久久| www.av在线官网国产| 99视频精品全部免费 在线| 日韩av在线免费看完整版不卡| 中文亚洲av片在线观看爽| 国模一区二区三区四区视频| 乱人视频在线观看| 亚洲av男天堂| 九色成人免费人妻av| 亚洲aⅴ乱码一区二区在线播放| 能在线免费看毛片的网站| 国产真实乱freesex| 国产精品久久久久久久久免| 国产探花在线观看一区二区| 久久久精品大字幕| 日韩国内少妇激情av| 国产精品一区二区三区四区免费观看| 欧美精品一区二区大全| 九九久久精品国产亚洲av麻豆| 精品久久国产蜜桃| 成年女人永久免费观看视频| 精品一区二区免费观看| 亚洲精品亚洲一区二区| 日本黄大片高清| 国内少妇人妻偷人精品xxx网站| 成人三级黄色视频| 日韩三级伦理在线观看| 1024手机看黄色片| 久久这里有精品视频免费| 国产精品综合久久久久久久免费| 久久久精品94久久精品| 久久精品国产99精品国产亚洲性色| 91狼人影院| 国产三级在线视频| 在线观看美女被高潮喷水网站| 色视频www国产| 天堂av国产一区二区熟女人妻| 三级国产精品欧美在线观看| 日韩强制内射视频| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 丰满人妻一区二区三区视频av| videossex国产| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人爽人人夜夜 | 精品不卡国产一区二区三区| av免费在线看不卡| 久久久国产成人免费| 联通29元200g的流量卡| av在线观看视频网站免费| 日韩强制内射视频| 成人二区视频| 国产毛片a区久久久久| 少妇丰满av| 国产精品久久久久久av不卡| 天堂网av新在线| 日本-黄色视频高清免费观看| 亚洲一级一片aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 免费观看性生交大片5| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 成人三级黄色视频| 能在线免费看毛片的网站| 午夜福利网站1000一区二区三区| 中文字幕av在线有码专区| 欧美人与善性xxx| 丝袜喷水一区| 国产欧美日韩精品一区二区| 国产精品国产高清国产av| 国产精品一区二区在线观看99 | 亚洲国产精品成人久久小说| 99久久精品国产国产毛片| a级毛色黄片| 天堂影院成人在线观看| 久久亚洲国产成人精品v| 国产毛片a区久久久久| 纵有疾风起免费观看全集完整版 | 亚洲精华国产精华液的使用体验| 日本黄色片子视频| 美女高潮的动态| 日本熟妇午夜| 国产欧美另类精品又又久久亚洲欧美| 日韩一区二区三区影片| www.av在线官网国产| 婷婷六月久久综合丁香| av女优亚洲男人天堂| 小蜜桃在线观看免费完整版高清| 亚洲成人中文字幕在线播放| 毛片女人毛片| 99热精品在线国产| 国产精品无大码| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 高清午夜精品一区二区三区| 亚洲av电影在线观看一区二区三区 | 亚洲成色77777| 色吧在线观看| 国产精品一二三区在线看| 中国美白少妇内射xxxbb| 哪个播放器可以免费观看大片| 亚洲av熟女| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 亚洲av成人av| 51国产日韩欧美| 欧美激情国产日韩精品一区| 色吧在线观看| 51国产日韩欧美| 在线播放无遮挡| 国产精品国产三级专区第一集| 99在线人妻在线中文字幕| 99久久精品国产国产毛片| 九九爱精品视频在线观看| 久久久久久久久中文| 亚洲成色77777| 久久99蜜桃精品久久| 99在线人妻在线中文字幕| av视频在线观看入口| 国产亚洲av嫩草精品影院| 日韩一区二区三区影片| 久久精品国产亚洲av涩爱| 亚洲色图av天堂| 久久久午夜欧美精品| 免费看美女性在线毛片视频| 精品久久久久久久久久久久久| av在线蜜桃| 男女国产视频网站| 18禁动态无遮挡网站| 欧美激情国产日韩精品一区| 久久久午夜欧美精品| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 女的被弄到高潮叫床怎么办| 97超碰精品成人国产| 免费观看在线日韩| 黄片wwwwww| 麻豆国产97在线/欧美| 99久久无色码亚洲精品果冻| 最近2019中文字幕mv第一页| 国产又黄又爽又无遮挡在线| 岛国毛片在线播放| 日韩av在线免费看完整版不卡| 国产成年人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 麻豆精品久久久久久蜜桃| 亚洲av成人精品一区久久| 久久久久国产网址| 国产真实伦视频高清在线观看| 乱人视频在线观看| 国产美女午夜福利| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 99热全是精品| 你懂的网址亚洲精品在线观看 | 中文字幕av在线有码专区| 精品久久久久久久久亚洲| 春色校园在线视频观看| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 99热这里只有是精品在线观看| 黄色日韩在线| 超碰av人人做人人爽久久| 亚洲精品乱码久久久v下载方式| 永久网站在线| 色播亚洲综合网| 免费观看精品视频网站| 精品人妻视频免费看| 狠狠狠狠99中文字幕| 99热这里只有是精品50| 汤姆久久久久久久影院中文字幕 | 日韩制服骚丝袜av| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 国产一区亚洲一区在线观看| 老司机福利观看| 亚洲av日韩在线播放| 欧美一区二区亚洲| 久久精品国产亚洲av天美| 你懂的网址亚洲精品在线观看 | 特级一级黄色大片| 99久久精品热视频| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜 | 天堂√8在线中文| 免费黄色在线免费观看| 亚洲色图av天堂| 99在线人妻在线中文字幕| 免费在线观看成人毛片| 联通29元200g的流量卡| 久久久成人免费电影| 国产美女午夜福利| 中文亚洲av片在线观看爽| 麻豆国产97在线/欧美| 国产精品一二三区在线看| 欧美日韩综合久久久久久| 久久久久久久午夜电影| 日韩欧美国产在线观看| 91av网一区二区| 插阴视频在线观看视频| 欧美变态另类bdsm刘玥| 国产精品av视频在线免费观看| 国产人妻一区二区三区在| 天天一区二区日本电影三级| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 91久久精品电影网| 男插女下体视频免费在线播放| 看黄色毛片网站| 亚洲乱码一区二区免费版| 激情 狠狠 欧美| 国产男人的电影天堂91| 日产精品乱码卡一卡2卡三| 国产不卡一卡二| 九色成人免费人妻av| 久久久久九九精品影院| 国产一区有黄有色的免费视频 | 晚上一个人看的免费电影| 亚洲国产日韩欧美精品在线观看| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx在线观看| 日韩高清综合在线| 欧美高清性xxxxhd video| 大香蕉久久网| 少妇丰满av| 校园人妻丝袜中文字幕| 熟女人妻精品中文字幕| 成人午夜精彩视频在线观看| 国产精品一区二区性色av| 国产成人免费观看mmmm| 久久国内精品自在自线图片| 丝袜喷水一区| 亚洲电影在线观看av| 久久精品影院6| 日韩 亚洲 欧美在线| 国产亚洲精品av在线| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 一级av片app| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 国产黄色小视频在线观看| 欧美成人精品欧美一级黄| 两性午夜刺激爽爽歪歪视频在线观看| 欧美三级亚洲精品| 色5月婷婷丁香| 自拍偷自拍亚洲精品老妇| 日本爱情动作片www.在线观看| 别揉我奶头 嗯啊视频| 寂寞人妻少妇视频99o| 亚洲综合色惰| 大香蕉97超碰在线| 欧美97在线视频| 欧美精品一区二区大全| 99在线人妻在线中文字幕| 欧美一区二区亚洲| 人妻少妇偷人精品九色| 丝袜喷水一区| 男的添女的下面高潮视频| 草草在线视频免费看| 亚洲国产欧洲综合997久久,| 中文亚洲av片在线观看爽| 黑人高潮一二区| 久久韩国三级中文字幕| 欧美一区二区国产精品久久精品| 男插女下体视频免费在线播放| 女的被弄到高潮叫床怎么办| 91精品一卡2卡3卡4卡| 色网站视频免费| 免费看a级黄色片| 亚洲精品乱久久久久久| 美女内射精品一级片tv| 国产精品一区www在线观看| 亚洲av成人精品一区久久| 日本熟妇午夜| 午夜福利在线在线| 国产精品一区二区三区四区久久| 久久久久九九精品影院| 亚洲人成网站高清观看| 夫妻性生交免费视频一级片| 欧美日本亚洲视频在线播放| 亚洲av男天堂| 两个人视频免费观看高清| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清| 国产亚洲5aaaaa淫片| av视频在线观看入口| 欧美色视频一区免费| 免费黄网站久久成人精品| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 亚洲欧美一区二区三区国产| kizo精华| 久久精品久久久久久噜噜老黄 | a级毛色黄片| 熟妇人妻久久中文字幕3abv| 精品人妻视频免费看| 中文字幕久久专区| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 久久久国产成人精品二区| 日韩av在线免费看完整版不卡| 国产精品女同一区二区软件| 久久久久久久亚洲中文字幕| 婷婷色麻豆天堂久久 | 日韩一区二区视频免费看| 亚洲成色77777| 日日撸夜夜添| 又爽又黄无遮挡网站| 天堂中文最新版在线下载 | 国产黄色视频一区二区在线观看 | 国产精品综合久久久久久久免费| 在线免费观看的www视频| 一本一本综合久久| 麻豆成人av视频| 日本午夜av视频| 天天躁日日操中文字幕| 欧美高清性xxxxhd video| 国产精品一区二区在线观看99 | 欧美+日韩+精品| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 特大巨黑吊av在线直播| h日本视频在线播放| 国产精品人妻久久久影院| 热99re8久久精品国产| a级一级毛片免费在线观看| 男女啪啪激烈高潮av片| 久久久久久大精品| 水蜜桃什么品种好| 午夜视频国产福利| 欧美又色又爽又黄视频| 欧美性猛交╳xxx乱大交人| a级毛色黄片| 国产伦一二天堂av在线观看| 男人舔奶头视频| 国产精品女同一区二区软件| 夜夜爽夜夜爽视频| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 一级毛片我不卡| 精品久久久久久久人妻蜜臀av| 搡女人真爽免费视频火全软件| 久久久久性生活片| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 国产乱来视频区| 亚洲经典国产精华液单| 国产精品一区二区三区四区久久| 欧美成人精品欧美一级黄| 欧美三级亚洲精品| 日本爱情动作片www.在线观看| 国产高清三级在线| 男人舔奶头视频| 六月丁香七月| 亚洲丝袜综合中文字幕| 国产午夜精品久久久久久一区二区三区| 男女视频在线观看网站免费| 波多野结衣巨乳人妻| 欧美bdsm另类| 男女视频在线观看网站免费| 国产一区有黄有色的免费视频 | 国产成人精品一,二区| 久久99精品国语久久久| 性色avwww在线观看| 亚洲av成人精品一区久久| 日本免费一区二区三区高清不卡| 亚洲av电影在线观看一区二区三区 | 联通29元200g的流量卡| 成人国产麻豆网| 1024手机看黄色片| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 能在线免费观看的黄片| 岛国毛片在线播放| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 亚洲av成人av| 老司机影院成人| 高清视频免费观看一区二区 | 久久精品国产自在天天线| 亚洲av免费高清在线观看| 秋霞伦理黄片| 久久精品国产自在天天线| 午夜激情欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久黄片| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 一区二区三区四区激情视频| 91狼人影院| 国产成人福利小说| 久久人妻av系列| 黄片wwwwww| 少妇熟女欧美另类| 久久精品91蜜桃| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 国产午夜精品论理片| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 夜夜爽夜夜爽视频| 欧美激情久久久久久爽电影| 久久久久久久午夜电影| 成人亚洲精品av一区二区| 又黄又爽又刺激的免费视频.| 我的老师免费观看完整版| 一级毛片电影观看 | 国产伦理片在线播放av一区| 99久久精品热视频| 能在线免费观看的黄片| 人妻制服诱惑在线中文字幕| 国产一区有黄有色的免费视频 | 免费黄网站久久成人精品| av在线蜜桃| 乱人视频在线观看| 国产在线一区二区三区精 | 国内揄拍国产精品人妻在线| 一区二区三区免费毛片| 99久久精品国产国产毛片| 欧美另类亚洲清纯唯美| 国产一级毛片七仙女欲春2| 乱人视频在线观看| 国产乱人偷精品视频| 1000部很黄的大片| 欧美激情在线99| 十八禁国产超污无遮挡网站| 亚洲精品自拍成人| 99久久无色码亚洲精品果冻| 亚洲三级黄色毛片| 亚洲精品日韩av片在线观看| 禁无遮挡网站| 久久精品国产亚洲av涩爱| 亚州av有码| 啦啦啦啦在线视频资源| 国产老妇女一区| 舔av片在线| 尤物成人国产欧美一区二区三区| 欧美一区二区精品小视频在线| av视频在线观看入口| 男女那种视频在线观看| 日本五十路高清| videossex国产| 亚洲成av人片在线播放无| 日韩制服骚丝袜av| 热99re8久久精品国产| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 国产成人精品一,二区| 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 高清视频免费观看一区二区 | 日本午夜av视频| 人妻少妇偷人精品九色| www.av在线官网国产| 成年女人永久免费观看视频| 欧美极品一区二区三区四区| 两个人的视频大全免费| 国产免费视频播放在线视频 | 国产激情偷乱视频一区二区| 婷婷色综合大香蕉| 欧美色视频一区免费| 波野结衣二区三区在线| 色综合站精品国产| 亚洲人成网站在线播| 国产女主播在线喷水免费视频网站 | 又粗又爽又猛毛片免费看| 插逼视频在线观看| 有码 亚洲区| 亚洲在线观看片| 国产伦精品一区二区三区视频9| 国产片特级美女逼逼视频| 亚洲成色77777| 日本黄色视频三级网站网址| 亚洲自偷自拍三级| 欧美成人精品欧美一级黄| 欧美精品一区二区大全| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看| 国产国拍精品亚洲av在线观看| 国产精品久久电影中文字幕| 亚洲精品日韩在线中文字幕| 一区二区三区乱码不卡18| 日本熟妇午夜| 少妇的逼好多水| 高清毛片免费看| 村上凉子中文字幕在线| 一本一本综合久久| 亚洲色图av天堂| 免费大片18禁| 免费观看精品视频网站| 国产精品av视频在线免费观看| 麻豆av噜噜一区二区三区| 国产免费福利视频在线观看| 日本免费a在线| 亚洲人成网站在线观看播放| 精品一区二区免费观看| 欧美成人精品欧美一级黄| av播播在线观看一区| 熟女人妻精品中文字幕| 永久免费av网站大全| 性色avwww在线观看| 伦理电影大哥的女人| 色综合站精品国产| 成人美女网站在线观看视频| 婷婷六月久久综合丁香| 麻豆av噜噜一区二区三区| 久久精品人妻少妇| 亚洲五月天丁香| 日韩,欧美,国产一区二区三区 | 国产精品国产三级国产专区5o | 午夜福利在线观看吧| 不卡视频在线观看欧美| 国产精品日韩av在线免费观看| av专区在线播放| 国产精品一及| 久久久久久久久久久丰满| 亚洲自拍偷在线| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 亚洲va在线va天堂va国产| 久久久久久久久久久免费av| 国产高清有码在线观看视频| 91精品一卡2卡3卡4卡| 一级毛片电影观看 | 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| 亚洲国产日韩欧美精品在线观看| 一边亲一边摸免费视频| 国产日韩欧美在线精品| 免费av毛片视频| 欧美极品一区二区三区四区| 精品人妻视频免费看| 国产精品一二三区在线看| 欧美一区二区精品小视频在线| 成人av在线播放网站| 男人舔奶头视频| 最近中文字幕高清免费大全6| 亚洲色图av天堂| av国产久精品久网站免费入址| 亚洲国产精品合色在线| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 久久久久久久午夜电影| 天堂av国产一区二区熟女人妻| 亚洲国产欧美在线一区| 国产综合懂色| 日韩大片免费观看网站 | 少妇熟女aⅴ在线视频| 2021天堂中文幕一二区在线观| 国产精品嫩草影院av在线观看| 日本黄大片高清| 国内精品宾馆在线| 国产熟女欧美一区二区| 男插女下体视频免费在线播放| 在线观看66精品国产| 一级毛片我不卡| 最近中文字幕2019免费版| 一区二区三区四区激情视频| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 国产精品乱码一区二三区的特点| 最近视频中文字幕2019在线8| 少妇高潮的动态图| 日本一二三区视频观看| 男人舔奶头视频| 成人鲁丝片一二三区免费| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久人妻蜜臀av| 国产黄色小视频在线观看| 老司机影院毛片| 国产美女午夜福利| 国产精品福利在线免费观看| 桃色一区二区三区在线观看| 日韩中字成人| 亚洲av成人精品一区久久| 国产黄a三级三级三级人| 欧美日本视频| 搡老妇女老女人老熟妇| 在线a可以看的网站| 毛片女人毛片| 神马国产精品三级电影在线观看| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9| 精品久久久久久久久久久久久| 精品午夜福利在线看| 国产淫语在线视频|