• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A neutral-point potential balance control strategy for three-level inverter based on VSVPWM

    2018-12-20 08:57:12CHENGDongliangWANGXiaopengZHUTianliangMAWengang

    CHENG Dong-liang, WANG Xiao-peng, ZHU Tian-liang, MA Wen-gang

    (School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: The topology of diode neutral-point-clamped (NPC) three-level inverter is prone to neutral-point potential offset. When the sum of three-phase current is zero, the virtual space vector pulse width modulation (VSVPWM) scheme does not cause the neutral-point voltage offset, but it lacks the ability to balance the deviation. For this reason, a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed. The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors. For other regions, the potential is controlled by selecting a suitable switching sequence. Meanwhile, the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width, thereby improving the balance effect. The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load, unbalanced load and asymmetric capacitance parameters.

    Key words: three-level inverter; virtual space vector pulse width modulation (VSVPWM); neutral-point potential balance; switching sequence

    0 Introduction

    Compared to the two-level inverter, the switching stress of the three-level neutral-point-clamped (NPC) inverter is reduced by half, and the harmonic distortion of the output waveform is even smaller[1]. At present, it has been widely used in the field of flexible AC transmission, reactive power compensation and absorption, and so on[2-3]. But the three-level NPC inverter has the problem of neutral-point potential imbalance, which will increase the harmonic content of the output voltage, reduce the lifetime of the switch device, and even cause the breakdown of DC link capacitors[4]. Therefore, it is significant to study the neutral-point potential balance problem of three-level inverters.

    The method of controlling the neutral-point potential balance can be divided into hardware control and software control. The former requires additional costs, so software methods are widely used. Ref.[5] was based on space vector pulse modulation(SVPWM), and the neutral-point potential was balanced by changing the action time of redundant small vectors. However, when the modulation index was high, the control effect was not satisfactory. In Refs.[6-7], the virtonal space vector pulse width modulation (VSVPWM) theoretically balanced the neutral-point potential completely, but it did not effectively balance the offset caused by unbalanced load parameters and element parameters. Gui, et al. proposed the concept of variable virtual vector pulse width modulation (VVSVPWM)[8]. According to the value of the neutral-point potential, changing the length of virtual middle vector could better achieve the neutral-point potential balance. Jiang, et al. proposed some hybrid modulation schemes, and different modulation methods were switched to control the potential under different situations, but the complexity of the algorithm was also increased[9-11].

    Based on the above analysis, a neutral-point potential balance method based on VSVPWM is proposed. The neutral-point potential balance is achieved by adjusting the action time of positive and negative small vectors. In region 5, the neutral-point potential is controlled by selecting an appropriate switching sequence, which greatly improves the ability to control the balance of potential in this small region. Finally, a simulation model is built based on Matlab/Simulink to verify the performance of the proposed algorithm under different conditions.

    1 Principle of potential imbalance for three-level inverter

    The topology of NPC three-level inverter is shown in Fig.1. Take phaseAas an example. Each phase has three level states: whenQ1andQ2are on, the state is marked “p”; whenQ2andQ3are on, the state is marked “o”; whenQ3andQ4are on, the state is marked “n”. The other two phases also obey this rule.

    Fig.1 Topology of NPC three-level inverter

    As shown in Fig.1, the relationship between the voltage and current of DC link capacitor is

    (1)

    (2)

    whereiC1,iC2andioare the currents of capacitanceC1,C2 and neutral-point, respectively;UC10andUC20are the capacitor voltages at the initial time, and the asymmetry of capacitance parameters and load parameters may causeUC10≠UC20.

    From Fig.1, it can be known thatiC1-iC2=i0. Assuming thatC1=C2=CandUC10=UC20, we can get

    (3)

    As known from Eq.(3), if the charge of inflow and outflow is not zero during a switching period, it will cause the neutral-point potential imbalance. In addition, ifUC1is not equal toUC2, the neutral-point potential can be balanced by adjusting the charge flowing out of the neutral-point.

    The three-level inverter has 27 switching states, corresponding to 27 basic space voltage vectors, and the space voltage vectors diagram is shown in Fig.2.

    Fig.2 Space voltage vectors diagram of three-level NPC inverter

    The different vectors correspond to different neutral-point currents that will have different effects on the neutral-point potential. The neutral-point currentiocan be expressed as[12]

    (4)

    whereSjis the switching function and is defined as

    (5)

    The neutral-point currents for different voltage vectors can be obtained according to Eq.(4). Table 1 shows the neutral-point currents for the voltage vectors in sector Ⅰ.

    Table 1 Neutral-point current for different voltage vectors

    2 Traditional VSVPWM

    The VSVPWM introduces a virtual middle vector on the basis of the traditional SVPWM, which divides a sector into 5 small regions. Taking the first sector as an example, the virtual space vectors diagram is shown in Fig.3.

    Fig.3 Virtual space vectors diagram in sector Ⅰ

    The virtual middle vector in sector Ⅰ is defined as

    (6)

    As known from Table 1, the vectorsV0,VL1andVL2do not affect the neutral-point potential. Since the switching periodTSis very short, the three-phase current can be considered a constant value during a switching cycle[6]. When the three-phase current satisfiesia+ib+ic=0, the action time ofVMis equally distributed to its three component vectors, which can ensure that the charge flowing out of the neutral-point within one switching cycle is zero, thus it will not affect the neutral-point potential. Similarly,VS1andVS2also do not cause potential shifts by dividing the action time equally.

    The VSVPWM is proposed under the conditions that the three-phase current satisfiesia+ib+ic=0, but the three-phase current in the actual operation will not always meet the conditions. Meanwhile, it is difficult to balance the offset caused by unbalanced load parameters and element parameters.

    For VSVPWM, the switching sequences of voltage vectors in sector Ⅰ are shown in Table 2.

    Table 2 Switching sequences of vectors in sector Ⅰ

    3 Neutral-point potential balance control strategy

    3.1 Potential control based on time distribution factor

    From Table 2, it can be seen that there are redundant small vectors in regions 1-4, and the neutral-point potential can be controlled by introducing the distribution factor. Assuming that the voltages of the two capacitors areUC1andUC2respectively at the end of the last switching cycle, the voltage difference between the two capacitors can be defined as

    ΔU=UC1-UC2.

    (7)

    The charge that needs to be compensated for the current switching cycle can be expressed as

    (8)

    Taking the region 1 as an example, there are two pairs of redundant small vectors. Two time distribution factors,k1andk2, are introduced, corresponding to the first and second pairs of redundant vectors, respectively. If the action time of the vectorsVS2,VS1andV0are represented byT1,T2andT3, respectively, the switching sequence and the action time are shown in Table 3.

    Table 3 Switching sequence and action time in region 1

    Combined with Table 3 and Table 1, it can be calculated that the charge flowing out of the neutral-point during a switching cycle is

    ΔQ=ick1T1-iak2T2.

    (9)

    In order to achieve the balance of neutral-point potential, it is necessary to satisfy ΔQ=Q0. Let the absolute values of the two factors be equal, if the direction of neutral-point current is the same when the two P-type small vectors work,k2is equal tok1. The value of the distribution factork1is

    (10)

    Otherwise,k2=-k1, the value ofk1is

    (11)

    It should be noted that the time distribution factorsk1andk2need to satisfy -1≤(k1,k2)≤1. Ifk1≥1,k1=1; ifk1≤-1,k1=-1. This indicates that when the potential difference is relatively large, accurate compensation cannot be achieved within one switching cycle, and the neutral-point potential can be balanced after several switching cycles. Considering that the traditional VSVPWM does not cause potential offset in some cases, a loop width,h, is introduced. And the neutral-point potential difference ΔUsatisfies

    (12)

    It can be seen from Eq.(12) that when |ΔU|≤hand the current satisfiesia+ib+ic=0, the calculated value of distribution factor is 0, which has no effect on the neutral-point potential. That is to say, only the VSVPWM scheme works. Similarly, there are redundant small vectors for the regions 2, 3 and 4, and the same method can be used to balance the neutral-point potential.

    3.2 Switching sequence selection control

    As known from Table 2, when the reference vector is in region 5 for the traditional VSVPWM, there is no a pair of redundant small vector in the switching sequence. Therefore, the neutral-point potential that has been shifted cannot be balanced by introducing the distribution factor. The paper proposes that the neutral-point potential in region 5 can be controlled by selecting the appropriate sequence.

    It is known from Eq.(6) that the traditional virtual middle vector contains two small vectors, and all of them have redundant vectors. Therefore, without changing the amplitude of the virtual middle vector, it can be expressed as two other forms besides the original sequence. The effects of the three virtual middle vectors on the output voltage are the same, but they correspond to different neutral-point currents. Therefore, the neutral point potential can be controlled by selecting the appropriate switching sequence. Taking the first sector as an example, the virtual middle vector can be expressed as the following two forms, namely

    (13)

    The switching sequence needs to satisfy the condition that only two switching devices can act between two switching states. At the same time, in order to reduce the harmonic distortion, the switching sequence should be symmetrical. On the premise of satisfying the above requirements, two other switching sequences are available, as shown in Table 4.

    Table 4 Switching sequences in region 5

    When the switching sequence 1 and the switching sequence 2 are applied respectively, if the operation time of the virtual middle vector isT1, the charge flowing out of the neutral-point in one switching period is ΔQ1and ΔQ2, respectively, namely

    (14)

    When the three-phase current meetsia+ib+ic=0, simplifying Eq.(14), we can obtain

    (15)

    The appropriate switching sequence can be selected to balance the neutral-point potential according to the value of the currentsia,icand potential difference ΔU. But if ΔUfloats up and down near to 0, it may cause frequent switching of the sequences and violent fluctuation of the neutral-point potential waveform, which is not conducive to the balance control of neutral-point voltage. Considering the loop widthh, in combination with Eq.(15), the sequence selection rules for the region 5 in the first sector are as follows:

    1) When ΔU>handia>0, switching sequence 1 is selected.

    2) When ΔU<-handic<0, switching sequence 2 is selected.

    3) In other cases, the original switching sequence is selected.

    4 Simulation results and analysis

    In order to verify the performance of the proposed method, a simulation model of three-level inverter is built with Matlab/Simulink software, as shown in Fig.4. And some of the parameters have been labeled in the diagram.

    Fig.4 Main circuit of simulation model

    Fig.5 gives the circuit model for the selection of switching sequence. The simulation is carried out under the three conditions: balanced load, unbalanced load and asymmetric capacitance parameters. The simulation parameters are as follows: the DC link voltageUdc=600 V, DC link capacitorsC1=C2=1 000 μF, filter inductanceL=1.26 mH, filter capacitorC=40 μF, switching frequency is 5 kHz, fundamental frequency is 50 Hz, modulation index is 0.9, and loop widthh=1. The loads are different under the three conditions.

    Fig.5 Circuit diagram of selecting switch sequence

    4.1 Three-phase balanced load

    When each phase load meets the conditions thatR=9 Ω andL=30 mH, the simulation waveforms of VSVPWM under three-phase balanced load conditions are shown in Fig.6.

    It can be seen from Fig.6(a)that the line voltage waveform is good under balanced load conditions. Due to the influence of sampling time of the solver, the neutral-point potential may be offset, but it cannot be effectively controlled by traditional VSVPWM, as shown in Fig.6(b).

    After introducing the distribution factor, the simulation waveform is improved obviously, as shown in Fig.6(c). Since the balance control is only in regions 3 and 4, there is a large fluctuation at the initial stage of the balance, and accordingly a longer balance time is needed (about 0.1 s).

    By comparing Figs.6(c) and (d), it can be observed that the ability to control the neutral-point potential is obviously improved after taking the sequence control. The balance is achieved within only 0.05 s, and the initial fluctuations are also smaller.

    Fig.6 Simulation waveforms of balanced load

    4.2 Three-phase unbalanced load

    Changing the load of phaseAtoR=12 Ω,L=10 mH, the other two phase loads remain unchanged. The simulation waveforms of neutral-point potential are shown in Fig.7. From Fig.7(a), it can be seen that the neutral-point potential deviation is more obvious under unbalanced load condition than under the balanced load, while the VSVPWM scheme is difficult to balance the deviation. After the distribution factor and sequence control are applied, the neutral point potential is quickly balanced, as shown in Fig.7(b). At the same time, the fluctuation is smaller than before.

    Fig.7 Simulation waveforms of unbalanced load

    4.3 Asymmetric capacitance parameters

    When the load of each phase isR=9 Ω,l=30 mH, the capacitorC2 is changed to 1 150 μF, and the neutral-point control is applied at 0.05 s, the simulation waveform of the capacitor voltage is shown in Fig.8. It can be seen that the capacitor voltage difference is about 40 V in the initial period due to the asymmetry of the capacitance parameters. After the control strategy is used at 0.05 s, the neutral-point potential gradually tends to balance. Comparing Fig.8(a) with Fig.8(b), it can be seen that when only the distribution factor is adopted, it takes 0.03 s to achieve the balance. After applying the sequence control to region 5, only 0.01 s is needed to achieve the balance. Compared with the virtual space vector modulation, the proposed method can greatly improve the ability to control the neutral-point potential and achieve the balance control more quickly.

    Fig.8 Simulation waveforms of asymmetric capacitance parameters

    5 Conclusion

    Since the traditional VSVPWM cannot effectively balance the potential offset caused by asymmetric parameters, a new neutral-point potential control strategy based on VSVPWM under three-phase balanced load condition are proposed. By introducing the distribution factors and selecting the appropriate switching sequence, the neutral-point potential can be controlled in every small region. The simulation is performed under the conditions of balanced load, unbalanced load and asymmetric capacitance parameters, respectively. The results show that the neutral-point potential can be rapidly balanced under the above conditions, and it still has a good performance when the modulation index is high.

    国产精品人妻久久久久久| 日韩成人av中文字幕在线观看| 日本欧美国产在线视频| 久久久久久久久久久丰满| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 久久ye,这里只有精品| 欧美日韩国产mv在线观看视频 | 亚洲欧美精品自产自拍| av免费在线看不卡| 91久久精品国产一区二区成人| 99热6这里只有精品| 男人添女人高潮全过程视频| 成人毛片60女人毛片免费| 国产精品国产三级国产av玫瑰| 在线观看免费高清a一片| 欧美丝袜亚洲另类| 人人妻人人爽人人添夜夜欢视频 | 中文欧美无线码| 欧美国产精品一级二级三级 | 国产淫语在线视频| 久久精品人妻少妇| 国产视频首页在线观看| 国产亚洲一区二区精品| 亚洲欧美成人精品一区二区| 国产乱人视频| 舔av片在线| 最近的中文字幕免费完整| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看 | 一本色道久久久久久精品综合| av卡一久久| 成人二区视频| 久久久久国产网址| 日本wwww免费看| 免费观看无遮挡的男女| 国产在线一区二区三区精| 免费大片黄手机在线观看| av播播在线观看一区| 亚洲精品国产色婷婷电影| 熟女人妻精品中文字幕| 国产伦理片在线播放av一区| 91aial.com中文字幕在线观看| 在线观看国产h片| 久久久久国产精品人妻一区二区| 久久av网站| 国产精品偷伦视频观看了| 成人影院久久| 日本黄色片子视频| 国产伦理片在线播放av一区| 一区二区三区精品91| 久久久久人妻精品一区果冻| 极品教师在线视频| 亚洲色图av天堂| 欧美bdsm另类| 最后的刺客免费高清国语| 精品亚洲乱码少妇综合久久| 高清黄色对白视频在线免费看 | 简卡轻食公司| 欧美变态另类bdsm刘玥| 欧美日韩在线观看h| 国产精品一区二区在线不卡| 美女高潮的动态| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| 毛片一级片免费看久久久久| 99热这里只有是精品50| 国产免费一级a男人的天堂| 午夜激情久久久久久久| 国产乱来视频区| 国产精品不卡视频一区二区| 99热国产这里只有精品6| 高清不卡的av网站| 最近最新中文字幕大全电影3| 国产av码专区亚洲av| 我的女老师完整版在线观看| 亚洲国产色片| 亚洲无线观看免费| 一区在线观看完整版| av在线播放精品| 久久久久久久国产电影| 最近中文字幕2019免费版| 亚洲av男天堂| 春色校园在线视频观看| 美女中出高潮动态图| av网站免费在线观看视频| 国产亚洲午夜精品一区二区久久| 国产中年淑女户外野战色| 蜜桃在线观看..| 一区二区三区精品91| 综合色丁香网| 97在线人人人人妻| 制服丝袜香蕉在线| 一级毛片电影观看| 欧美极品一区二区三区四区| 国产熟女欧美一区二区| 麻豆国产97在线/欧美| 久久精品夜色国产| 免费大片黄手机在线观看| 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 一级毛片aaaaaa免费看小| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 观看av在线不卡| 91精品国产国语对白视频| 精品亚洲乱码少妇综合久久| 久久精品人妻少妇| 91久久精品国产一区二区成人| av黄色大香蕉| 欧美精品一区二区大全| 久久久久久久精品精品| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 久久久欧美国产精品| 街头女战士在线观看网站| 91在线精品国自产拍蜜月| 高清毛片免费看| 日本欧美国产在线视频| 欧美激情国产日韩精品一区| 各种免费的搞黄视频| 人妻少妇偷人精品九色| 99re6热这里在线精品视频| 在线观看一区二区三区| 99久国产av精品国产电影| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 久久99精品国语久久久| 嫩草影院入口| 欧美97在线视频| 男人舔奶头视频| av国产精品久久久久影院| 久久精品国产鲁丝片午夜精品| 欧美xxⅹ黑人| 色视频在线一区二区三区| 国产69精品久久久久777片| 免费大片黄手机在线观看| 日韩大片免费观看网站| 青春草国产在线视频| 国产欧美亚洲国产| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| 大陆偷拍与自拍| 国产亚洲欧美精品永久| 嘟嘟电影网在线观看| 欧美日韩综合久久久久久| 国产精品免费大片| 亚洲人成网站在线播| 肉色欧美久久久久久久蜜桃| 人人妻人人添人人爽欧美一区卜 | 亚洲天堂av无毛| 亚洲国产最新在线播放| 亚洲av中文字字幕乱码综合| 美女主播在线视频| 久久久久精品性色| 看十八女毛片水多多多| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 91久久精品电影网| 国产免费一区二区三区四区乱码| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 国产视频内射| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| av线在线观看网站| 亚洲av欧美aⅴ国产| 久久青草综合色| 99热这里只有是精品50| 在线观看一区二区三区| 久久人人爽人人片av| 成人亚洲精品一区在线观看 | tube8黄色片| 男女边摸边吃奶| 欧美zozozo另类| 夜夜爽夜夜爽视频| 最黄视频免费看| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 中国三级夫妇交换| 少妇熟女欧美另类| 国产高清不卡午夜福利| 综合色丁香网| 男女无遮挡免费网站观看| 免费人妻精品一区二区三区视频| 亚洲高清免费不卡视频| 久久久久精品性色| 欧美日韩综合久久久久久| 一级毛片电影观看| 少妇精品久久久久久久| 3wmmmm亚洲av在线观看| 五月天丁香电影| 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 亚洲人成网站在线播| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 国产成人a区在线观看| 国产精品成人在线| 一区二区三区乱码不卡18| 欧美高清成人免费视频www| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久| 国产色爽女视频免费观看| 欧美亚洲 丝袜 人妻 在线| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 亚洲av男天堂| 亚洲人成网站在线播| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 国产精品不卡视频一区二区| 大片电影免费在线观看免费| av黄色大香蕉| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影小说 | 亚洲国产高清在线一区二区三| 99九九线精品视频在线观看视频| 精品一品国产午夜福利视频| 我的女老师完整版在线观看| 熟妇人妻不卡中文字幕| 亚洲av中文av极速乱| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 777米奇影视久久| 91精品国产九色| 成人毛片a级毛片在线播放| 国产精品久久久久久av不卡| 伦精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产在线免费精品| 99九九线精品视频在线观看视频| 丝袜喷水一区| 少妇人妻 视频| 韩国av在线不卡| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区免费观看| 超碰av人人做人人爽久久| 精品久久久噜噜| 3wmmmm亚洲av在线观看| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 在线观看免费高清a一片| 国产又色又爽无遮挡免| 国产精品免费大片| 一个人免费看片子| 七月丁香在线播放| 特大巨黑吊av在线直播| 精品人妻视频免费看| 国产淫片久久久久久久久| 久久久久久久久久久免费av| 一区二区三区四区激情视频| 伦精品一区二区三区| 亚洲内射少妇av| av黄色大香蕉| 国产精品秋霞免费鲁丝片| 国产乱来视频区| av在线蜜桃| 天天躁日日操中文字幕| 美女cb高潮喷水在线观看| 国产成人freesex在线| 九色成人免费人妻av| 99久久人妻综合| 一区二区三区精品91| 亚洲av免费高清在线观看| 五月开心婷婷网| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 欧美日韩在线观看h| 日韩 亚洲 欧美在线| 全区人妻精品视频| 能在线免费看毛片的网站| 99国产精品免费福利视频| 国国产精品蜜臀av免费| 欧美97在线视频| 国产成人免费观看mmmm| 中文字幕亚洲精品专区| 日韩中字成人| 成年免费大片在线观看| 在线观看av片永久免费下载| 成年人午夜在线观看视频| 夫妻性生交免费视频一级片| 久久精品久久精品一区二区三区| 内射极品少妇av片p| 男女国产视频网站| 国产av一区二区精品久久 | 精品99又大又爽又粗少妇毛片| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 成人毛片60女人毛片免费| 亚洲va在线va天堂va国产| 色综合色国产| 黄色怎么调成土黄色| 亚洲精品一二三| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| 久久久久精品久久久久真实原创| 极品教师在线视频| 观看av在线不卡| 天堂俺去俺来也www色官网| 国产永久视频网站| 亚洲欧美一区二区三区国产| 久久热精品热| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 欧美精品一区二区大全| 国产片特级美女逼逼视频| av.在线天堂| 成人无遮挡网站| 黄色一级大片看看| 久久韩国三级中文字幕| 色综合色国产| 女人十人毛片免费观看3o分钟| 人人妻人人爽人人添夜夜欢视频 | 91精品国产国语对白视频| 亚洲久久久国产精品| 日韩强制内射视频| 亚洲精品一二三| 男女国产视频网站| 在线播放无遮挡| av一本久久久久| 久久这里有精品视频免费| 又粗又硬又长又爽又黄的视频| 在线观看人妻少妇| 丰满人妻一区二区三区视频av| 亚洲不卡免费看| 美女主播在线视频| 熟妇人妻不卡中文字幕| 亚洲伊人久久精品综合| av黄色大香蕉| 97超视频在线观看视频| 国产色婷婷99| 夫妻午夜视频| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 久久久精品免费免费高清| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| 一级片'在线观看视频| 国产免费又黄又爽又色| 色哟哟·www| 日韩电影二区| 男女国产视频网站| 人人妻人人看人人澡| 欧美少妇被猛烈插入视频| 国产淫语在线视频| 91久久精品国产一区二区三区| 国产av一区二区精品久久 | 99热这里只有是精品50| 又粗又硬又长又爽又黄的视频| 日本欧美视频一区| 九色成人免费人妻av| 精品视频人人做人人爽| 亚洲精品国产色婷婷电影| 18+在线观看网站| 国产精品爽爽va在线观看网站| av视频免费观看在线观看| 久久久精品94久久精品| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 欧美激情国产日韩精品一区| 免费观看无遮挡的男女| 黑丝袜美女国产一区| 能在线免费看毛片的网站| 国产av码专区亚洲av| 婷婷色综合www| 日本-黄色视频高清免费观看| 大香蕉97超碰在线| 在线观看av片永久免费下载| 青春草国产在线视频| 国产精品成人在线| 欧美极品一区二区三区四区| 精品一区二区免费观看| av在线老鸭窝| 亚洲国产欧美人成| 欧美日本视频| 亚洲精品久久午夜乱码| 人人妻人人澡人人爽人人夜夜| 97热精品久久久久久| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 日本免费在线观看一区| 国产精品一区www在线观看| 日韩一本色道免费dvd| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 蜜桃亚洲精品一区二区三区| 少妇人妻 视频| 涩涩av久久男人的天堂| 精品午夜福利在线看| 免费人成在线观看视频色| 国产精品三级大全| 中国美白少妇内射xxxbb| 欧美一区二区亚洲| 女人久久www免费人成看片| av卡一久久| 国产av码专区亚洲av| 在现免费观看毛片| 男女啪啪激烈高潮av片| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 观看免费一级毛片| 黑人猛操日本美女一级片| 中文资源天堂在线| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 在现免费观看毛片| 国产极品天堂在线| 中文字幕亚洲精品专区| 中国三级夫妇交换| 亚洲av中文字字幕乱码综合| 观看美女的网站| 三级经典国产精品| 2021少妇久久久久久久久久久| 我的老师免费观看完整版| 欧美xxxx性猛交bbbb| 一区二区三区精品91| 亚洲国产成人一精品久久久| 18禁裸乳无遮挡动漫免费视频| 一级毛片aaaaaa免费看小| 激情 狠狠 欧美| 日韩国内少妇激情av| 亚洲成人手机| 国产成人精品久久久久久| 51国产日韩欧美| 一区二区三区精品91| 欧美极品一区二区三区四区| 日韩三级伦理在线观看| 国产又色又爽无遮挡免| 亚洲aⅴ乱码一区二区在线播放| 久久国产精品大桥未久av | 亚洲三级黄色毛片| 国产高清国产精品国产三级 | 在现免费观看毛片| 免费人妻精品一区二区三区视频| 欧美成人午夜免费资源| 大片电影免费在线观看免费| 亚洲无线观看免费| 久久午夜福利片| 身体一侧抽搐| 国产亚洲一区二区精品| 九九久久精品国产亚洲av麻豆| 免费少妇av软件| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 女的被弄到高潮叫床怎么办| 97超视频在线观看视频| 亚洲精品一二三| 日日摸夜夜添夜夜爱| 亚洲国产高清在线一区二区三| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区av在线| 亚洲av在线观看美女高潮| 国产国拍精品亚洲av在线观看| 日韩成人伦理影院| 欧美xxxx黑人xx丫x性爽| 国产高潮美女av| 国产精品一二三区在线看| 亚洲欧美成人综合另类久久久| 一级爰片在线观看| 亚洲国产精品一区三区| 国产高清不卡午夜福利| 狂野欧美激情性bbbbbb| 又大又黄又爽视频免费| 久久精品熟女亚洲av麻豆精品| 一级二级三级毛片免费看| 黄色日韩在线| 乱系列少妇在线播放| 精品人妻视频免费看| 新久久久久国产一级毛片| 欧美国产精品一级二级三级 | av.在线天堂| 毛片女人毛片| av在线蜜桃| 女性被躁到高潮视频| 在线看a的网站| 简卡轻食公司| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 少妇 在线观看| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人久久小说| 永久免费av网站大全| 男人爽女人下面视频在线观看| 日本黄大片高清| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 在线看a的网站| av女优亚洲男人天堂| av在线蜜桃| 亚洲欧美中文字幕日韩二区| 国产永久视频网站| 熟女人妻精品中文字幕| 男人舔奶头视频| 美女高潮的动态| 哪个播放器可以免费观看大片| 亚洲精品中文字幕在线视频 | 大话2 男鬼变身卡| av女优亚洲男人天堂| 国产永久视频网站| 韩国av在线不卡| 国产一区二区三区av在线| 亚洲国产成人一精品久久久| 少妇人妻 视频| 亚洲国产精品国产精品| 男女国产视频网站| 国产高清不卡午夜福利| 国产精品国产三级国产专区5o| 久久99热这里只有精品18| 亚洲人成网站在线观看播放| 久久午夜福利片| 亚洲av中文av极速乱| 亚洲av在线观看美女高潮| 亚洲精品国产成人久久av| .国产精品久久| 亚洲精品成人av观看孕妇| 国产成人91sexporn| 日韩在线高清观看一区二区三区| 午夜老司机福利剧场| 婷婷色麻豆天堂久久| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图 | 观看免费一级毛片| 欧美日韩视频高清一区二区三区二| 欧美三级亚洲精品| 香蕉精品网在线| 日韩av免费高清视频| 伦理电影大哥的女人| 狂野欧美激情性bbbbbb| 亚洲国产精品专区欧美| 亚洲欧美成人精品一区二区| 高清欧美精品videossex| 深夜a级毛片| 中文字幕久久专区| av在线播放精品| 久久热精品热| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区三区| 成年美女黄网站色视频大全免费 | 国产中年淑女户外野战色| 99热网站在线观看| 欧美人与善性xxx| 在现免费观看毛片| 日韩精品有码人妻一区| 国产成人午夜福利电影在线观看| 一区二区三区乱码不卡18| 91aial.com中文字幕在线观看| 国产免费又黄又爽又色| 91精品国产国语对白视频| 午夜日本视频在线| av在线app专区| 色视频在线一区二区三区| 人妻夜夜爽99麻豆av| 久久久久久人妻| 噜噜噜噜噜久久久久久91| 国产av码专区亚洲av| 美女视频免费永久观看网站| 精品久久国产蜜桃| 亚洲成人av在线免费| 免费看av在线观看网站| 2018国产大陆天天弄谢| 夫妻性生交免费视频一级片| 国产69精品久久久久777片| 又粗又硬又长又爽又黄的视频| 国产精品.久久久| 免费在线观看成人毛片| 国产精品国产三级国产av玫瑰| 亚洲最大成人中文| 黄色视频在线播放观看不卡| 少妇人妻久久综合中文| 久久久久久久久久成人| 下体分泌物呈黄色| 久久久久久伊人网av| 国产探花极品一区二区| 国产成人aa在线观看| 亚洲av.av天堂| 十八禁网站网址无遮挡 | 赤兔流量卡办理| 一区二区三区乱码不卡18| 免费观看a级毛片全部| 欧美变态另类bdsm刘玥| 中文字幕精品免费在线观看视频 | 成年女人在线观看亚洲视频| 国产免费一区二区三区四区乱码| 亚洲欧美精品专区久久| 精品一区二区三卡| 国产免费一区二区三区四区乱码| 国产一区二区三区av在线| 日韩欧美一区视频在线观看 | 99热这里只有是精品50| 久久韩国三级中文字幕| av播播在线观看一区| 99久久精品一区二区三区| 婷婷色综合www|