• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A graphic monitoring method for electric power of VVVF hydraulic system

    2018-12-20 09:01:48SHIYupingGULichenZHAOSongLIUChangchang

    SHI Yu-ping, GU Li-chen,2, ZHAO Song, LIU Chang-chang

    (1. School of Construction Machinery, Chang’an University, Xi’an 710064, China;2. School of Mechanical-Electronic Engineering, Xi’an University of Architecture and Technology, Xi’an 710054, China)

    Abstract: In order to online monitor the running state of variable voltage and variable frequency(VVVF) hydraulic system, this paper presents a graphic monitoring method that fuses the information of variable frequency electric parameters. This paper first analyzes how the voltage and current of the motor stator change with the operation conditions of VVVF hydraulic system. As a result, we draw the relationship between the electric parameters (voltage and current) and power frequency. Then, the signals of the voltage and current are fused as dynamic figures based on the idea of Lissajous figures, and the values of the electric parameters are related to the features of the dynamic figures. Rigorous theoretical analysis establishes the function between the electric power of the variable frequency motor (VFM) and the features of the plotted dynamic figures including area of diagram, area of bounding rectangle, tilt angle, etc. Finally, the effectiveness of the proposed method is verified by two cases, in which the speed of VFM and the load of VVVF hydraulic system are changed. The results show that the increase of the speed of VFM enhances its three-phase electric power, but reduces the tilt angle of the plotted dynamic figures. In addition, as the load of VVVF hydraulic system is increased, the three-phase electric power of VFM and the tilt angle of the plotted dynamic figures are both increased. This paper provides a new way to online monitor the running state of VVVF hydraulic system.

    Key words: variable frequency motor (VFM); hydraulic system; condition monitoring; Lissajous figures; electric power; information fusion

    0 Introduction

    The variable frequency (VF) technology has attracted much attention in the field of AC speed regulation in recent years. Compared with the traditional methods, the variable frequency speed control has the advantages of higher efficiency, wider speed range, and more excellent dynamic response[1-3]. Thus, it has been widely used in the fields of hydraulic elevators[4], bridge jacking hydraulic system[5], hydraulic pipes jacking machine[6]. The variable voltage and variable frequency (VVVF) hydraulic system is a multi-domain coupling system integrating the characteristics of machinery, electricity, liquid and control. An unexpected failure will stop the machines and even lead to life-threatening dangers. Therefore, it is significant to monitor the running states and evaluate the performance of the VVVF hydraulic system during its long-term operation[7].

    The commonly used signals in the hydraulic system are vibration, force, torque, speed, pressure and flow. However, in real cases, it costs much to detect multi-source signals.These signals are limited and easy to be disturbed, which brings difficulty and limitation to engineering applications. The theory and experiment confirm that the information contained in the multi-source signals will be coupled with the three-phase electrical parameters of the motor, such as electric power[8-10]. Moreover, the above electrical parameters have been verified that they have the excellent ability of anti-interference without invasive measurement. The motor power contains feature information reflecting the operation state, load variation and power matching of each system, which provides a way for studying the efficiency and optimizing control strategy of asynchronous motor[11-13]. In order to monitor the operation condition of the hydraulic system with the electrical parameters of the driven motors, Gu, et al.[14]proposed a graphic monitoring method based on the idea of Lissajous figure. This method could make full use of the electrical parameter information of amplitude, frequency, phase and phase sequence to monitor the running state of VVVF hydraulic system. However, this method is suitable for three-phase induction motor, whose speed is constant. Facing the issue of measurement for VF motor, the proposed method may present degraded performance.

    In order to overcome the above shortcomings, this paper develops the fusion theory of the VF electric parameter. The relationship between the electric parameters and the power frequency is analyzed first. Then, a graphically monitoring method fuses the information of electric parameters under VF operation condition and establishes the mapping from the electric power of the VFM to the features of the plotted dynamic figures. This method is able to reflect the running state of VVVF hydraulic system intuitively.

    1 Fusion theory of VF electrical parameters

    1.1 Relationship between three-phase electric parameters and power frequency

    In the VF control, the stator voltage varies with the power frequency. The ratio of the stator voltage and the power frequency is constant, i.e.U/f=C.

    Suppose that the stator voltage is defined as

    U=E+IZ,

    (1)

    whereEis induction electromotive force in the stator windings of the motor,Iis armature current, andZis the resistance of the stator winding.

    If we ignore the voltage drop on the stator resistance, i.e.IZ, the root mean square (RMS) of the stator voltage is[15]

    U≈E=4.44fK1N1Φ,

    (2)

    wherefis the power frequency,K1is the winding factor of stator windings,N1is the turns of stator windings, andΦis the magnetic flux of windings.

    The electromagnetic torque of the three-phase asynchronous motor is calculated by

    (3)

    whereIis the stator phase current,Kiis the proportional coefficient, andPis the pole-pairs.

    According to Eqs.(2) and (3), the RMS of the stator phase voltage is proportional to the power frequency, and the RMS of the phase current is constant during the VF process.

    1.2 Information fusion of single-phase VF electrical parameters

    Given that the phase voltage and phase current signals of the stator are expressed as[11].

    (4)

    wherej=a,b,crepresents the indexes for the phases of the motor;f(t) is the output frequency of the converter;Ais the amplitude of the phase current; andBis the ratio of phase voltage amplitude and frequency, according to Eq.(2),Bis calculated by

    (5)

    Supposing thatφ=φu-φiis the phase difference between the phase voltage and the phase current, and cosφis the power factor, ifω(t)t+φi=α, Eq.(4) can be expressed as

    (6)

    According to Eq.(6), the reactive Lissajous equation is

    (7)

    When adding 90° to the phase of voltage signal in Eq.(6), we can obtain

    (8)

    According to Eq.(8), the active Lissajous equation is

    (9)

    Making the voltage the abscissa and the current the ordinate, the single phase active Lissajous figure (ALF) and reactive power Lissajous figure (RLF) of VFM are drawn by using Eqs.(8) and (9). As shown in Fig.1, the active Lissajous figure and the reactive Lissajous figure of the single-phase electric parameter are all ellipses, which are centered at the origin of a Cartesian coordinate system.

    Fig.1 Lissajous figures of single-phase electric parameter

    2 Mathematical relationship between Lissajous figure and power of motor

    2.1 Relationship between Lissajous figure and electricity parameters

    The RLF is an ellipse centered at the origin, whose eigenvalue is

    (10)

    Then, the solution of the ellipse’s major axisaand minor axisbis

    Multiplying Eqs.(11) and (12), we can get

    ab=f(t)ABsinφ.

    (13)

    As we know, the area of an ellipse can be calculated by

    Sac=πab.

    (14)

    The reactive powerQis

    (15)

    According to Eqs.(14) and (15), the relationship between the area of RLF and the reactive power can be expressed as

    (16)

    We can get the relationship between the area of ALF and the active powerP, which can be expressed as

    (17)

    As shown in Eqs.(15) and (16), the area of reactive power Lissajous figure is proportional to the reactive power, and the area of ALF is proportional to the active power. Therefore, changes of ALF and RLF can directly reflect the changes of active power and reactive power.

    2.2 Relationship between bounding rectangle and electricity parameters

    As shown in Fig.2, when the ellipse is centered at the origin, half of the side length of bounding rectangle is equal to the maximum value ofx-axis andy-axis, respectively.

    Fig.2 Lissajous figures of single-phase electric parameter

    In Fig.2, the maximum values of thex-axis andy-axis represent the maximum values of the voltage and the current, respectively, and the length ofLxand the width ofLycan be expressed as

    (18)

    The three-phase apparent power of the VFM is calculated by

    (19)

    The area of the bounding rectangle is

    Sbr=LxLy,

    (20)

    (21)

    From Eq.(21), we can find that the area of the bounding rectangle is proportional to the apparent power.

    2.3 Power circle based on Lissajous figure

    Combined with Eqs.(16), (17) and (21), we can obtain

    (22)

    Since

    S2=P2+Q2,

    (23)

    the power circle can be calculated as

    (24)

    The power circle diagram can be drawn by using Eq.(24). In Fig.3, the area of the outer circle represents the square of apparent power, the area of the inner circle represents the square of active power, and the area of the ring represents the square of reactive power. The power circle diagram can directly reflect the dynamic relationship among the three powers under varying operating conditions of VVVF hydraulic system.

    Fig.3 Power circle diagram

    2.4 Relationship between tilt angle of Lissajous figure and electricity parameters

    Supposing that the standard coordinate system isxoy(the focus of ellipse’s equation is on thex-axis), and the nonstandard coordinate system isx′o′y′, the axis rotation formula is

    (25)

    Substituting Eq.(25) into Eq.(7), we can obtain

    (26)

    The third part in the right of the equation is equal to zero because Eq.(26) is a standard ellipse equation. Then we can get

    β=θ=

    Similarly, the tilt angle of ALF is

    α=θ=

    3 Online monitoring power state of motor

    3.1 Experiment platform

    The mechanical electro-hydraulic experiment platform consists of the power source, closed hydraulic system, hydraulic loading system and measurement and control system. The power source includes the distribution system, the inverter and the three-phase asynchronous motor. The hydraulic system includes a variable pump, a variable motor and a relief valve, etc. The loading system includes a gear pump and a proportional relief valve. The measurement and control system include various sensors, a multi-function data acquisition card, a industrial computer and a software platform. The schematic diagram of the experiment platform is shown in Fig.4.

    Fig.4 Schematic diagram of the test platform of VVVF hydraulic system

    The inverter controls the motor 1 to drive the variable piston pump 3. Changing the speed or displacement of variable pump 3 can adjust the input flow of the variable piston motor 6. Regulating the outlet pressure of gear pump 8 through the proportional relief valve 9 can control the load torque of variable piston motor 6. The safety valve 5 sets the maximum working pressure of the hydraulic system. The slippage pump 4 compensates the leakage flow of the hydraulic system, and the relief valve 12 controls the pressure of the oil filling circuit. The flowmeter 21 measures the flow rate of high-pressure side of the hydraulic system. The pressure sensors 19 and 22 measure the pressure of high pressure chamber of variable pump 3 and variable piston motor 6, respectively, and the pressure sensor 13 is used to measure the pressure of the system. The torque and speed sensors 2 and 7 measure the torque and speed of variable pump and variable motor, respectively. In the experiments, we control the speed of the variable pump by the invertor and control the input signal of proportional relief valve 9 to change the load torque of the motor shaft.

    3.2 Acquisition of electrical signals

    As shown in Fig.5, the Hall sensors of three-phase voltage and current have access to the three-phase output circuit of the inverter, respectively. The three-phase electric parameter acquisition device can acquire the three-phase voltage and current signals simultaneously. The voltage and current signals processed by the conditioning circuit will be sent to A/D acquisition card so as to obtain the digital signals.

    Fig.5 Wiring diagram of three-phase electric parameter acquisition device

    3.3 Extraction of base frequency component of electrical signal

    3.3.1 Voltage signal extraction

    In electric drive of AC frequency conversion, the output voltage signal of the inverter is pulse-width modulation (PWM) wave that changes with the power frequency. The voltage waveform comprises the base frequency component and other high-frequency harmonic components. These harmonic components can cause many harmful effects on speed adjusting performance. Therefore, the wavelet filter method can filter the PWM wave into a sinusoidal wave and eliminate the interference components of phase voltage signal. As a result, the sine voltage signal is calibrated.

    Fig.6 shows the waveform comparison of voltage signal before and after filter. The voltage of control loading is 0.8 V, the sampling frequency is 5 000 Hz, and the motor speed is 600 r/min.

    Fig.6 Waveform comparison of voltage signals before and after filtering

    3.3.2 Current signal extraction

    (29)

    Fig.7 shows the waveform comparison of current signal before and after processing. The voltage of control loading is 0.8 V, the sampling frequency is 5 000 Hz, and the motor speed is 600 r/min.

    3.4 Online monitor the motor power during varying speed condition

    The load voltage is 0.4 V, the sampling frequency is 5 000 Hz, and the motor speed is changed from 100 to 600 r/min. In Figs.8 and 9, the area and tilt angles of Lissajous figures changed with frequency.

    Fig.8 illustrates the trend of active Lissajous figure, reactive power Lissajous figure and power circle vary with frequency. In Fig.8, The gray ellipse is reactive power Lissajous figure, and the black ellipse is active power Lissajous figure; the solid circle represents the active power, and the broken circle represents the apparent power. Figs.6(a) and (b) illustrate the trend of power and angle variing with frequency.

    In Figs.8 and 9, as the speed of VFM is increased, the active power, reactive power and apparent power of VFM are increased, too. The ALF rotates anticlockwise and the RLF rotates clockwise, thus the tilt angles are both decreased. Meanwhile, it can be seen that the current amplitude changes very little during acceleration, and the voltage amplitude changes obviously with frequency.

    Fig.9 reflects a change law that the increase of motor speed will enhance its electric power while reduce the tilt angles of Lissajous figures.

    Fig.9 Change trend of motor power and tilt angles

    3.5 Online monitoring motor power during sinusoidal frequency

    The load voltage is 0.4 V, the sampling frequency is 5 000 Hz, and the inverter changes the motor speed between 100 r/min and 600 r/min in a sinusoidal manner by control frequency. The periodic variation of Lissajous figures and power circles is shown in Fig.10.

    Fig.10 Change trend of Lissajous figures and power circles

    In Figs.10 and 11, the increase of the speed of VFM will enhance its electric power while reduce the tilt angle of Lissajous figures. At the same time, the decrease of the speed of VFM will reduce its electric power while enhances the tilt angles of Lissajous figures.

    Fig.11 Changes trend of motor power and tilt angles

    3.6 Online monitoring the motor power under variable load

    The motor speed is 600 r/min, the sampling frequency is 5 000 Hz and the on-load voltage varies from 0 to 0.8 V. In Figs.12 and 13, the area and tilt angles of Lissajous figures change with load. Fig.12 illustrates the change trends of active Lissajous figure, reactive power Lissajous figure and power circle with load. Fig.13 shows the change trend of power and tilt angles with load. As the load of VVVF hydraulic system increasing, the three-phase electric power of VFM increases. The ALF rotates clockwise and the RLF rotates anticlockwise, so the tilt angles both increase. Meanwhile, it can be seen that the voltage amplitude changes very little under load, but the current amplitude changes obviously with load. The curves of Fig.13 reflect a change law, that is the increase of the load will enhance its electric power and tilt angles of Lissajous figures.

    Fig.12 Change trend of Lissajous figures and power circles

    Fig.13 Change trend of motor power and tilt angles

    4 Conclusions

    1) The area of the ALF and the RLF is proportional to frequency and system load. It can intuitively express the active and reactive power of the VFM and reflect the power state of VVVF hydraulic system.

    2) The area of the bounding rectangle is proportional to the apparent power, and it represents the load state of the power supply. The apparent power and active power can directly calculate the reactive power and the power factor of the motor. The dynamic power circle drawn by the active power, reactive power and apparent power can directly reflect the power changes of the motor. It is convenient for online monitoring the power matching and the energy reserve of VVVF hydraulic system.

    3) We can identify the typical working conditions such as varying speed or varying load of the hydraulic system by observing the features of tilt angles. The tilt angle of the Lissajous figure is sensitive, and it contains many dynamic information about the operation of the equipment and needs further excavation and utilization.

    4) The higher harmonic frequency with the multiplier of 5, 7, 11, 13, … in the voltage waveform will lead to higher copper consumption and distortion power of high harmonic current. Some fault information is hidden in the high harmonics of electric parameters. Therefore, the Lissajous fusion method of the harmonic components needs to be further researched in future work.

    麻豆av在线久日| 精品少妇黑人巨大在线播放| 日本欧美视频一区| 国产av一区二区精品久久| 天天躁狠狠躁夜夜躁狠狠躁| 男人添女人高潮全过程视频| 日韩精品免费视频一区二区三区| 侵犯人妻中文字幕一二三四区| 午夜激情av网站| 一级黄片播放器| 啦啦啦啦在线视频资源| 国产精品久久久久久精品古装| 日本欧美视频一区| 日韩人妻精品一区2区三区| 又大又黄又爽视频免费| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 亚洲成人av在线免费| 国产极品天堂在线| 伦理电影免费视频| 天堂俺去俺来也www色官网| 成年动漫av网址| 欧美激情高清一区二区三区 | 最新的欧美精品一区二区| 免费在线观看黄色视频的| 久久99蜜桃精品久久| 日韩一本色道免费dvd| 国产一级毛片在线| 建设人人有责人人尽责人人享有的| 97人妻天天添夜夜摸| 国产精品久久久久久精品古装| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲经典国产精华液单| 丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 啦啦啦视频在线资源免费观看| 777久久人妻少妇嫩草av网站| 国产乱人偷精品视频| 亚洲,欧美精品.| av网站免费在线观看视频| 亚洲一级一片aⅴ在线观看| 免费观看性生交大片5| 97精品久久久久久久久久精品| 人妻少妇偷人精品九色| 国产亚洲一区二区精品| 新久久久久国产一级毛片| 人妻 亚洲 视频| 国产午夜精品一二区理论片| 国产xxxxx性猛交| 91精品三级在线观看| 成年动漫av网址| 18+在线观看网站| 男女无遮挡免费网站观看| 午夜福利一区二区在线看| 十八禁网站网址无遮挡| 亚洲人成77777在线视频| 亚洲,欧美,日韩| 国产精品香港三级国产av潘金莲 | 成人毛片60女人毛片免费| 国产av精品麻豆| 欧美激情极品国产一区二区三区| 国产精品久久久久久久久免| 熟女电影av网| 黄色 视频免费看| 少妇精品久久久久久久| 十八禁网站网址无遮挡| 国产黄频视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 两个人看的免费小视频| 亚洲国产精品成人久久小说| 免费看av在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 少妇被粗大的猛进出69影院| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 日本-黄色视频高清免费观看| 一区二区三区精品91| 少妇人妻久久综合中文| 亚洲国产精品一区三区| 精品久久久精品久久久| 热re99久久精品国产66热6| 国产淫语在线视频| 成年人免费黄色播放视频| 人成视频在线观看免费观看| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| 国产成人av激情在线播放| 欧美人与性动交α欧美软件| 婷婷色av中文字幕| 极品少妇高潮喷水抽搐| 亚洲欧美成人精品一区二区| 国产精品.久久久| 精品人妻偷拍中文字幕| 日本vs欧美在线观看视频| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线观看播放| 两性夫妻黄色片| 免费观看性生交大片5| 国产爽快片一区二区三区| 90打野战视频偷拍视频| 国产男人的电影天堂91| 97精品久久久久久久久久精品| 赤兔流量卡办理| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 999精品在线视频| 日韩,欧美,国产一区二区三区| 一级,二级,三级黄色视频| av免费在线看不卡| 久久久国产精品麻豆| 成年女人在线观看亚洲视频| 黄色一级大片看看| 久久人妻熟女aⅴ| 国产av码专区亚洲av| 亚洲激情五月婷婷啪啪| 91国产中文字幕| 亚洲综合色网址| 少妇猛男粗大的猛烈进出视频| 国产片特级美女逼逼视频| 亚洲精品中文字幕在线视频| 青春草视频在线免费观看| 老汉色av国产亚洲站长工具| 电影成人av| 成人国语在线视频| 黄色毛片三级朝国网站| 精品少妇一区二区三区视频日本电影 | 老汉色av国产亚洲站长工具| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 亚洲男人天堂网一区| 美女主播在线视频| av女优亚洲男人天堂| 久久久精品免费免费高清| 久久99蜜桃精品久久| 免费观看性生交大片5| 亚洲精品一区蜜桃| 一级,二级,三级黄色视频| 校园人妻丝袜中文字幕| videos熟女内射| 国产成人精品在线电影| 亚洲欧美一区二区三区黑人 | 免费观看av网站的网址| 日韩一本色道免费dvd| 亚洲欧美成人综合另类久久久| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久av不卡| 熟妇人妻不卡中文字幕| 午夜福利,免费看| 男女下面插进去视频免费观看| 久久精品久久久久久噜噜老黄| 精品一区在线观看国产| 三级国产精品片| 午夜福利,免费看| 欧美精品一区二区免费开放| 亚洲色图综合在线观看| 久久久久久人人人人人| 亚洲精华国产精华液的使用体验| 亚洲人成77777在线视频| 久久这里只有精品19| 国产日韩一区二区三区精品不卡| 一区二区三区四区激情视频| 亚洲国产成人一精品久久久| 免费看不卡的av| 亚洲精品视频女| 男女边吃奶边做爰视频| 嫩草影院入口| 成人二区视频| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| 成人国产av品久久久| 精品人妻在线不人妻| 老鸭窝网址在线观看| 亚洲av福利一区| 9191精品国产免费久久| 亚洲国产精品一区二区三区在线| 日本av免费视频播放| 在线观看国产h片| 国产精品久久久久久精品古装| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 国产精品99久久99久久久不卡 | 涩涩av久久男人的天堂| 久久久久国产网址| 日韩av在线免费看完整版不卡| 久久久久久伊人网av| 好男人视频免费观看在线| 欧美成人午夜精品| 精品视频人人做人人爽| 久久久久久久亚洲中文字幕| 精品人妻在线不人妻| 黄片无遮挡物在线观看| 黑人欧美特级aaaaaa片| 九色亚洲精品在线播放| 日本91视频免费播放| 国产伦理片在线播放av一区| 寂寞人妻少妇视频99o| 亚洲伊人久久精品综合| 91精品伊人久久大香线蕉| 亚洲国产欧美日韩在线播放| 亚洲,欧美精品.| 汤姆久久久久久久影院中文字幕| 99热网站在线观看| 久久午夜综合久久蜜桃| 国产精品嫩草影院av在线观看| 欧美成人午夜免费资源| 国产欧美亚洲国产| 亚洲精品视频女| 国产亚洲最大av| 亚洲一区中文字幕在线| 巨乳人妻的诱惑在线观看| 欧美xxⅹ黑人| 精品一区二区免费观看| 亚洲国产精品一区三区| 黄色 视频免费看| 国产成人精品无人区| 精品少妇久久久久久888优播| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 一本久久精品| 精品少妇黑人巨大在线播放| 欧美另类一区| 国产成人精品一,二区| 香蕉国产在线看| 国产精品久久久久成人av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久av不卡| 亚洲视频免费观看视频| 18禁裸乳无遮挡动漫免费视频| 免费黄色在线免费观看| 久久精品国产亚洲av高清一级| 9色porny在线观看| 在线观看人妻少妇| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 日本av手机在线免费观看| 曰老女人黄片| kizo精华| 大话2 男鬼变身卡| 色吧在线观看| 美国免费a级毛片| 涩涩av久久男人的天堂| 成人亚洲欧美一区二区av| 五月伊人婷婷丁香| videossex国产| 国产又爽黄色视频| 一级毛片黄色毛片免费观看视频| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 亚洲国产精品国产精品| 在线精品无人区一区二区三| 国产精品无大码| 国产片内射在线| 丝袜脚勾引网站| av视频免费观看在线观看| 一区二区三区精品91| 久久99热这里只频精品6学生| 妹子高潮喷水视频| 欧美最新免费一区二区三区| 最新中文字幕久久久久| 99九九在线精品视频| 老女人水多毛片| 国产有黄有色有爽视频| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| 精品一品国产午夜福利视频| 欧美日韩成人在线一区二区| 在线观看国产h片| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区黑人 | 久久久久久免费高清国产稀缺| 久久精品aⅴ一区二区三区四区 | 啦啦啦在线观看免费高清www| 精品少妇内射三级| 亚洲第一av免费看| 日韩人妻精品一区2区三区| 亚洲色图综合在线观看| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| 91久久精品国产一区二区三区| 一级黄片播放器| 99国产精品免费福利视频| 免费在线观看黄色视频的| 婷婷色综合www| 久久久精品免费免费高清| av免费观看日本| 看免费av毛片| 国产亚洲精品第一综合不卡| av网站免费在线观看视频| 精品少妇久久久久久888优播| 久久精品国产鲁丝片午夜精品| 亚洲国产日韩一区二区| 精品一区二区三区四区五区乱码 | 久久av网站| 欧美日韩精品成人综合77777| 人人妻人人添人人爽欧美一区卜| 激情视频va一区二区三区| 深夜精品福利| 一区二区av电影网| 丝袜美足系列| 青春草视频在线免费观看| 亚洲精品自拍成人| 一级毛片电影观看| 十八禁网站网址无遮挡| 日本免费在线观看一区| 一级毛片电影观看| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| √禁漫天堂资源中文www| 18禁动态无遮挡网站| 黄频高清免费视频| 久久ye,这里只有精品| 亚洲美女搞黄在线观看| 亚洲中文av在线| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 亚洲久久久国产精品| 日韩精品有码人妻一区| av电影中文网址| 国产又色又爽无遮挡免| 人人妻人人澡人人看| a 毛片基地| 黄色一级大片看看| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产| 久热久热在线精品观看| 亚洲激情五月婷婷啪啪| 9热在线视频观看99| 狠狠婷婷综合久久久久久88av| 久久99热这里只频精品6学生| 少妇被粗大的猛进出69影院| 成人影院久久| 亚洲精华国产精华液的使用体验| 97在线视频观看| 国产精品麻豆人妻色哟哟久久| 久久精品久久久久久噜噜老黄| 麻豆精品久久久久久蜜桃| 亚洲一码二码三码区别大吗| 国产精品熟女久久久久浪| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 亚洲第一区二区三区不卡| 午夜福利视频精品| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 高清视频免费观看一区二区| 天堂8中文在线网| 宅男免费午夜| 日韩三级伦理在线观看| 少妇 在线观看| 亚洲国产看品久久| 青草久久国产| 国语对白做爰xxxⅹ性视频网站| 97在线人人人人妻| 亚洲精品自拍成人| 久久97久久精品| 国产精品久久久av美女十八| 只有这里有精品99| 91精品伊人久久大香线蕉| 一区二区日韩欧美中文字幕| 亚洲美女视频黄频| 亚洲精品成人av观看孕妇| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 香蕉精品网在线| av网站免费在线观看视频| 日日摸夜夜添夜夜爱| 精品亚洲成国产av| 美女主播在线视频| 中文字幕亚洲精品专区| 亚洲国产av影院在线观看| 亚洲av在线观看美女高潮| 亚洲国产av影院在线观看| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 国产精品久久久久久久久免| 电影成人av| 性色avwww在线观看| 高清视频免费观看一区二区| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| 中文乱码字字幕精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美软件| 成人毛片a级毛片在线播放| 老司机影院成人| 波野结衣二区三区在线| 美女福利国产在线| 熟女电影av网| 男人爽女人下面视频在线观看| 亚洲欧美精品自产自拍| 中文乱码字字幕精品一区二区三区| 午夜福利在线观看免费完整高清在| 一本久久精品| 国产免费福利视频在线观看| 亚洲欧美一区二区三区久久| 高清视频免费观看一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区三区影片| 久久久久久久久久久免费av| 国产极品粉嫩免费观看在线| 亚洲国产色片| 久久久久久久久久人人人人人人| 免费av中文字幕在线| 精品亚洲成a人片在线观看| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 成人亚洲精品一区在线观看| 精品第一国产精品| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 国产有黄有色有爽视频| 久久97久久精品| 国产不卡av网站在线观看| 免费不卡的大黄色大毛片视频在线观看| 啦啦啦啦在线视频资源| 欧美激情高清一区二区三区 | 水蜜桃什么品种好| 日本av免费视频播放| 久久久久久久大尺度免费视频| 观看av在线不卡| 99久久人妻综合| 日本vs欧美在线观看视频| 久久久久久久亚洲中文字幕| 国产男女内射视频| 亚洲,欧美,日韩| 看免费av毛片| 丝袜美腿诱惑在线| 97人妻天天添夜夜摸| 免费人妻精品一区二区三区视频| 欧美亚洲日本最大视频资源| 一区二区日韩欧美中文字幕| 激情五月婷婷亚洲| 伦精品一区二区三区| 男女国产视频网站| 亚洲在久久综合| 亚洲 欧美一区二区三区| 久久女婷五月综合色啪小说| 久久国内精品自在自线图片| 人体艺术视频欧美日本| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美| av网站免费在线观看视频| 亚洲四区av| 国产成人精品在线电影| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 中文乱码字字幕精品一区二区三区| 精品福利永久在线观看| 蜜桃国产av成人99| 国产97色在线日韩免费| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 成人免费观看视频高清| 中文字幕人妻熟女乱码| 日本91视频免费播放| 国产激情久久老熟女| a级片在线免费高清观看视频| 久久热在线av| 亚洲人成77777在线视频| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 999久久久国产精品视频| 一本色道久久久久久精品综合| 国产又爽黄色视频| 亚洲情色 制服丝袜| 性高湖久久久久久久久免费观看| 国产在视频线精品| 2022亚洲国产成人精品| 国产成人欧美| 日本vs欧美在线观看视频| 久久婷婷青草| av在线播放精品| videosex国产| 亚洲欧美中文字幕日韩二区| 久久精品亚洲av国产电影网| 97在线人人人人妻| 精品一区在线观看国产| videosex国产| 国产 精品1| 日本午夜av视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 亚洲四区av| 亚洲一区二区三区欧美精品| 九九爱精品视频在线观看| 久久久久视频综合| 精品一区二区三卡| 亚洲精品久久午夜乱码| 午夜福利在线观看免费完整高清在| 欧美精品亚洲一区二区| 久久精品久久久久久噜噜老黄| 日本91视频免费播放| 亚洲欧洲精品一区二区精品久久久 | 人妻人人澡人人爽人人| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美精品济南到 | 不卡av一区二区三区| 中文字幕人妻丝袜制服| 一本久久精品| 夫妻性生交免费视频一级片| 中文字幕av电影在线播放| 大香蕉久久网| 久久精品久久精品一区二区三区| 尾随美女入室| 97在线视频观看| 在线观看免费视频网站a站| 日韩av免费高清视频| 午夜免费观看性视频| 激情五月婷婷亚洲| 国产精品不卡视频一区二区| 欧美另类一区| 亚洲欧美成人精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费无遮挡视频| av有码第一页| 亚洲婷婷狠狠爱综合网| 黄色一级大片看看| 久久青草综合色| 女人久久www免费人成看片| 咕卡用的链子| 亚洲国产精品一区二区三区在线| 日韩欧美精品免费久久| 九草在线视频观看| 搡老乐熟女国产| 99re6热这里在线精品视频| 我的亚洲天堂| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 久久影院123| 亚洲精品美女久久久久99蜜臀 | 久久久久精品人妻al黑| av在线播放精品| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲精华国产精华液的使用体验| 一级毛片电影观看| 男人添女人高潮全过程视频| 久久久精品94久久精品| 一区福利在线观看| 国产精品人妻久久久影院| av在线老鸭窝| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 99久久中文字幕三级久久日本| 自线自在国产av| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| 一区在线观看完整版| 中文字幕制服av| 只有这里有精品99| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 少妇熟女欧美另类| av在线观看视频网站免费| 韩国av在线不卡| 国产黄色免费在线视频| 亚洲精品中文字幕在线视频| 99热国产这里只有精品6| 亚洲精品一区蜜桃| 国产一区二区在线观看av| 国产免费又黄又爽又色| 夫妻午夜视频| 久久av网站| 久久影院123| 在线观看免费视频网站a站| 高清av免费在线| 亚洲人成网站在线观看播放| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 热re99久久精品国产66热6| 最黄视频免费看| 精品亚洲成a人片在线观看| 七月丁香在线播放| 日韩电影二区| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免| 日韩成人av中文字幕在线观看| 黄色配什么色好看| 99久久综合免费| 久久99一区二区三区| 三级国产精品片| 亚洲欧美成人综合另类久久久| 高清在线视频一区二区三区| 精品午夜福利在线看| 久久这里有精品视频免费| 久久久久人妻精品一区果冻| 美女高潮到喷水免费观看| 2021少妇久久久久久久久久久| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 中文欧美无线码| 久久久久久久国产电影| 国产一区亚洲一区在线观看| 久久精品熟女亚洲av麻豆精品| 美女xxoo啪啪120秒动态图| 免费女性裸体啪啪无遮挡网站| 黄色 视频免费看|