• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Short-term traffic flow online forecasting based on kernel adaptive filter

    2018-12-20 09:01:56LIJunWANGQiuli

    LI Jun, WANG Qiu-li

    (School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: Considering that the prediction accuracy of the traditional traffic flow forecasting model is low, based on kernel adaptive filter (KAF) algorithm, kernel least mean square (KLMS) algorithm and fixed-budget kernel recursive least-square (FB-KRLS) algorithm are presented for online adaptive prediction. The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints, but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing. To reduce the computational complexity, the sparse criterion is introduced into the KLMS algorithm. To further improve forecasting accuracy, FB-KRLS algorithm is proposed. It is an online learning method with fixed memory budget, and it is capable of recursively learning a nonlinear mapping and changing over time. In contrast to a previous approximate linear dependence (ALD) based technique, the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point, thus suppressing the growth of kernel matrix. In order to verify the validity of the proposed methods, they are applied to one-step and multi-step predictions of traffic flow in Beijing. Under the same conditions, they are compared with online adaptive ALD-KRLS method and other kernel learning methods. Experimental results show that the proposed KAF algorithms can improve the prediction accuracy, and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.

    Key words: traffic flow forecasting; kernel adaptive filtering (KAF); kernel least mean square (KLMS); kernel recursive least square (KRLS); online forecasting

    0 Introduction

    As an important research area in intelligent transportation systems (ITS) applications, traffic flow forecasting can provide real-time traffic information for travelers and formulate corresponding traffic management strategies for transportation system management (TSM), traffic control systems and traffic information service systems to improve the operation efficiency of urban traffic network[1]. Since urban traffic flow systems are highly nonlinear, complex and time-varying, according to different principles, the prediction methods can be divided into two classes: one is based on mathematical models, and the other is based on intelligent models[2-3]. In this paper, the latter is discussed.

    The methods based on neural network and support vector machine (SVM)[4-8]have been successfully applied to modeling and forecasting of short-term traffic flow in recent years. Messer, et al. applied particle swarm optimized neural network with adaptive weights (PSOA-NN) to short-term traffic flow forecasting[5]. Zhang, et al. applied SVM to one-step and two-step forecasting of traffic volumes on urban freeways[6-7]. Chen, et al. combined least square support vector machine (LSSVM) with genetic algorithm (GA) and singular spectrum analysis respectively for the one-step forecasting of short-term traffic flow and obtained good predictive results[8-9]. Huang, et al. put forward extreme learning machine (ELM) in 2006, which could get better network generalization performance with extremely fast learning speed[10]. The regularized ELM method was successfully applied to traffic flow one-step forecasting[11]. On the basis of the ELM algorithm, when hidden layer feature mapping function is unknown, replaced by the kernel function to develop a kernel extreme learning machine (KELM) method, its advantage is that the number of the hidden layer nodes needs not be given. Li, et al. applied it to the time series modeling[12].

    Taking feature extraction into consideration, Rosipal, et al. applied kernel partial least squares (KPLS) to time series modeling[13]. Sun, et al. used principal component analysis (PCA)-SVM method for short-term traffic flow forecasting[14]. Chen, et al. combined kernel KPCA with SVM for chaotic time series forecasting, improving the prediction accuracy to a certain degree.

    Above mentioned methods can well predict the traffic flow, but they are offline predictions and cannot meet the real-time requirement of road traffic flow prediction.

    Kernel adaptive filter (KAF)[16]has the ability to adaptively update filter parameters based on online samples and is suitable for online time series forecasting. Engel, et al. proposed kernel recursive least square (KRLS) method, which limited the size of the kernel matrix based on sparse technique to suit the training of larger datasets[17]. Liu, et al. applied kernel least mean square (KLMS) method to time series prediction[18-19]. Vaerenbergh, et al. put forward a fixed budget (FB)-KRLS algorithm[20], which pruned the least significant data point to suppress the growth of kernel matrix. Different adaptive filter algorithms have been successfully used to the prediction and identification of nonlinear systems and have achieved good results.

    In the applications of kernel learning methods, SVM and KELM have been used for traffic flow and time series forecasting. In this paper, for short-term traffic flow forecasting, KLMS and FB-KRLS algorithms based on kernel adaptive filter are proposed.

    Different from general time series[18-20], traffic flow is time-varying and KLMS and FB-KRLS algorithms can meet the needs of online traffic flow forecasting because its adaptive characteristics can continuously update the predictive models with the arrival of new samples. Different from the existing algorithms[18-20], during the online forecasting of traffic flow, these two algorithms predict the first data with the trained adaptive prediction model, and then update the forecasting model with the obtained data so as to predict the next data until all the data points are predicted.

    1 KAF

    Inspired by the online adaptive learning algorithm, KAF is an online sequence estimation algorithm based on kernel learning. When thei-th pattern (xi,yi) is obtained, the first (i-1) patterns have been estimated (denoted asfi-1) by updating prediction model, and the current nonlinear mapping relationshipfican be got. Given training data {xi,yi}∈Rm×R1(i=1,2,…,N), we can construct input matrix and output matrix asX∈RN×mandY∈RN×1, respectively. To apply the kernel trick, we map the data into high-dimensional feature spaceFasφ∶x∈Rm→φ(x)∈F?RM. To avoid the difficulty of computation in the feature space, we define the kernel functionk(xi,xj)=φ(xi)Tφ(xj), which satisfies the Mercer’s theorem. A commonly used kernel function is the Gaussian kernel, namely

    (1)

    whereσis the kernel parameter.

    1.1 KLMS

    Least mean square (LMS) regression model can be expressed as

    (2)

    (3)

    The principle of the LMS method is to minimize the cost function, that is

    (4)

    whereJ(i) is cost function.

    According to the gradient descent method, from Eq.(4) it can be obtained as

    (5)

    whereηis the learning rate.

    The LMS algorithm can be readily extended to high-dimension feature space by the kernel trick, and KLMS algorithm can also be readily used in high-dimension space to derive nonlinear, stable algorithms whose performance maches up with batch, regularized solutions. Mappingxito high-dimension feature space by the Mercer’s theorem, we can obtain

    (6)

    Ω(i)=Ω(i-1)+ηe(i)φ(xi).

    (7)

    According to Eqs.(5) and (6), Eq.(7) can be expressed as

    (8)

    AfterNsteps training, Eq.(7) can be expressed as

    (9)

    The steps for realizing short-term traffic flow prediction based on KLMS are as follows:

    Step 1: Give sequentially input-output patterns {xi∈U,yi),i=1,2,…

    Step 2: Online training. InitializeC1=[x1],α1=[ηy1],η>0.

    Step 3: Leti=i+1 and the output of adaptive filter can be calculated as

    (10)

    Step 4: Obtain error

    (11)

    Step 5: Store new center and update coefficient vector

    Zi=[Zi-1,xi],αi=[αi-1,ηei].

    (12)

    Step 6: Iteratively calculate steps 3-5 until all the training data complete the learning.

    Step 7:Online adaptive testing. Predictxjusing adaptive prediction model based on the trained model: predicte the first data with the trained KLMS model, update the forecasting model with this value and predict the next data with the updated model until all the data are predicted.

    1.1.1 Sparsification criterion

    (13)

    whereυ∈[0,1] is the threshold parameter.

    According to Eq.(12), Eq.(13) can be further expressed as

    (14)

    Defining the Gram matrixK=ΦTΦ,K-1=Q, its element isk(xi,xj). Expanding Eq.(14), we can obtain

    (15)

    whereetis priori error.

    [Kwt-1]ij=k(xwt-1,·)k(xwt-1,·)=k(xwt-1,xwj-1),

    kt=k(xt,·)k(xwt-1,·)=k(xwt-1,xt),

    kt=k(xwt-1,·).

    While new samplextarrives, it is judged whetherk(xt,·) satisfies the sparse criterion of Eq.(13). If it satisfies the conditons, it is added in the dictionaryDt+1={Dt,k(xt,·)}, and updates are given by

    (16)

    (17)

    where column vector0wt-1has dimension size of (wt-1)×1.

    Therefore, the weights and predicted output of KLMS regression models with multi-dimension input and single dimension output on the training data set are obtained as

    (18)

    whereKt=[k(x1,·),…,k(xwt,·)]; andα=[α1,…,αmt]Tis the filter weight vector.

    1.2 FB-KRLS

    FB-KRLS algorithm is capable of recursively learning a nonlinear mapping and tracking changes over time. In an offline scenario, wherelinput-output patterns are sequentially acquired, KRLS looks for and minimizes the optimal coefficient of Eq.(19) as

    (19)

    wherey∈Rl×1is the vector that contains the training outputyi;K∈Rl×lis kernel matrix, whose element isKi,j=k(xi,xj),λis the regularized coefficient. The solution of Eq.(19) is

    α=(K+λI)-1q,

    (20)

    whereI∈Rl×lrepresents the unit matrix.

    The goal of kernel recursive least-squares is to update the solution of Eq.(20) recursively as new data become available. KRLS is based onK, whose dimensions depend on the number of input patterns. As a consequence, the inclusion of new data into the solution Eq.(20) causesKto grow without boundary. In order to curb this growth, approximate linear dependence (ALD) criterion and other methods are proposed. These methods assemble a limited dictionary and have achieved good results.

    The FB-KRLS uses the “fixed memory budget” technology, which employs an active learning strategy to build a "dictionary" that first adds a new point to the memory and then discards the present least relevant data point to maintain the size of the existing data in memory unchanged.

    Online FB-KRLS is to obtain a complexity not higher thanO(M2) for time-varying data, whereMis the number of patterns stored in memory. (K+λI) denotes the regularized kernel matrix obtained byi-th iteration when a new pattern {xi,yi} is first added to the memory.

    The steps for realizing short-term traffic flow forecasting algorithm based on FB-KRLS are as follows:

    Step 1: Give sequentially input-output patterns {xi∈U,yi}, 1,2,…

    Step 3: Leti=i+1 and then get the new data (xi,yi), the output of all the existing data stored in memory can be updated as

    yt=yt-ηk(xt,xi)(yt-yi),

    t=1,…,M,

    (21)

    whereη∈[0,1] is step size .

    Step 4: Adding new data (xi,yi) to the memory, and correspondingly expanding rows and columns of the current kernel matrixKi-1, there is

    (22)

    Its transposed matrix can be expressed as

    (23)

    Step 5: While memory sizei>M, for all the input-output patterns in memory, the pruning criterion should be taken into consideration[20], and the error can be obtained as

    (24)

    To accomplish this step, the permutation matrixPLas well asHLis defined as

    (25)

    (26)

    (27)

    Step 6: Calculateαaccording to Eq.(20) based on the updated memory data.

    Step 7: Execute circularly steps 3-6 until all the training data are completed.

    Step 8: Online adaptive testing. Predictxjusing adaptive prediction model based on the trained model: predict the first data with the trained FB-KRLS model, update the forecasting model with this value and predict the next data with the updated model until all the data are predicted, there is

    (28)

    2 Traffic flow forecasting experiment

    The kernel learning methods are applied to short-term traffic flow forecasting. The prediction model is established as

    (29)

    wherehis forecasting step size;xtis multi-dimension input vector composed of historical traffic flowxt=(yt-1,…,yt-m), andmmeans the embedding dimension of forecasting model;f(·) is the mapping relationship to be established, i.e.f∶Rm→R. Selecting mean absolute percentage error (MAPE) and root mean square error (RMSE) and normalized RMSE (NRMSE) as the performance indicators of the experiment, there are

    (30)

    (31)

    2.1 Experiment A

    The experiment selected nine lines and recorded data imformation of road links every 15 min along many by the UTC/SCOOT system of the Traffic Management Bureau of Beijing. The road links were denoted as follows: ① Bb; ② Ch; ③ Dd; ④ Fe; ⑤ Gd; ⑥ Hi; ⑦ Ia; ⑧ Jf; ⑨ Ka. The raw data were from March 1 to March 31, 2002, 31 days in total. Considering the malfunction of detector or transmitter, the days with empty data were excluded. The remaining data for use contained 25 days and 2 400 sample points in total. Taking the traffic data collected by the road link Ch, and selecting 2 112 samples as training data, the rest were used for test data for consistency with Ref.[21].

    The parameter settings are as follows. KRLS,KLMS, KELM,KPLS,KPCA,LSSVM and SVM all select Gaussian kernel functions with kernel function width ofσ=0.5; the regularization parameter of KELM isγ=200; the potential variables of KPLS isp=20; the learning rate of KLMS isη=0.3; the parameters of SVM and LSSVM areC=0.5,ε=0.3. In KPCA-SVM, KPCA-LSSVM and KPCA-KELM methods, the nonlinear principal components of KPCA method are 15; SVM selects linear kernel function; ALD-KRLS algorithm maximum dictionary capacityMmax=500 and thresholdυ=0.000 01. The learning rate of KLMS isη=0.3. FB-KRLS has the fixed memory sizeM=300, learning rateη=0.1, and regularization parameterλ=0.1. Tables 1 and 2 give the forecasting results with 15 min and 30 min in advance using different evaluation methods.

    Table1Performancecomparisonofforecastingresultswith15minahead

    Forecasting methodδMAPEδRMSEδNRMSESVM11.754 668.648 10.252 7LSSVM11.659 067.559 10.249 2KELM11.765 567.802 00.250 1KPCA-SVM11.622 067.498 40.248 9KPCA-LSSVM10.891 667.507 80.249 7KPCA-KELM10.870 867.461 80.248 1KPLS11.716 768.098 30.250 8ALD-KRLS10.697 665.919 60.243 1KLMS10.684 665.693 50.242 7FB-KRLS10.322 665.457 20.241 4

    Table2Performancecomparisonofforecastingresultswith30minahead

    Forecasting methodδMAPEδRMSEδNRMSESVM16.520 973.584 40.276 0LSSVM12.346 569.549 30.253 5KELM13.984 571.594 70.269 4KPCA-SVM13.265 170.977 80.266 9KPCA-LSSVM12.464 668.612 50.256 5KPCA-KELM12.506 170.157 90.255 9KPLS12.647 869.506 40.251 7ALD-KRLS12.448 768.135 20.251 1KLMS12.391 467.212 30.250 9FB-KRLS12.072 565.890 30.248 6

    It is observed from Table 1 that compared with single kernel learning methods, the forecasting accuracy of kernel learning methods based on feature extraction is improved, such as SVM, LSSVM, KELM, KPLS, ALD-KRLS, KLMS and FB-KRLS. Besides, in the adaptive online learning algorithms, it can be clearly seen from Tables 1 and 2 that the RMSE value of each group of data is less than the former in turn, namely, FB-KRLS has the highest prediction accuracy compared with other kernel learning methods. The prediction accuracy of KLMS and FB-KRLS methods in this experiment are also slightly better than that of the variational inference Gaussian process method[21].

    Fig.1 gives the forecasting curves of different forecasting methods with 15 min in advance. Fig.2 gives the forecasting curves of different forecasting methods with 30 min in advance.

    Fig.1 Forecasting results with 15 min ahead using kernel adaptive filtering methods

    It can be seen from Figs.1 and 2, the flow forecasting curves given by KLMS, ALD-KRLS and FBKRLS methods are closer to the actual value compared with other forecasting methods, which means it can better forecast the actual traffic flow.

    Fig.2 Forecasting results with 30 min ahead using kernel adaptive filtering methods

    2.2 Experiment B

    The experiment selected the traffic flow data from a highway observation station in Beijing. The total observation period was 96 h in 4 days, there were 384 sets in total and time interval is 15 min[22]. The first 285 groups of data were taken as the training data, the rest data were test data, and the embedding dimensionm=4 was selected. The cross-validation method was used to determine the predictive model parameters of different kernel learning methods.

    KRLS, KLMS, KELM, KPLS, KRLS, KPCA, LSSVM, SVM methods select Gaussian kernel functions with kernel function widthσ=1; the regularization parameter of KELMγ=50; the potential variables of KPLS isP=10; the parameters of SVM and LSSVM areC=0.5,ε=0.01. In KPCA-SVM, KPCA-LSSVM and KPCA-KELM methods, the nonlinear principal components of KPCA method are 10; SVM selects linear kernel function; ALD-KRLS algorithm has the maximum dictionary capacityMmax=90 and the thresholdυ=0.01.

    The learning rate of KLMS isη=0.2, the fixed memory size of FB-KRLS isM=90 and the regularization parameter isλ=0.000 1.

    It can be seen from Tables 3 and 4 that KLMS and KRLS achieve better prediction results in traffic flow forecasting. The prediction accuracies of KLMS and KRLS in this experiment are also compared with that in Ref.[22] which uses T-S fuzzy neural network in traffic flow forecasting.

    Table3Performancecomparisonofforecastingresultswith15minahead

    Forecasting methodδMAPEδRMSEδNRMSESVM33.808 623.454 80.269 3LSSVM33.813 123.015 40.262 9KELM33.862 923.260 70.267 1KPCA-SVM33.610 223.180 80.266 2KPCA-LSSVM32.901 122.847 80.262 4KPCA-KELM32.889 922.587 20.256 8KPLS32.893 722.544 90.258 9ALD-KRLS32.697 522.481 90.258 5KLMS32.580 122.470 80.258 0FB-KRLS32.429 122.456 10.255 9

    Table4Performancecomparisonofforecastingresultswith30minahead

    Forecasting methodδMAPEδRMSEδNRMSESVM43.446 630.429 80.347 6LSSVM42.288 930.221 20.344 9KELM43.288 829.867 90.341 2KPCA-SVM43.981 930.021 50.343 0KPCA-LSSVM43.690 329.216 90.335 5KPCA-KELM43.267 928.969 70.335 0KPLS43.131 028.860 20.332 5ALD-KRLS43.089 129.398 60.337 6KLMS42.926 529.202 90.335 3FB-KRLS41.996 128.809 50.332 0

    Figs.3 and 4 show the comparison curves by different predicted methods with 15 min and 30 min in advance, respectively.

    Fig.3 Forecasting results with 15 min ahead using different kernel-based learning methods

    It can be seen that the proposed methods can accurately predict the actual traffic flow. The proposed adaptive filtering methods use adaptive update prediction model to complete the test phase of the experiment, and the initial model parameters are generated by the training process. If the test data need to be tested in the first test phase, the training model parameters are first used for test. When the true data are obtained, the original model parameters are updated by the true data, and then the updated model is used to test the next data until all the test data are completed.

    Fig.4 Forecasting results with 30 min ahead using different kernel-based learning methods

    Kernel learning algorithms can improve the nonlinear approximation ability of regression modeling. The experimental results verify the effectiveness of the proposed KAF algorithms. The KLMS algorithm and FB-KRLS algorithm can also improve the prediction accuracy to a certain extent and speed up the prediction speed. The prediction accuracy of FB-KRLS method fluctuates little and has strong adaptability, which shows a good prediction effect.

    3 Conclusion

    This study applies KLMS and FB-KRLS methods based on KAF to short-term traffic forecasting. Compared with other models, kernel learning algorithms can improve the nonlinear approximation capability of regression modeling. The real freeway traffic volume data sets are used for the experiments. The KLMS and FB-KRLS models are trained and their one-step and two-step forecasting performances are tested. Three criteria, MAPE, NRMES and RMSE, are employed for performance evaluation and the evaluation results are presented by data sets.

    The one-step and two-step forecasting results show that the KLMS method has adaptive learning characteristics compared with the traditional LMS, and sparse rules can control the size of the kernel matrix to improve the generalization ability and prediction accuracy of the network, which fully reflects the advantages of adaptive filtering. FB-KRLS is not only an efficient update method for pruning an arbitrary point from the dictionary, but also a label update procedure to provide tracking capability by using a discarding criterion to maintain its memory size. The results of experiment A and experiment B show that KAF methods are suitable for large data sets the prediction accuracy can be improved greatly, i.e. the accuracy of FB-KRLS is improved by 3.190 9(δRMSE) compared with that of SVM.

    KAF methods are a feasible and effective choice for time-varying and nonlinear traffic flow systems due to its adaptability to online learning. In view of the complexity and variety of problems in practical applications, more applications of KAF in more fields are the further research directions in the future.

    国产精品久久久久久精品古装| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 国产黄片视频在线免费观看| 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 深夜a级毛片| 国产亚洲最大av| 日韩免费高清中文字幕av| 蜜桃久久精品国产亚洲av| 在线精品无人区一区二区三| 亚洲美女黄色视频免费看| 高清av免费在线| 亚洲精品国产av成人精品| 国产深夜福利视频在线观看| 人妻制服诱惑在线中文字幕| av免费观看日本| 免费av中文字幕在线| 亚洲精品乱久久久久久| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩视频精品一区| 久久精品国产自在天天线| 色婷婷av一区二区三区视频| 午夜激情久久久久久久| 久久综合国产亚洲精品| 婷婷色av中文字幕| 熟女av电影| 日韩一本色道免费dvd| 国产成人精品婷婷| 亚洲国产精品成人久久小说| 国产淫语在线视频| 在线免费观看不下载黄p国产| 亚洲精品一区蜜桃| av.在线天堂| 99久久中文字幕三级久久日本| av卡一久久| 亚洲国产成人一精品久久久| 精品人妻熟女毛片av久久网站| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 国产精品国产三级国产专区5o| 亚洲人成网站在线观看播放| 自拍偷自拍亚洲精品老妇| 伦理电影免费视频| 超碰97精品在线观看| 国产毛片在线视频| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 狂野欧美白嫩少妇大欣赏| av专区在线播放| 亚洲av欧美aⅴ国产| 国产国拍精品亚洲av在线观看| 欧美 亚洲 国产 日韩一| 国产日韩欧美亚洲二区| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 最后的刺客免费高清国语| 伊人久久国产一区二区| 国产精品久久久久久久电影| 日本猛色少妇xxxxx猛交久久| 简卡轻食公司| 青春草视频在线免费观看| 人妻夜夜爽99麻豆av| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| tube8黄色片| 夜夜看夜夜爽夜夜摸| 日韩大片免费观看网站| 一本大道久久a久久精品| 国产一区有黄有色的免费视频| 亚洲精华国产精华液的使用体验| 中文天堂在线官网| 日韩中文字幕视频在线看片| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 国产精品.久久久| 又大又黄又爽视频免费| 王馨瑶露胸无遮挡在线观看| 精品一区二区三卡| 国产精品国产三级专区第一集| 青春草亚洲视频在线观看| 国产日韩欧美视频二区| 大香蕉久久网| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 高清视频免费观看一区二区| www.色视频.com| 亚洲精品国产av成人精品| 一级爰片在线观看| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 在线免费观看不下载黄p国产| 熟女av电影| 深夜a级毛片| 日日爽夜夜爽网站| 久久久久久久久久久丰满| 老司机影院毛片| 亚洲一级一片aⅴ在线观看| 国产精品久久久久成人av| 亚洲第一av免费看| 亚洲精品亚洲一区二区| 综合色丁香网| 欧美3d第一页| 亚洲经典国产精华液单| 日韩av免费高清视频| 水蜜桃什么品种好| 国产在线免费精品| 国产男人的电影天堂91| 熟女人妻精品中文字幕| 国产欧美亚洲国产| 亚洲av福利一区| 水蜜桃什么品种好| 不卡视频在线观看欧美| 亚洲一级一片aⅴ在线观看| 国产片特级美女逼逼视频| 午夜视频国产福利| av播播在线观看一区| 91在线精品国自产拍蜜月| 免费看av在线观看网站| 日韩欧美一区视频在线观看 | 亚洲成人手机| videossex国产| 国产日韩欧美视频二区| 国产亚洲av片在线观看秒播厂| 高清欧美精品videossex| 色婷婷久久久亚洲欧美| 麻豆精品久久久久久蜜桃| 一个人免费看片子| 国产白丝娇喘喷水9色精品| 91午夜精品亚洲一区二区三区| 国产伦精品一区二区三区视频9| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产| 国产高清三级在线| 亚洲国产精品999| 永久网站在线| 最黄视频免费看| 男女国产视频网站| 一本久久精品| 欧美成人精品欧美一级黄| 日韩成人av中文字幕在线观看| 高清在线视频一区二区三区| 一区二区三区免费毛片| 在线 av 中文字幕| 中文字幕制服av| 日韩中字成人| 国产成人精品久久久久久| 亚洲国产精品999| 国产免费又黄又爽又色| av黄色大香蕉| av黄色大香蕉| 日韩精品免费视频一区二区三区 | 女人久久www免费人成看片| 五月伊人婷婷丁香| 欧美另类一区| 高清欧美精品videossex| 熟女电影av网| 国产高清不卡午夜福利| 赤兔流量卡办理| 国产又色又爽无遮挡免| 人妻 亚洲 视频| av在线app专区| 91成人精品电影| 99热这里只有是精品50| 久久精品熟女亚洲av麻豆精品| 男女无遮挡免费网站观看| 日韩av在线免费看完整版不卡| 9色porny在线观看| 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 日韩av免费高清视频| 国产一区二区在线观看av| 免费大片18禁| 涩涩av久久男人的天堂| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 丁香六月天网| 街头女战士在线观看网站| 黄色怎么调成土黄色| 精品久久久精品久久久| 精品国产国语对白av| 欧美日韩视频高清一区二区三区二| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 亚洲色图综合在线观看| 两个人免费观看高清视频 | 亚洲,一卡二卡三卡| 又爽又黄a免费视频| 国产女主播在线喷水免费视频网站| 搡老乐熟女国产| 18禁动态无遮挡网站| 亚洲av二区三区四区| 欧美精品国产亚洲| 三上悠亚av全集在线观看 | 国产精品99久久99久久久不卡 | 高清黄色对白视频在线免费看 | 99视频精品全部免费 在线| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 日本黄大片高清| 国产日韩一区二区三区精品不卡 | 欧美日本中文国产一区发布| 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 午夜激情久久久久久久| 免费黄网站久久成人精品| 亚洲国产精品一区二区三区在线| 久久6这里有精品| 丁香六月天网| 美女主播在线视频| 水蜜桃什么品种好| 久久国产精品大桥未久av | 人人妻人人爽人人添夜夜欢视频 | 中文字幕亚洲精品专区| 亚洲精品自拍成人| 日韩不卡一区二区三区视频在线| 精品久久久久久久久亚洲| 少妇人妻久久综合中文| 激情五月婷婷亚洲| 亚洲婷婷狠狠爱综合网| 国产一级毛片在线| h视频一区二区三区| 国产黄片美女视频| 日韩av在线免费看完整版不卡| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| 99久久人妻综合| 欧美区成人在线视频| av一本久久久久| 高清毛片免费看| 中文天堂在线官网| 99九九在线精品视频 | 人人妻人人添人人爽欧美一区卜| 美女中出高潮动态图| 亚洲精品日韩av片在线观看| 狂野欧美白嫩少妇大欣赏| 成人免费观看视频高清| 青青草视频在线视频观看| 国产亚洲av片在线观看秒播厂| 国产亚洲5aaaaa淫片| 日韩欧美精品免费久久| 免费看光身美女| 中文精品一卡2卡3卡4更新| 欧美日韩亚洲高清精品| 亚洲真实伦在线观看| 亚洲精品国产av成人精品| 午夜福利,免费看| 日韩三级伦理在线观看| 久久精品国产a三级三级三级| 日日啪夜夜撸| 亚洲国产精品成人久久小说| 精品酒店卫生间| 多毛熟女@视频| 国产在线一区二区三区精| 国产黄频视频在线观看| 欧美xxxx性猛交bbbb| 国产男女超爽视频在线观看| 国产av国产精品国产| 少妇被粗大的猛进出69影院 | 大陆偷拍与自拍| 国产日韩一区二区三区精品不卡 | 人妻一区二区av| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 免费高清在线观看视频在线观看| 人妻少妇偷人精品九色| 久久人妻熟女aⅴ| 一二三四中文在线观看免费高清| 91精品一卡2卡3卡4卡| 丰满人妻一区二区三区视频av| 国产无遮挡羞羞视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲综合精品二区| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久av不卡| 老女人水多毛片| 久久99一区二区三区| 97在线视频观看| 最近2019中文字幕mv第一页| 尾随美女入室| 一区在线观看完整版| 亚洲欧美日韩卡通动漫| 国产爽快片一区二区三区| 女性生殖器流出的白浆| 一本—道久久a久久精品蜜桃钙片| 六月丁香七月| 久久精品国产鲁丝片午夜精品| 亚洲欧美成人精品一区二区| 国产日韩欧美在线精品| 91午夜精品亚洲一区二区三区| 国产免费视频播放在线视频| 国产一区有黄有色的免费视频| 国产极品天堂在线| 欧美日韩国产mv在线观看视频| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 亚洲国产精品一区三区| 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| 99久久精品国产国产毛片| 日韩在线高清观看一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品99久久99久久久不卡 | 水蜜桃什么品种好| 国产欧美亚洲国产| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区国产| 伊人久久精品亚洲午夜| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 各种免费的搞黄视频| 免费黄色在线免费观看| 一个人看视频在线观看www免费| 精品一区二区免费观看| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 国产色婷婷99| 日韩欧美 国产精品| 成人影院久久| 丝袜在线中文字幕| 黑丝袜美女国产一区| 亚洲av男天堂| 日韩亚洲欧美综合| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜爱| 91成人精品电影| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 午夜福利在线观看免费完整高清在| 各种免费的搞黄视频| 亚洲国产精品国产精品| 亚洲伊人久久精品综合| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 久久久久久久久久久丰满| 久久精品国产自在天天线| 亚洲av综合色区一区| 交换朋友夫妻互换小说| 久久精品夜色国产| 天天操日日干夜夜撸| 亚洲欧美清纯卡通| 三级国产精品欧美在线观看| 中文乱码字字幕精品一区二区三区| 日本免费在线观看一区| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线| 一二三四中文在线观看免费高清| .国产精品久久| av卡一久久| 国产成人精品福利久久| 亚洲婷婷狠狠爱综合网| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 亚洲电影在线观看av| 精品久久久精品久久久| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看| 插阴视频在线观看视频| 天堂中文最新版在线下载| 一本大道久久a久久精品| 熟女电影av网| 成年人午夜在线观看视频| 亚洲av日韩在线播放| 久久久久网色| 久久久亚洲精品成人影院| 国产美女午夜福利| 亚洲av中文av极速乱| 欧美xxxx性猛交bbbb| 亚洲精品视频女| 免费在线观看成人毛片| 久久国产乱子免费精品| 亚洲人成网站在线播| 26uuu在线亚洲综合色| 纯流量卡能插随身wifi吗| 欧美bdsm另类| 国产日韩欧美亚洲二区| 五月玫瑰六月丁香| 久久这里有精品视频免费| 欧美另类一区| 亚洲,欧美,日韩| 国产黄片视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 多毛熟女@视频| 日本欧美视频一区| 国产精品免费大片| 熟女av电影| 综合色丁香网| 十八禁网站网址无遮挡 | 欧美区成人在线视频| 国产在视频线精品| 久久久久久久久久久久大奶| 麻豆成人午夜福利视频| 男人舔奶头视频| 秋霞在线观看毛片| 自拍偷自拍亚洲精品老妇| 性色av一级| 欧美日韩在线观看h| 在线观看www视频免费| 亚洲天堂av无毛| 国产欧美日韩一区二区三区在线 | 六月丁香七月| 永久网站在线| 国产精品99久久99久久久不卡 | 中国国产av一级| 亚洲性久久影院| 日本爱情动作片www.在线观看| 国产成人精品福利久久| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 亚洲不卡免费看| 国产精品国产三级国产av玫瑰| 成人美女网站在线观看视频| 九色成人免费人妻av| 亚洲人成网站在线观看播放| 嫩草影院新地址| 九草在线视频观看| 午夜老司机福利剧场| 中文字幕人妻丝袜制服| 日韩 亚洲 欧美在线| 国产精品国产三级专区第一集| 国产一级毛片在线| 亚洲综合色惰| 少妇精品久久久久久久| 97超视频在线观看视频| av黄色大香蕉| 一区二区av电影网| 欧美成人午夜免费资源| 久久国产乱子免费精品| 亚洲人与动物交配视频| 日韩欧美 国产精品| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久| 观看美女的网站| 日韩一区二区视频免费看| av免费在线看不卡| 国产一级毛片在线| 久久久午夜欧美精品| 男人和女人高潮做爰伦理| 一二三四中文在线观看免费高清| kizo精华| 最近中文字幕高清免费大全6| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 午夜日本视频在线| 久热久热在线精品观看| 日日撸夜夜添| 精品视频人人做人人爽| 欧美另类一区| 久久久久久久亚洲中文字幕| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 99re6热这里在线精品视频| 国产一区二区在线观看av| 国产中年淑女户外野战色| 亚洲欧美精品自产自拍| 午夜福利影视在线免费观看| 黄色日韩在线| 亚洲高清免费不卡视频| 黄色一级大片看看| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 欧美另类一区| 国产欧美日韩精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 乱人伦中国视频| 国内揄拍国产精品人妻在线| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| a级毛色黄片| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区| 免费观看在线日韩| 性色avwww在线观看| 大陆偷拍与自拍| 在线观看免费高清a一片| 日本黄色日本黄色录像| 久久精品久久精品一区二区三区| 国产极品天堂在线| 久久99热6这里只有精品| 少妇人妻 视频| 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂| 国产男女超爽视频在线观看| 欧美xxxx性猛交bbbb| 3wmmmm亚洲av在线观看| 亚洲国产毛片av蜜桃av| 久久午夜综合久久蜜桃| 色网站视频免费| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 久久国产精品男人的天堂亚洲 | 一区二区av电影网| 99久久精品一区二区三区| 少妇裸体淫交视频免费看高清| 欧美日韩综合久久久久久| 最近的中文字幕免费完整| 久久久久精品久久久久真实原创| 亚洲丝袜综合中文字幕| 91在线精品国自产拍蜜月| 国产av码专区亚洲av| 亚洲人与动物交配视频| 亚洲av成人精品一二三区| 欧美97在线视频| 久久综合国产亚洲精品| 精品国产一区二区三区久久久樱花| 黄色视频在线播放观看不卡| 看非洲黑人一级黄片| 国产一区有黄有色的免费视频| 丰满迷人的少妇在线观看| 国产精品.久久久| 国产在视频线精品| 国产精品成人在线| 亚洲av在线观看美女高潮| 男女边吃奶边做爰视频| 国产黄片美女视频| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久| av专区在线播放| 精品少妇久久久久久888优播| 日本-黄色视频高清免费观看| 日韩一区二区三区影片| 少妇人妻久久综合中文| 91精品一卡2卡3卡4卡| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看 | 欧美激情国产日韩精品一区| 国产精品久久久久成人av| 国内少妇人妻偷人精品xxx网站| 香蕉精品网在线| 一级片'在线观看视频| 国产在线视频一区二区| 曰老女人黄片| av福利片在线| 青春草视频在线免费观看| 高清不卡的av网站| 伊人亚洲综合成人网| 九九爱精品视频在线观看| 多毛熟女@视频| .国产精品久久| 99热6这里只有精品| 日日撸夜夜添| 国产精品不卡视频一区二区| 欧美日韩国产mv在线观看视频| 欧美亚洲 丝袜 人妻 在线| 精品人妻一区二区三区麻豆| 亚洲情色 制服丝袜| 亚洲欧美精品自产自拍| 亚洲av不卡在线观看| 大片电影免费在线观看免费| 女性生殖器流出的白浆| 一级黄片播放器| 丰满人妻一区二区三区视频av| 99re6热这里在线精品视频| 亚洲精品日本国产第一区| 日韩伦理黄色片| 国产伦精品一区二区三区四那| 国产成人免费无遮挡视频| 日韩av在线免费看完整版不卡| 十八禁高潮呻吟视频 | av天堂中文字幕网| 99热这里只有是精品在线观看| 一本—道久久a久久精品蜜桃钙片| 在线精品无人区一区二区三| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 中国美白少妇内射xxxbb| 2021少妇久久久久久久久久久| 午夜av观看不卡| 日韩视频在线欧美| 热re99久久国产66热| 亚洲精品日韩在线中文字幕| 久久久a久久爽久久v久久| 久久精品久久精品一区二区三区| 22中文网久久字幕| 国产深夜福利视频在线观看| 99九九线精品视频在线观看视频| 大话2 男鬼变身卡| 亚洲精品乱码久久久v下载方式| 成人18禁高潮啪啪吃奶动态图 | 久久99蜜桃精品久久| 日韩视频在线欧美| 大片免费播放器 马上看| 国产精品成人在线| 久久精品熟女亚洲av麻豆精品| 18禁在线无遮挡免费观看视频| 久久99精品国语久久久| 欧美97在线视频| 美女内射精品一级片tv| 在线观看免费日韩欧美大片 | 日韩欧美 国产精品| 国产在线一区二区三区精| 天堂8中文在线网| 边亲边吃奶的免费视频| 97在线人人人人妻| 午夜免费鲁丝| 男女啪啪激烈高潮av片| 老女人水多毛片| 亚洲欧美日韩卡通动漫| 国产精品国产三级专区第一集| 夜夜爽夜夜爽视频| 在线观看免费高清a一片|