• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An optimal strategy for coordinating and dispatching “source-load”in power system based on multiple time scales

    2018-12-20 08:57:12LIUYanfengDONGHaiyingWANGNingboMAMing

    LIU Yan-feng, DONG Hai-ying,2, WANG Ning-bo, MA Ming

    (1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. School of New Energy & Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;3. Wind Power Technology Center of Gansu Electric Power Company, Lanzhou 730070, China)

    Abstract: Due to the phenomenon of abandoning wind power and photo voltage (PV) power in the “Three Northern Areas” in China, this paper presents an optimal strategy for coordinating and dispatching “source-load” in power system based on multiple time scales. On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching, the optimal model of coordinating and dispatching “source-load” in power system based on multiple time scales is established. It can simultaneously and effectively dispatch conventional generators, wind plant, PV power station, pumped-storage power station and load side resources by optimally using three time scales: day-ahead, intra-day and real-time. According to the latest predicted information of wind power, PV power and load, the original generation schedule can be rolled and amended by using the corresponding time scale. The effectiveness of the model can be verified by a real system. The simulation results show that the proposed model can make full use of “source-load” resources to improve the ability to consume wind power and PV power of the grid-connected system.

    Key words: multiple time scales; “source-load” coordination; pumped-storage power station; wind plant; photovoltaic(PV) power station

    0 Introduction

    Renewable energy has the advantages of no pollution, low carbon and so on. However, compared with traditional energy sources, renewable energy has the characteristics of stochasticity and volatility that seriously restrict its rapid development. Therefore, the study on the large-scale grid-connection of renewable energy, such as wind power and photovoltaic (PV) power, has become one of research hotspots in power industry today[1-5].

    To optimize the dispatch of grid-connected renewable energy, many scholars at home and abroad have proposed many kinds of schemes. To take full advantage of abandoned wind, Cui, et al. established a system model[6], which combined wind plant with pumped-storage power station. After analyzing the output of wind power and pumped-storage power station by simulation, the maximum benefit was got. Although this method can reduce the capacity of abandoned wind to a certain degree, it cannot solve the problem of abandoning wind power at night. Zhao, et al. made an comprehensive introduction to the current energy-storage patterns, including pumped-storage, energy-storage by compressing air and thermal energy, and so on[7]. Among them, the pumped-storage technique was used more widely. Due to some technical restrictions, most of the energy-storage patterns described above faced the problems of limited storage capacity and insufficient economy except pumped-storage. Taking Jilin Provice as an example, Chen, et al. introduced peak load and vale load and employed electric boiler with thermal energy to conduct energy conversion of wind power, which realized the heating by combining grid-connected wind power with central heating enterprises so as to save coal resources and reduce the discharge of pollutant air[8]. Although the utilization of wind power has been improved effectively by this method, it cannot relieve the pressure on power grid during the peak load period.

    As for optimization of power system from the perspective of load side resource dispatching, scholars have made some achievements. Zhang, et al. pointed out that the implementation of demand response is helpful to improve the reliability of power supply[9-10]. However, there are few studies on demand response to offer the economy to power companies. Zhao, et al. discussed the demand response, energy-storage systems and the dispatch of wind power, but they did not consider them comprehensively[11-13]. Chen, et al. discussed the optimal dispatch scheme among wind power, photo voltage and energy storage[14-16], but they did not consider the uncertainty of wind power.

    In this paper, firstly, we analyze the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatch based on previous studies. Then, since the predicted output error of wind power, PV power and load power will decrease with the reduction of predicted time scale, we establish an model optimal for coordinating and dispatching “source-load” in power system based on mutiple time Scales. Due to the predicted accuracy of wind power, the output of PV power and load power will increase gradually with the reduction of time scale, and the planned dispatch strategy based on multiple time scales is divided into day-ahead rolling planned dispatch for 24 h, intra-day rolling planned dispatch for 6 h and real-time dispatch for 15 min. According to the latest predicted information of wind power, the PV power and load power, planned dispatch schemes based on all the time scales coordinate each other so that the generation schedule in the remained period will be rolled and amended to reduce the predicted error gradually. Finally, combined with specific examples, the effectiveness of the optimal strategy for coordinating and dispatching “source-load” in power system based on multiple time scales is verified by actual case.

    1 Analysis of characteristics of “source-load”resource

    1.1 Uncertainty of wind power and PV power

    Due to the influence of geography, seasons and other factors, the distribution of wind power shows great stochasticity and volatility. The anemometry data show that the daily average output of one wind plant varies from 0 to that rated. Its volatility is quite obvious, as shown in Fig.1.

    Fig.1 Daily output distribution of wind plant

    As shown in Fig.2, the output of wind plant in spring and winter is more than that in summer and autumn. The output distribution of wind plant is quite opposite to the trend of load change, in which the anti-peak characteristic is obvious and the peaking pressure of power grid increases.

    Fig.2 Yearly output distribution of wind plant

    Fig.3 Monthly output distribution of PV power station

    Because the output of PV power generation is impacted by the intensity of solar radiation, its monthly distribution is certainly regular and the output is more in the daytime than 0 in the night. Therefore, the change of PV power output is similar to that of the load. Fig.3 shows the monthly output distribution of PV power station.

    1.2 Characteristics of load side resource dispatch

    High-energy load has the characteristics of large capacity and great adjusting potential, and its adjusting range can reach 30%-100% of load capacity. Two reasons contribute to local accommodation of wind power consumed: one is that the use of sillicon controlled method SCR has the characteristics of rapid adjustment and group switching, the other is that most of the high-energy load is distributed in the vicinity of the grid of large-scale wind power. Therefore, the disadvantage that conventional power supply cannot effectively adjust large-scale wind power fluctuation can be overcome through the coordinated control of high-energy load and conventional power supply.

    Fig.4 Outputs of high-energy enterprise load before and after dispatch

    Fig.4 is a dispatching sketch of of high-energy industrial load. After dispatching, the load is shifted from time scale 11-14 to time scale 1-4, which means that this kind of load has a flexible adjusting ability so as to avoid the abandonment of wind power and PV power.

    2 Optimal model

    2.1 Overall strategy

    The connected power system is composed of wind power, PV power, pumped-storage power station and high-energy enterprise, and they are optimized uniformly.

    The day-ahead dispatch is for 24 h and it is divided into 96 time scales with an interval of 15 min. The day-ahead dispatch schedule is mainly responsible for essential day-ahead dispatch according to the prediction of day-ahead wind plant and PV power output as well as the predication of load.

    The intra-day rolling dispatch is for 6 h and it is updated 4 times every day. According to the latest prediction of day-ahead output of wind plant and PV power as well as the predication of load, the intra-day dispatch scheme has a rolling correction on the basis of the day-ahead dispatch to get the basic dispatch scheme revised.

    The real-time planned dispatch is updated every 15 min based on the dispatch scheme after the revised intra-day rolling dispatch, thus the real-time correction is constantly performed according to the latest predicted data. Finally, the output of connected power system can effectively track the curve of load power.

    2.2 Control strategy

    Based on the predicted data of the load, PV power generation and wind power generation, this paper presents a dispatch strategy within 15 min.

    When the wind power generation and PV power generation are more than the load, the excess part is used to drive the water pump to pump the water from the lower reservoir to the upper reservoir for storage. If the rated capacity of the upper reservoir is detected, the adjustable volume of demand side needs to be dispatched. On condition that the up-regulated space of demand side load can absorb the remaining PV power and wind power, the strategy that combines the pumped-storage charge with the up-regulated demand side will be employed. If the wind power genration and PV power generation still remain, it is judged whether the main grid is allowed to sell the residual power to the grid; if it is not allowed, some wind power and PV power may be removed. When the generation capacities of wind power and PV power are less than the load, the pumped-storage power station will be used preferentially to generate power to meet the load. If the power generation capacity of the upper reservoir reaches the lower limit, the remaining part will be adjusted through the demand side response; if it still cannot meet the demand, the commercial power will be introduced.

    The essential logic diagram is shown in Fig.5.

    Fig.5 Control strategy of power dispatching

    2.3 Day-ahead planned dispatch model

    2.3.1 Objective function

    (1)

    (2)

    The constraints are shown as follows:

    1) Balanced constraints of supply

    (3)

    2) Water balance of pumped-storage power station

    (4)

    Vi+1=Vi+Qi(P,H)ΔT(t),

    (5)

    whereHtis the head or lift of pumped storage generators, andPis the output value of pumped-storage power station.

    3) Output constraints of thermal power generators

    (6)

    4) Output constraints of wind power plant

    (7)

    wherePWFis the total predicted power (MW) of wind power plant.

    5) Output power constraints of PV power station

    (8)

    6) Power constraints of pumping generators

    (9)

    7) Power constraints of hydroelectric generators

    (10)

    8) Climbing constraints of generators

    (11)

    9) Constraints of reserved capacity of the system

    (12)

    (13)

    10) Constraints of minimum operation and downtime of thermal power generators

    (14)

    2.4 Intra-day planned dispatch model for 6 h

    2.4.1 Objective function

    (15)

    whereFhis the cost of the load dispatch;ρis the unit compensation cost of users;UI(t) is the response state of user at time scalet,UI(t)=1 if load needs to be increased,UI(t)=-1 if load needs to be decreased, andUI(t)=0 if non-action;PIis transfer volume of load; Δtis the time in one dispatch time scale.

    In order to ensure the normal activity of industrial users, load control center only can transfer load instead of increasing or reducing it. Therefore, the introduced load transfer can balance the constraints.

    1) Constraints of load transfer balance

    (16)

    Industrial users have the limit on flexible dispatching of supplied load capacity. Therefore, the constraints of the maximum response capacity are introduced.

    2) Constraints of the maximum response capacity

    (17)

    whereqIis the constraints of the maximum response capacity of users; other constraints of intra-day dispatching are basically similar to that of day-ahead dispatching. But the start time and stop time of generators participating start and stop operations are less than 6 h, namely

    (18)

    whereTstart,iandTstop,iare start time and stop time of generators, respectively.

    2.5 Real-time planned dispatch model

    2.5.1 Objective function

    (19)

    whereFris the real-time adjusting cost of conventional generators; ΔPGi,tis the adjustment capacity of real-time output of generators in time scalet;ri,tis the cost of unit output adjustment of generatoriat time scalet;γis penalty coefficient of abandoned wind and PV power;PWAis the capacity of abandoned wind and PV power.

    Among them, the cost of unit output adjustment of thermal power generators is

    (20)

    Other constraints of real-time dispatch are basically similar to that of day-ahead dispatch. But during the real-time planned dispatch, only the generators holding the abilities of rapid start and stop can be used for the adjustment of start-stop state of the planned dispatch, namely

    (21)

    whereTstart,iandTstop,iare start time and stop time of generators, respectively.

    3 Case analysis

    3.1 Introduction of CPLEX

    This paper uses the optimized software CPLEX to acquire the optimal solution. ILOG CPLEX, an internationally popular optimization software package with high performance, robustness and flexibility, includes CPLEX interface and CPLEX algorithm. The design philosophy of CPLEX is that the serious and complicated problems are solved quickly under the intervention of the minimum user. It is widely used in logistics industry, manufacturing industry, communication industry and ground engineering of oil field, etc., making the solutions of some complicated problems become relatively simple and efficient.

    3.2 Steps of solution

    The specific steps of solution are shown as follows:

    Step 1: the latest predicated data of wind power, PV power and load are obtained.

    Step 2: the program description is completed according to the mathematical model and constraints at each time scale.

    Step 3: the experimental data are imported into the CPLEX program for calculation in order to obtain the optimal output of wind power, PV power and load at each time scale.

    3.3 Case design

    Taking eight conventional generators, a wind plant with the installed capacity of 200 MW, a PV power station with the installed capacity of 30 MW, pumped-storage power stations with the installed capacity of 200 MW and high-energy enterprise with the electrical load of 260 MW for simulation. The simulation results can be obtained by CPLEX. The parameter characteristics of eight conventional generators are described in detail in Ref.[17]. Fig.6 shows the contrast curves of actual value of wind power and its predicted values in different time scales Fig.7 shows the contrast curves of the actual value of PV power and its predicted value in different time scales Fig.8 shows the contrast curves of the actual value of load power and its predicted values in different time scales.

    Through three-layer optimal dispatch (day-head for 24 h, intra-day for 6 h and real-time), total generation of thermal power plant is 13.248 GW·h during the period of dispatching. However, it is reduced by 21% compared with the total power generation of 16.872 GW·h before optimization. The total power generation of pumped-storage power station is 6.613 GW·h during the period of dispatching. It is increased by 29.9% compared with the total power generation of 5.087 GW·h before optimization.

    Fig.6 Predicted curves of wind power at different time scales

    Fig.7 Predicted curves of PV power at different time scales

    Fig.8 Predicted curves of load power at different time scales

    Table 1 shows the comparison results of the daily power generation of conventional generators before and after optimization.

    Table1Comparasiveresultsofdailypowergenerationofconventionalgeneratorsbeforeandafteroptimization

    GeneratorsoptimizationnumberPower generation before optimization (MW·h)Power generation after optimization (MW·h)13 0091 94423 0721 80932 8561 98741 8721 48851 992.68 1 56062 1601 920.0371 8241 75281 6081 656

    The contrast curves of networked wind power and PV power at each time scale is shown in Fig.9.

    Fig.9 Contrast curves of networked wind power and PV power at each time scale

    The contrast data of abandoned wind power and PV power of planned dispatch at different time scales are shown in Table 2.

    Table2ContrastdataofabandonedwindandPVofplanneddispatchingatdifferenttimescales

    Time scales of wind power and PV power Capacity of abandoned wind and PV power (MW·h)Rate of consuming(%)Day-ahead1 010.8283Intra-day for 6 h475. 6892Real-time101.8298.3

    From Fig.9 and Table 2, it can be seen that there still exists serious phenomenon of abandoning wind power and PV power in day-head planned dispatch. The phenomenon of abandoned wind power and PV power is relieved through the intra-day dispatch for 6 h. And through the final real-time dispatch, the phenomenon of abandoning PV power is controlled well. The overall grid is basically achieved expect for a little abandoned wind power at time scales 3 and 4 as well as abandoned PV power at time scales 15 and 16. Therefore, the rate of consuming wind power and PV power will increase with the decrease of time scales.

    In order to verify the validity of the model, this paper assumes that there are three different scenes based on day-ahead optimal dispatching. In scene 1, conventional thermal power generators, wind plant and PV power station are considered in optimal dispatching model; in scene 2, conventional thermal power generators, pumped-storage power station, wind plant and PV power station are considered in optimal dispatching model; in scene 3, conventional thermal power generators, pumped-storage power station, high-energy load enterprises on load side, wind plant and PV power station are considered in optimal dispatching model. The optimized model can be solved by applying optimized software CPLEX, and every operating cost of the system obtained in different scenes is shown in Table 3. The situation of abandoned wind and PV at every time scale in different scenes is shown in Fig.10.

    Table3Everyoperatingcostofthesystemobtainedindifferentscenes

    Situation operating costCosts of abandoned wind and PV powerDispatchon load sideTotal costScene 1108.6×10410.4×1040119×104Scene 297.31×1049.8×1040107×104Scene 381.45×1049.4×1042.8×10494×104

    Fig.10 Capacity of abandoned wind power and PV power at every time scale in different scenes

    From Table 3 and Fig.10, it can be seen that the system capacities of abandoned wind power and PV power and its cost will decrease conspicuously when the pumped-storage power station and the high-energy load enterprises on the load side participate in the optimization of the system. In addition, due to the influence of anti-peak characteristic and balanced constraints of load transfer, the load system with the trend of shifting load can play a role in replacing the output of generators with poor economy so as to consume more power of abandoned wind power and PV power, which makes the operating cost of conventional generators decline to some extent.

    4 Conclusion

    The model of coordinating and optimal dispatching “source-load” in power system based on multiple time scales is established taking the uncertainty of wind power and PV power and the dispatch characteristics of high-energy load into account. At the same time, it brings the conventional generators, wind plant, PV power station, pumped-storage power station and load side resources into dispatching at different time scales considering the penalty cost of abandoned wind power and PV power in the objective function. By utilizing the continuously updated prediction of wind power, the output of PV power and the predicted data of load, the model can adjust the dispatch scheme to ensure the reliability of the system. Furthermore, the economy of the system and the consumed ability of wind power and PV power are improved, which provides a reference to research on grid-connection of wind power and PV power in large scale.

    综合色av麻豆| 成人国产综合亚洲| av女优亚洲男人天堂| 免费观看的影片在线观看| 午夜福利在线观看吧| 老司机福利观看| 亚洲三级黄色毛片| 中文亚洲av片在线观看爽| 午夜福利18| 国产黄a三级三级三级人| 日韩高清综合在线| 成人av在线播放网站| 美女 人体艺术 gogo| 别揉我奶头 嗯啊视频| 久久久久久久久久久丰满 | 国产精品免费一区二区三区在线| 69av精品久久久久久| 又爽又黄无遮挡网站| 日韩欧美在线乱码| 最好的美女福利视频网| 97超视频在线观看视频| 一区福利在线观看| 赤兔流量卡办理| 99热精品在线国产| 天堂av国产一区二区熟女人妻| 波多野结衣巨乳人妻| 国产精品98久久久久久宅男小说| 波多野结衣高清无吗| 日本与韩国留学比较| eeuss影院久久| 哪里可以看免费的av片| 波多野结衣高清作品| av国产免费在线观看| 久久精品国产自在天天线| 亚洲av.av天堂| 长腿黑丝高跟| a级毛片免费高清观看在线播放| 国国产精品蜜臀av免费| 高清日韩中文字幕在线| 天堂√8在线中文| 91麻豆精品激情在线观看国产| 久久精品影院6| 欧美成人性av电影在线观看| 春色校园在线视频观看| x7x7x7水蜜桃| 欧美极品一区二区三区四区| 免费黄网站久久成人精品| 精品99又大又爽又粗少妇毛片 | 免费av不卡在线播放| 国产高清不卡午夜福利| 国产爱豆传媒在线观看| 天堂√8在线中文| 久9热在线精品视频| 观看免费一级毛片| 国产高清视频在线播放一区| 久久精品影院6| 麻豆成人午夜福利视频| 亚洲成av人片在线播放无| 波多野结衣高清无吗| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 少妇人妻精品综合一区二区 | .国产精品久久| 日韩,欧美,国产一区二区三区 | 国产精品一区二区免费欧美| 成人一区二区视频在线观看| 免费人成在线观看视频色| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 美女大奶头视频| 嫩草影院精品99| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 免费观看精品视频网站| 一个人看的www免费观看视频| 日本免费一区二区三区高清不卡| 日韩中字成人| 国产国拍精品亚洲av在线观看| 亚洲性夜色夜夜综合| 18禁裸乳无遮挡免费网站照片| 色视频www国产| 联通29元200g的流量卡| 日本成人三级电影网站| 成人三级黄色视频| 亚洲一级一片aⅴ在线观看| 国产一区二区亚洲精品在线观看| 美女xxoo啪啪120秒动态图| 久久久久久国产a免费观看| 久久中文看片网| 少妇的逼好多水| 国产私拍福利视频在线观看| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一小说| 亚洲国产色片| 国产成人av教育| 亚洲成人久久爱视频| 在线看三级毛片| 久久精品影院6| 精品免费久久久久久久清纯| 国产亚洲av嫩草精品影院| 午夜爱爱视频在线播放| 99热6这里只有精品| 日本在线视频免费播放| 真人做人爱边吃奶动态| 成人高潮视频无遮挡免费网站| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 99riav亚洲国产免费| 老女人水多毛片| 国产女主播在线喷水免费视频网站 | 天堂av国产一区二区熟女人妻| 精品人妻1区二区| 在线观看美女被高潮喷水网站| 成人二区视频| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 麻豆成人午夜福利视频| 久久久久国产精品人妻aⅴ院| 在线观看一区二区三区| 午夜精品在线福利| av在线亚洲专区| 少妇丰满av| 久久久久九九精品影院| 色5月婷婷丁香| 国产不卡一卡二| 久久午夜福利片| 国产在线精品亚洲第一网站| 免费看a级黄色片| 丝袜美腿在线中文| 国内精品久久久久精免费| 在线观看av片永久免费下载| 成人午夜高清在线视频| 亚洲国产精品久久男人天堂| 午夜福利高清视频| 欧美激情在线99| 精品人妻一区二区三区麻豆 | 色在线成人网| 国产精品久久视频播放| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看| 欧美最黄视频在线播放免费| 精品久久久久久久久亚洲 | 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 中出人妻视频一区二区| 亚洲专区国产一区二区| 露出奶头的视频| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 免费高清视频大片| 欧美成人免费av一区二区三区| av天堂中文字幕网| 狂野欧美激情性xxxx在线观看| 国产单亲对白刺激| 国产一区二区三区视频了| 亚洲精品国产成人久久av| 亚洲一区高清亚洲精品| 午夜福利在线观看免费完整高清在 | 国产爱豆传媒在线观看| 亚洲精华国产精华精| 黄色欧美视频在线观看| 色噜噜av男人的天堂激情| 日本欧美国产在线视频| 久久久久久久久久成人| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 中文在线观看免费www的网站| 一进一出抽搐gif免费好疼| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲 国产 在线| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 人人妻人人澡欧美一区二区| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 99在线人妻在线中文字幕| 久久精品国产99精品国产亚洲性色| 国产亚洲精品久久久久久毛片| 欧美性猛交黑人性爽| 国产精品久久久久久久久免| 国产精品综合久久久久久久免费| 亚洲精华国产精华精| 天堂av国产一区二区熟女人妻| 午夜福利欧美成人| 三级毛片av免费| 亚洲最大成人中文| 亚洲精品国产成人久久av| 欧美成人免费av一区二区三区| av.在线天堂| 深爱激情五月婷婷| 窝窝影院91人妻| 黄片wwwwww| 男女视频在线观看网站免费| 中文字幕高清在线视频| 亚洲av免费在线观看| xxxwww97欧美| av在线蜜桃| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 美女大奶头视频| 一本一本综合久久| 欧美日韩瑟瑟在线播放| 国国产精品蜜臀av免费| 久久久久久久亚洲中文字幕| 少妇被粗大猛烈的视频| 国产亚洲欧美98| av.在线天堂| 免费观看人在逋| 又黄又爽又刺激的免费视频.| 色在线成人网| 99在线视频只有这里精品首页| 搞女人的毛片| 国产精品三级大全| 亚洲天堂国产精品一区在线| 美女免费视频网站| aaaaa片日本免费| 亚洲成人免费电影在线观看| 亚洲七黄色美女视频| 欧美最黄视频在线播放免费| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 国内精品美女久久久久久| 91在线精品国自产拍蜜月| 日日夜夜操网爽| 色噜噜av男人的天堂激情| bbb黄色大片| 国产精品一区二区三区四区免费观看 | 中文字幕熟女人妻在线| 天堂网av新在线| 欧美bdsm另类| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 亚洲av一区综合| 亚洲一区高清亚洲精品| 人妻丰满熟妇av一区二区三区| 亚洲最大成人手机在线| 啦啦啦啦在线视频资源| 欧美精品啪啪一区二区三区| 91av网一区二区| 欧美性猛交╳xxx乱大交人| 一进一出抽搐动态| 国产欧美日韩精品一区二区| 亚洲成人久久性| 天堂动漫精品| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 免费高清视频大片| 真人一进一出gif抽搐免费| 天堂网av新在线| 亚洲一区二区三区色噜噜| 欧美性猛交黑人性爽| 国产精品伦人一区二区| 成人国产一区最新在线观看| 国产成人影院久久av| 欧美日韩瑟瑟在线播放| 一个人免费在线观看电影| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 亚洲欧美日韩高清专用| 精品一区二区三区视频在线观看免费| 性插视频无遮挡在线免费观看| 免费av观看视频| 精品午夜福利在线看| 亚洲不卡免费看| 精品人妻1区二区| 精品欧美国产一区二区三| h日本视频在线播放| 国产精品自产拍在线观看55亚洲| 中文字幕久久专区| av国产免费在线观看| 午夜激情福利司机影院| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 看黄色毛片网站| 国产精品av视频在线免费观看| 久久久久久大精品| 97超视频在线观看视频| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 在线观看一区二区三区| 精品无人区乱码1区二区| 国语自产精品视频在线第100页| 99热只有精品国产| 亚洲欧美激情综合另类| 网址你懂的国产日韩在线| 国产黄a三级三级三级人| 国产视频内射| 波野结衣二区三区在线| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频| 久久精品91蜜桃| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 国产亚洲精品久久久久久毛片| 日韩欧美一区二区三区在线观看| 午夜精品在线福利| 伦精品一区二区三区| 久久久久久久久久黄片| 成人二区视频| 国产高潮美女av| 综合色av麻豆| 最新在线观看一区二区三区| h日本视频在线播放| 国产一区二区激情短视频| 日本一本二区三区精品| 亚洲自偷自拍三级| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片免费观看直播| 在线免费观看不下载黄p国产 | 一区二区三区免费毛片| 又紧又爽又黄一区二区| 日韩高清综合在线| 国产老妇女一区| 国产精品久久久久久av不卡| 黄色日韩在线| 成人午夜高清在线视频| 成年版毛片免费区| 丝袜美腿在线中文| 波野结衣二区三区在线| 亚洲精品久久国产高清桃花| 在线a可以看的网站| 欧美黑人巨大hd| 不卡视频在线观看欧美| 欧美zozozo另类| 欧美精品啪啪一区二区三区| 欧美激情在线99| 天天一区二区日本电影三级| 久久久久久久精品吃奶| 伦理电影大哥的女人| 国产高清有码在线观看视频| 欧美日韩瑟瑟在线播放| 男女视频在线观看网站免费| 国产高清不卡午夜福利| 男插女下体视频免费在线播放| 国产精品国产高清国产av| 久久精品影院6| 成人鲁丝片一二三区免费| 12—13女人毛片做爰片一| 久久6这里有精品| 午夜免费男女啪啪视频观看 | 夜夜夜夜夜久久久久| 亚洲第一区二区三区不卡| av视频在线观看入口| 看黄色毛片网站| 免费电影在线观看免费观看| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 亚洲av中文字字幕乱码综合| 搡女人真爽免费视频火全软件 | 午夜福利视频1000在线观看| 尾随美女入室| 亚洲18禁久久av| 亚洲avbb在线观看| 婷婷精品国产亚洲av在线| 搡老妇女老女人老熟妇| 精品久久久久久久人妻蜜臀av| 国产私拍福利视频在线观看| 亚洲av不卡在线观看| 悠悠久久av| 亚洲精华国产精华精| 欧美激情国产日韩精品一区| 九九热线精品视视频播放| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 女生性感内裤真人,穿戴方法视频| 老女人水多毛片| 欧美bdsm另类| 成人鲁丝片一二三区免费| 国产乱人视频| 男人的好看免费观看在线视频| 国产精品人妻久久久久久| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 欧美+亚洲+日韩+国产| 亚洲精品久久国产高清桃花| 成人国产综合亚洲| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 老熟妇仑乱视频hdxx| 女人十人毛片免费观看3o分钟| 久久久久久久久中文| 色综合亚洲欧美另类图片| 麻豆av噜噜一区二区三区| 又紧又爽又黄一区二区| 日本免费a在线| 99热这里只有精品一区| 亚洲av五月六月丁香网| 男女做爰动态图高潮gif福利片| 亚洲精品影视一区二区三区av| 成人亚洲精品av一区二区| 又粗又爽又猛毛片免费看| 国产精品三级大全| 亚洲国产色片| 免费观看精品视频网站| 成年女人看的毛片在线观看| 黄色女人牲交| 嫩草影院新地址| 国产精品久久久久久久久免| 欧美又色又爽又黄视频| 99精品久久久久人妻精品| 国产伦在线观看视频一区| 99热只有精品国产| 欧美色欧美亚洲另类二区| 色哟哟哟哟哟哟| 久久久久九九精品影院| 日韩精品中文字幕看吧| 国产国拍精品亚洲av在线观看| 免费在线观看成人毛片| 国产爱豆传媒在线观看| 简卡轻食公司| 两个人的视频大全免费| 观看美女的网站| 人妻丰满熟妇av一区二区三区| 神马国产精品三级电影在线观看| 69人妻影院| 男女那种视频在线观看| 精品人妻视频免费看| 午夜爱爱视频在线播放| 国产乱人伦免费视频| 免费大片18禁| 久久久久久久久中文| 精品乱码久久久久久99久播| 亚洲美女搞黄在线观看 | 国内少妇人妻偷人精品xxx网站| 18禁在线播放成人免费| 少妇的逼水好多| 免费电影在线观看免费观看| 成人二区视频| 一级黄色大片毛片| 91久久精品国产一区二区三区| 中文在线观看免费www的网站| 人妻夜夜爽99麻豆av| 变态另类丝袜制服| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 身体一侧抽搐| 国产精品人妻久久久影院| 久久午夜亚洲精品久久| 国产又黄又爽又无遮挡在线| 亚洲经典国产精华液单| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 老司机福利观看| 网址你懂的国产日韩在线| 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区成人| 亚洲avbb在线观看| h日本视频在线播放| 久久精品国产亚洲av香蕉五月| 日本 欧美在线| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 婷婷精品国产亚洲av在线| 18禁在线播放成人免费| 成人二区视频| 国产精品一区二区三区四区免费观看 | 日本撒尿小便嘘嘘汇集6| 国产精品亚洲美女久久久| 午夜福利18| 日韩av在线大香蕉| 蜜桃久久精品国产亚洲av| 国语自产精品视频在线第100页| www.色视频.com| 亚洲美女视频黄频| 免费人成视频x8x8入口观看| 99热这里只有精品一区| 日本成人三级电影网站| 国产成年人精品一区二区| 午夜爱爱视频在线播放| 日韩在线高清观看一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 欧美成人性av电影在线观看| 美女高潮的动态| 看免费成人av毛片| 最新中文字幕久久久久| 欧美在线一区亚洲| 99久国产av精品| 欧美精品啪啪一区二区三区| 欧美日韩精品成人综合77777| 精品免费久久久久久久清纯| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 久久精品夜夜夜夜夜久久蜜豆| 久久亚洲真实| 精品99又大又爽又粗少妇毛片 | 99热网站在线观看| 欧美黑人巨大hd| 老师上课跳d突然被开到最大视频| 国产老妇女一区| 天堂动漫精品| 欧美xxxx性猛交bbbb| 欧美日本视频| 少妇人妻一区二区三区视频| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 看十八女毛片水多多多| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 99精品在免费线老司机午夜| 精品人妻偷拍中文字幕| 亚洲性夜色夜夜综合| 亚洲欧美精品综合久久99| 日韩精品中文字幕看吧| 他把我摸到了高潮在线观看| 在现免费观看毛片| 人人妻人人看人人澡| 日本色播在线视频| 久久亚洲真实| 精品国内亚洲2022精品成人| 97碰自拍视频| 一区二区三区四区激情视频 | 精品人妻一区二区三区麻豆 | 国产精品自产拍在线观看55亚洲| 久久精品国产99精品国产亚洲性色| 免费无遮挡裸体视频| 国产成年人精品一区二区| 国产麻豆成人av免费视频| 色5月婷婷丁香| 久久99热这里只有精品18| 好男人在线观看高清免费视频| 日韩在线高清观看一区二区三区 | 亚洲精品亚洲一区二区| 在线观看美女被高潮喷水网站| 简卡轻食公司| 日韩一区二区视频免费看| 两个人的视频大全免费| 一进一出好大好爽视频| 国产视频内射| 亚洲国产精品sss在线观看| 欧美xxxx黑人xx丫x性爽| 少妇的逼水好多| 亚洲精品成人久久久久久| 久久午夜福利片| 看黄色毛片网站| 88av欧美| 午夜精品一区二区三区免费看| 国产高清激情床上av| 亚洲欧美激情综合另类| 久久热精品热| 国产亚洲精品久久久com| 变态另类成人亚洲欧美熟女| 最近最新免费中文字幕在线| av天堂中文字幕网| 亚洲av熟女| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 亚洲国产精品合色在线| a级毛片免费高清观看在线播放| 免费观看精品视频网站| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 亚洲一级一片aⅴ在线观看| 久久草成人影院| 国产乱人视频| 真人一进一出gif抽搐免费| 国产精品98久久久久久宅男小说| 美女xxoo啪啪120秒动态图| 精品国内亚洲2022精品成人| 亚洲av免费在线观看| av在线老鸭窝| 99热只有精品国产| 精品一区二区三区av网在线观看| 少妇被粗大猛烈的视频| 国产av一区在线观看免费| 欧美精品国产亚洲| 午夜日韩欧美国产| 日本a在线网址| 国产精品亚洲一级av第二区| 成年人黄色毛片网站| 国内少妇人妻偷人精品xxx网站| 桃色一区二区三区在线观看| 搡老岳熟女国产| 中文字幕人妻熟人妻熟丝袜美| 国产国拍精品亚洲av在线观看| 亚洲午夜理论影院| 久久6这里有精品| 夜夜看夜夜爽夜夜摸| 乱系列少妇在线播放| 国产真实伦视频高清在线观看 | 男人舔奶头视频| 久久久国产成人精品二区| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 淫秽高清视频在线观看| 成人国产综合亚洲| 亚洲欧美日韩高清专用| 自拍偷自拍亚洲精品老妇| 亚洲美女搞黄在线观看 | 精品无人区乱码1区二区| 亚洲av美国av| 亚洲色图av天堂| 在线免费十八禁| 一级a爱片免费观看的视频| 国产久久久一区二区三区| 男女边吃奶边做爰视频| 国产精品国产高清国产av| 久久午夜亚洲精品久久| 免费看a级黄色片| 国产av一区在线观看免费| 久久精品综合一区二区三区| 亚洲无线观看免费| 久久天躁狠狠躁夜夜2o2o|