• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensors for control of water transparency in optical and microwave ranges

    2018-12-20 08:57:02KravchenkoKrivenkoLutsenkoPopov

    V F Kravchenko, E V Krivenko, V I Lutsenko, I V Popov

    (1. Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Moscow 125009, Russia;2. Bauman Moscow State Technical University, Moscow 105005, Russia;3. Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow 119992, Russia;4. Usikov Institute of Radiophysics and Electronics of National Academy of Sciences of Ukraine, Kharkiv 61085, Ukraine)

    Abstract: In the face of deteriorating environmental conditions in the world, water quality control is an urgent task. It can be solved by creating sensors with high accuracy and low cost, which requires the development of fundamentally new radiophysical methods that take advantage of the optical, microwave and millimeter wavelengths that have a significantly greater sensitivity to low concentrations of pollutants and a lower inertia. The article presents prototypes of measuring cells of the microwave and optical ranges as well as the results of an experimental study of water of various degrees of pollution with their help. The results show that the use of the highly sensitive method of capillary-waveguide resonance makes it possible to detect the presence of micro impurities in water with concentrations up to 0.1% and to identify water even from sources of various natural origins. In addition, the use of measurements at several frequencies in the optical range will make it possible to solve the problem of creating water control sensors with high sensitivity to pollution and low cost. It can be concluded that the possibility of complex use of multiwave sensors (optical, infrared and microwave ranges) allows to increase the sensitivity and reliability of water quality assessment.

    Key words: optical sensor; light attenuation in the medium; optical transparency; capillary-waveguide resonator; dielectric characteristics; Q-factor and depths of resonance absorption

    0 Introduction

    One of the key problems of the 21st century will be the problem of providing mankind with water of the required quality and in sufficient quantity. To solve it, it is necessary to develop the scientific basis for providing water in the future using smart-grid technologies. The first attempts to create them[1-5]showed that one of the key moments will be the development of intelligent water quality sensors combining high metrological characteristics with a sufficiently low cost and the possibility of mass production. In this paper, we will consider the possibility of creating such sensors in the optical, infrared (IR) and microwave wavelength ranges.

    1 Optical method

    Transparency is one of the important characteristics that determine the consumer quality of water. Monitoring of transparency or turbidity may be based on a registration in the optical range of transmission and scattering coefficients of light for a controlled pattern of water for several wavelengths.

    As dimness of water is usually accompanied by the change of its color (from bluish to yellow), it is expedient to use sensors in several wavelengths.

    Figs.1 and 2 show the layout of water transparency meter for 5 optical wavelengths (650 nm, red; 550 nm, green; 450 nm, blue) and infrared wavelengths (850 nm and 940 nm). It uses 5 emitters operating at different wavelengths and a broadband receiver. Measurement of attenuation at different wavelengths is carried out by one channel receiver, sequentially in time.

    To improve noise immunity against external light sources, low-frequency modulation of the radiation source (1 kHz) is used and the narrowband synchronous receiving of radiation is transmitted through the sample. The enlarged block diagram of sensor is shown in Fig.1, and a general view of a sensor unit in which the cell with tested water is placed is shown in Fig.2.

    Fig.1 Flow diagram: 1 is a microcontroller, 2 is arithmetic-logics unit (ALU) of microcontroller, 3 is ADC of microcontroller, 4 are emitters (light-emitting diodes LED), 5 is the investigated object, 6 is a photodetector, 7 is a display

    Fig.2 General view of multi-wave measuring device of transparency of water: 1 is measurement cuvette; 2 is a block for a cuvette with emitters and receiver; 3 is a display

    Spectral sensitivity used therein broadband photo-receiver (opt101) is shown in Fig.3. There are plotted wavelengths are used to transmit through the sample also. A more detailed description of the sensor is given in Ref.[6].

    Fig.3 Spectral sensitivity of receiver of multiwave sensor

    The device generates the pulse sequence which is produced by 5 LED light sources with different wavelength emitted signals (sources from 1 to 5, left to right). The receiver of the scattered signal is the photodetector (opt101). After the signal is amplified by the photodetector, the signal is fed to the input of the 12-bit ADC in the microcontroller. The microcontroller performs the modulation of the emitted signal, and then digital synchronous detection of the signal is received by the photodetector, finally digital filtering and display of the information about the received signal level on the photodetector from each source (from 1 to 5, from left to right, from top to bottom) are completed on the display screen. The use of modulation makes it possible to exclude the influence of natural light, filtering allows to increase the signal-to-noise ratio, and 32-time sampling allows to increase the effective ADC resolution to 14 bits, which increases the dynamic range of the system. This device allows you to investigate the transmission and reflection coefficients of media at several wavelengths in the optical range. To reduce measurement errors caused by uneven spectral sensitivity of the receiver, the device is calibrated when the measuring cuvette is filled with air and distilled water with the same volume as the liquid being examined.

    It is realized that the dynamic range of measurements of the luminous flux attenuates up to 30 dB to control the transparency (turbidity) of water in a wide range. The multiwave mode can increase the accuracy of measurements and to differentiate the sizes of polluting particles.

    The dependence of the attenuation of the optical signal on the degree of contamination of ground water for the different wavelengths is shown in Figs.4 and 5, and the changing of its transparency at that. To control the transparency, we use the standard method of estimation of resolution as used in television. It should be noted that in a sufficiently wide range of contaminants (from 0 to 80%), the attenuation on the degree of contamination is satisfactorily described by a linear relationship. Accuracy evaluation of the degree of contamination by this method does not exceed 2%, which is quite acceptable in the practice of using it for water quality control.

    The conducted researches have shown that the use of measurements at several frequencies of the optical range will allow to solve the problem of creating water monitoring sensors that have high sensitivity to pollution and low cost. A similar approach is used in Ref.[8] to assess the degree of water pollution in dishwashers and washing machines.

    Fig.4 Attenuation on the degree of contamination of water (brown color) for different waves lengths in optical and IR ranges: 1 is 940 nm, 2 is 850 nm, 3 is red, 4 is green, 5 is blue, pollution

    Fig.5 Optical transparency of water of brown color

    2 Measurements in millimeter wavelength range

    The presence of contaminants in water affects its dielectric properties. This circumstance can be used to control the degree of contamination of water. To detect contaminants, techniques of superhigh frequency (SHF) and extremely high frequency (EHF) dielectrometry may be used. Thus, the use of a highly sensitive capillary-waveguide resonance method[9]makes it possible to detect the presence of microimpurities in water with concentrations up to 0.1%, and, as studies shown, it makes it possible to identify water even from sources of different natural origins[10-15]. The cell of the dielectrometer is a capillary-waveguide resonator based on a rectangular waveguide with a cross-section 3.6 mm×1.8 mm and a dielectric capillary made of fluoroplastic with an outside diameter of 2re=1.5 mm and an internal capillary of 2ri=1.1 mm passing through the wide walls of the waveguide, as shown in Figs.6 and 7.

    Fig.6 Laboratory unit for determination of characteristics of liquids by the method of capillary-waveguide resonance: 1 is capillary-waveguide resonator, 2 is a general view of the lab setting based on panoramic EHF-meter of Р2-69 type

    Fig.7 Capillary-waveguide resonator

    Measuring of the frequency and depth of attenuation is performed at resonance. Application of the reference polarization attenuator in the measuring path can reduce measurement error of decay to the level of 0.5 dB. The measurement error of resonance frequency and bandwidth does not exceed 0.1 GHz. Due to the resonances in the multilayer capillary inside of which liquid is under investigation, the system is sufficiently sensitive to microimpurities.

    Fig.8 Descriptions of resonant absorption of water solutions with alcohol: 1 is a distillate; 2 is distillate + 1% of alcohol; 3 is a distillate +2% of alcohol; 4 is a distillate +4% of alcohol

    The possibilities of the method are illustrated by the dependence of the frequency of the absorption resonance on the alcohol concentration in the aqueous solution (Fig.8) and the effect on the quality factor of the absorption resonance (Fig.9)[9].

    It can be seen that the addition to water of alcohol at concentrations in units of percent is confidently registered by this method. The limited sensitivity of the method by concentration is approximately 0.2%. For water and aqueous solutions, the resonant absorption was observed at frequencies 63-66 GHz with a quality factor of 20-65.

    Fig.9 Dependences of changes of inductivity (a) and reverse Q-factor of absorption resonance (b) on the concentration of solution C

    For example, Fig.10 shows the frequency dependence of signal attenuation for several water samples (artesian and distillate). The greatest depth of the dip of the resonant absorption curve of electromagnetic energy was observed for the distillate of double distillation and it was ~43 dB (curve 1), for a distillate of single distillation it decreased to 41 dB (curve 2), and for artesian water it was 37 dB (curve 3).

    Curves for absorption resonance for different types of water are shown in Fig.10. Distillate, melted and tap water are shown on Fig.11.

    Fig.10 Descriptions of resonant absorption of different types of water: 1 is water 721; 2 is a distillate; 3 is a bi-distillate

    Fig.11 Descriptions of resonant absorption of different types of water: ■ is distillate; ? is melted snow; ● is tap water

    It can be seen that the distillate is characterized by the deepest resonant absorption. Thus resonance frequency, depth and quality factor can serve as indicators for assessing the purity of drinking water. The development of specialized measuring devices, and not universal ones, which were used in laboratory experiments, can significantly reduce the size of the sensor and its power consumption. The transition from millimeter to decimeter wavelength can significantly increase the size of the measuring capillary and simplify the design of the sensor, but this requires further development.

    In addition to the capillary-waveguide resonance absorption method, the classical resonance methods, in particular, “whispering gallery” resonances, can also be used to estimate water quality. For this purpose quasi-optical dielectric (QOD) and partially shielded quasi-optical dielectric resonators[9]can be used, in which inhomogeneity is introduced in a capillary filled with a medium under investigation. It is shown that such a resonator can be used as an element of stabilization of an oscillator based on a Gunn diode. In this case, the change in the characteristics of the inhomogeneity due to water contamination leads to changes in the oscillation frequency and the steepness of the electronic tuning of the generator[13-15].

    3 Design features of industrial water quality sensors

    Unlike laboratory water sensors, industrial designs must provide the ability to monitor the required volumes and have the minimum requirements for the user’s qualification to provide the possibility of working for a long time with the required quality characteristics in automatic mode[8].

    Structurally, the sensors of the optical detector which consists of a receiver and several radiators (optical and infrared bands) are located on opposite sides of a pipe with a diameter of approximately 20-25 mm and a length of up to 50 cm through which the investigated water flows. And a radio wave detector (of the decimeter band) uses a tube with a diameter of approximately 5-6 mm in the length of the working area of approximately 50-60 mm, through which the water under test flows. The sensors are freely integrated into the investigated water flow either directly or through a bypass circuit (a tapping is carried out in parallel to the main flow channel).

    4 Conclusion

    Complex use of multiband sensors (optical, IR and microwave ranges) allows to increase the sensitivity and reliability of water quality assessment.

    1) In the optical and infrared ranges, as an informative parameter the signal attenuation is used as it propagates through the medium under study.

    2) In the microwave band, while using the phenomenon of capillary-waveguide resonance, the parameters of the absorption resonance (frequency, quality factor and absorption depth) are informative. When using the resonances of higher types, such as “whispering gallery”, informative features of their self resonance frequency and quality factor are changing, which manifest themselves in changes in frequency and steepness of electron generator tuning are stabilized by this resonator.

    老司机影院成人| 蜜臀久久99精品久久宅男| 国产精品人妻久久久影院| 嫩草影院入口| 国产91av在线免费观看| av天堂中文字幕网| 亚洲av成人精品一二三区| 日本av手机在线免费观看| 国产乱来视频区| 99久国产av精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱码久久久久久按摩| 高清日韩中文字幕在线| 毛片女人毛片| 国产淫语在线视频| 成人毛片60女人毛片免费| 日韩制服骚丝袜av| 午夜免费激情av| 亚洲精品一区蜜桃| 日本免费在线观看一区| 中文精品一卡2卡3卡4更新| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| 日本午夜av视频| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 99热这里只有是精品50| 午夜福利在线观看免费完整高清在| 热99在线观看视频| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 看黄色毛片网站| 国产精品av视频在线免费观看| 舔av片在线| 少妇人妻精品综合一区二区| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 一个人免费在线观看电影| 最近2019中文字幕mv第一页| 久久久久免费精品人妻一区二区| 精品人妻视频免费看| 18禁在线播放成人免费| 女的被弄到高潮叫床怎么办| 老司机影院毛片| 久久这里只有精品中国| 久久国内精品自在自线图片| av专区在线播放| 边亲边吃奶的免费视频| or卡值多少钱| 久久久国产成人精品二区| 日韩欧美在线乱码| 91午夜精品亚洲一区二区三区| 麻豆国产97在线/欧美| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 黄片wwwwww| 岛国在线免费视频观看| 成年av动漫网址| 九草在线视频观看| 亚洲国产精品专区欧美| 99久久精品国产国产毛片| 高清在线视频一区二区三区 | 美女大奶头视频| 欧美一区二区亚洲| 极品教师在线视频| 夫妻性生交免费视频一级片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 两个人的视频大全免费| 91久久精品国产一区二区三区| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 神马国产精品三级电影在线观看| 久久精品综合一区二区三区| 成年免费大片在线观看| 白带黄色成豆腐渣| 99热网站在线观看| 人妻少妇偷人精品九色| 在线播放无遮挡| 寂寞人妻少妇视频99o| 日韩三级伦理在线观看| 成人av在线播放网站| 日韩一区二区视频免费看| 22中文网久久字幕| 亚洲最大成人av| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| 日本五十路高清| 亚洲精品国产成人久久av| 少妇人妻精品综合一区二区| 欧美日本视频| 精华霜和精华液先用哪个| 欧美zozozo另类| 99久久人妻综合| 99视频精品全部免费 在线| 97超视频在线观看视频| 亚洲国产精品成人久久小说| 中文资源天堂在线| 成人国产麻豆网| 丰满少妇做爰视频| 成人欧美大片| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月| 极品教师在线视频| 永久网站在线| 久久久精品94久久精品| 亚洲av电影不卡..在线观看| 国语自产精品视频在线第100页| 亚洲综合色惰| 水蜜桃什么品种好| 大香蕉久久网| 国产成年人精品一区二区| 亚洲av免费高清在线观看| 天堂网av新在线| 大话2 男鬼变身卡| 久久综合国产亚洲精品| 在线播放国产精品三级| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| av黄色大香蕉| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 建设人人有责人人尽责人人享有的 | 国产一区二区在线观看日韩| 国产黄片视频在线免费观看| 丝袜喷水一区| 一级片免费观看大全| 丰满迷人的少妇在线观看| 女人被躁到高潮嗷嗷叫费观| 全区人妻精品视频| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 九九在线视频观看精品| 亚洲国产精品一区三区| 在线观看人妻少妇| 久久99蜜桃精品久久| 亚洲欧美日韩卡通动漫| 精品视频人人做人人爽| 欧美日韩视频精品一区| 免费日韩欧美在线观看| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 水蜜桃什么品种好| 90打野战视频偷拍视频| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 十八禁高潮呻吟视频| 中文天堂在线官网| 免费观看性生交大片5| 国产日韩欧美亚洲二区| 成人手机av| 美女内射精品一级片tv| 少妇的逼水好多| 日本色播在线视频| 高清欧美精品videossex| 国产成人午夜福利电影在线观看| 精品久久久久久电影网| 欧美xxxx性猛交bbbb| 亚洲久久久国产精品| 精品一区二区免费观看| 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区| 国产极品粉嫩免费观看在线| 黄色视频在线播放观看不卡| 欧美日本中文国产一区发布| 少妇的逼好多水| 欧美3d第一页| 在线精品无人区一区二区三| 国产黄色免费在线视频| 少妇人妻久久综合中文| 国产欧美日韩综合在线一区二区| 制服人妻中文乱码| 麻豆乱淫一区二区| 亚洲人成网站在线观看播放| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡| 一级毛片我不卡| 午夜精品国产一区二区电影| 一个人免费看片子| 日本黄色日本黄色录像| 美女大奶头黄色视频| 亚洲国产av影院在线观看| 久久午夜福利片| 熟妇人妻不卡中文字幕| 亚洲国产精品999| 亚洲欧美精品自产自拍| 亚洲国产精品专区欧美| 在线观看美女被高潮喷水网站| 午夜激情av网站| 午夜福利视频在线观看免费| 精品酒店卫生间| 五月伊人婷婷丁香| 精品一区在线观看国产| 久久韩国三级中文字幕| 五月天丁香电影| 亚洲精品一区蜜桃| 久久狼人影院| 亚洲精品久久久久久婷婷小说| √禁漫天堂资源中文www| 亚洲国产色片| 欧美精品高潮呻吟av久久| 亚洲一区二区三区欧美精品| 丰满乱子伦码专区| 丝袜在线中文字幕| 老司机影院毛片| 国产亚洲午夜精品一区二区久久| 欧美3d第一页| 国产av精品麻豆| 又粗又硬又长又爽又黄的视频| 一边摸一边做爽爽视频免费| 欧美激情极品国产一区二区三区 | 免费看av在线观看网站| 亚洲在久久综合| 免费在线观看黄色视频的| 91精品伊人久久大香线蕉| av在线老鸭窝| 亚洲精品,欧美精品| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 久久精品国产自在天天线| a级毛片黄视频| 国产精品.久久久| 国国产精品蜜臀av免费| 国产日韩欧美在线精品| 美女国产视频在线观看| 亚洲精品国产av蜜桃| 日韩av不卡免费在线播放| 热re99久久国产66热| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 侵犯人妻中文字幕一二三四区| 国产高清不卡午夜福利| 久久影院123| 国产精品麻豆人妻色哟哟久久| 国产精品一国产av| 韩国av在线不卡| 九九在线视频观看精品| 久久韩国三级中文字幕| 国产探花极品一区二区| 成人影院久久| 午夜福利乱码中文字幕| 亚洲国产av影院在线观看| a级毛色黄片| 制服丝袜香蕉在线| 性色avwww在线观看| 色5月婷婷丁香| 亚洲av福利一区| 国产爽快片一区二区三区| 91午夜精品亚洲一区二区三区| 一区二区三区乱码不卡18| 亚洲成av片中文字幕在线观看 | 人人澡人人妻人| 夜夜爽夜夜爽视频| 少妇人妻 视频| 天堂俺去俺来也www色官网| 男女免费视频国产| 好男人视频免费观看在线| 国产毛片在线视频| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 免费观看a级毛片全部| 最近的中文字幕免费完整| 国产熟女欧美一区二区| 国精品久久久久久国模美| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 巨乳人妻的诱惑在线观看| 亚洲欧美成人综合另类久久久| 青春草国产在线视频| 亚洲欧美精品自产自拍| 日韩免费高清中文字幕av| 看免费成人av毛片| 午夜免费鲁丝| 欧美+日韩+精品| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡 | 日本91视频免费播放| 中文字幕人妻熟女乱码| 亚洲成人一二三区av| 伊人亚洲综合成人网| 国产在视频线精品| 成人亚洲欧美一区二区av| 久久青草综合色| 热99久久久久精品小说推荐| 五月玫瑰六月丁香| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 国产日韩欧美视频二区| 日韩一本色道免费dvd| 99久久精品国产国产毛片| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 深夜精品福利| 在线观看国产h片| 丝袜喷水一区| 只有这里有精品99| 一区二区三区乱码不卡18| 国产一级毛片在线| 日韩免费高清中文字幕av| 亚洲精品中文字幕在线视频| 国产av精品麻豆| 成人影院久久| 中文字幕免费在线视频6| 日韩一本色道免费dvd| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 亚洲丝袜综合中文字幕| 观看av在线不卡| 精品国产国语对白av| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 热re99久久国产66热| 亚洲丝袜综合中文字幕| 婷婷色综合大香蕉| 亚洲四区av| 人人妻人人爽人人添夜夜欢视频| 啦啦啦视频在线资源免费观看| 老熟女久久久| 欧美精品一区二区大全| 国产综合精华液| 国产亚洲av片在线观看秒播厂| 丝袜人妻中文字幕| 亚洲成人手机| 午夜视频国产福利| 亚洲美女视频黄频| 国产精品99久久99久久久不卡 | videossex国产| 久久国产精品男人的天堂亚洲 | 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 欧美另类一区| 纯流量卡能插随身wifi吗| 午夜福利网站1000一区二区三区| 日本爱情动作片www.在线观看| 天天影视国产精品| 中文欧美无线码| 大香蕉97超碰在线| 久久精品国产亚洲av涩爱| 十分钟在线观看高清视频www| 曰老女人黄片| 国产精品.久久久| 亚洲国产av影院在线观看| 国产av国产精品国产| 精品国产一区二区三区四区第35| 国产免费福利视频在线观看| 国产一区亚洲一区在线观看| 激情视频va一区二区三区| 精品国产一区二区三区久久久樱花| 狂野欧美激情性xxxx在线观看| 在线亚洲精品国产二区图片欧美| 亚洲av日韩在线播放| av在线播放精品| 久久这里有精品视频免费| 搡女人真爽免费视频火全软件| 少妇 在线观看| 人体艺术视频欧美日本| 美女xxoo啪啪120秒动态图| 男女午夜视频在线观看 | 久久久精品区二区三区| 肉色欧美久久久久久久蜜桃| 校园人妻丝袜中文字幕| 美女中出高潮动态图| 日韩精品有码人妻一区| 亚洲精品第二区| 香蕉丝袜av| 看免费av毛片| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看 | 久久久久久伊人网av| 激情视频va一区二区三区| 成人毛片60女人毛片免费| 美女福利国产在线| 国产成人午夜福利电影在线观看| 制服诱惑二区| 久久久久精品性色| 国产精品一区二区在线观看99| 欧美精品av麻豆av| 亚洲国产毛片av蜜桃av| 亚洲精品日韩在线中文字幕| av卡一久久| 美女中出高潮动态图| 亚洲欧洲国产日韩| 成人国产av品久久久| videos熟女内射| 婷婷色麻豆天堂久久| 美女内射精品一级片tv| 秋霞伦理黄片| 成人黄色视频免费在线看| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 国产成人aa在线观看| 亚洲经典国产精华液单| www.熟女人妻精品国产 | 欧美bdsm另类| 少妇 在线观看| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 日韩视频在线欧美| 五月伊人婷婷丁香| 国产亚洲精品久久久com| 欧美激情极品国产一区二区三区 | 考比视频在线观看| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 国产在线免费精品| 一边亲一边摸免费视频| 晚上一个人看的免费电影| 中文天堂在线官网| 好男人视频免费观看在线| 精品国产露脸久久av麻豆| 免费日韩欧美在线观看| 亚洲精品自拍成人| 亚洲精品中文字幕在线视频| 精品久久久久久电影网| 青春草视频在线免费观看| 一级a做视频免费观看| 国产av一区二区精品久久| 日韩制服骚丝袜av| 国产又爽黄色视频| 中文字幕最新亚洲高清| 国产在线免费精品| 国产精品久久久久成人av| 久久久久久久久久久久大奶| 国产69精品久久久久777片| av福利片在线| 一个人免费看片子| 精品一区在线观看国产| 黄色配什么色好看| 亚洲综合精品二区| 一级,二级,三级黄色视频| 国产69精品久久久久777片| 久久久久精品久久久久真实原创| 国产一区有黄有色的免费视频| 亚洲欧洲日产国产| 不卡视频在线观看欧美| av电影中文网址| 成人毛片60女人毛片免费| 少妇熟女欧美另类| 久久精品久久久久久噜噜老黄| 涩涩av久久男人的天堂| 国产精品三级大全| 99国产精品免费福利视频| 美女内射精品一级片tv| 交换朋友夫妻互换小说| 国产一级毛片在线| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 久久精品久久精品一区二区三区| 国产精品久久久久久久电影| 最近的中文字幕免费完整| 亚洲熟女精品中文字幕| 老女人水多毛片| 色哟哟·www| 99re6热这里在线精品视频| 在线天堂中文资源库| 中文字幕av电影在线播放| 久久久国产精品麻豆| 91精品国产国语对白视频| 亚洲中文av在线| 亚洲 欧美一区二区三区| 午夜福利,免费看| av又黄又爽大尺度在线免费看| 中国三级夫妇交换| 丝瓜视频免费看黄片| 男人操女人黄网站| 热re99久久精品国产66热6| 蜜臀久久99精品久久宅男| 欧美日韩av久久| 人人妻人人爽人人添夜夜欢视频| 精品久久国产蜜桃| 欧美精品高潮呻吟av久久| 色婷婷av一区二区三区视频| 香蕉精品网在线| 一区二区三区精品91| 91精品国产国语对白视频| 深夜精品福利| 色哟哟·www| 伊人久久国产一区二区| 一区在线观看完整版| 99热这里只有是精品在线观看| 国产免费一级a男人的天堂| 婷婷色综合www| 美女脱内裤让男人舔精品视频| 在线观看免费高清a一片| av有码第一页| 国产av国产精品国产| 国产欧美亚洲国产| 免费观看无遮挡的男女| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 精品国产一区二区三区四区第35| 五月玫瑰六月丁香| 91成人精品电影| 色哟哟·www| 亚洲精品美女久久av网站| 高清欧美精品videossex| 国产精品国产三级专区第一集| 黑人巨大精品欧美一区二区蜜桃 | av在线老鸭窝| 9色porny在线观看| 国产精品久久久久久久电影| 天堂俺去俺来也www色官网| 少妇人妻久久综合中文| 国产不卡av网站在线观看| 少妇猛男粗大的猛烈进出视频| 国产免费一级a男人的天堂| 美女视频免费永久观看网站| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 青春草亚洲视频在线观看| 黑丝袜美女国产一区| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄| 亚洲丝袜综合中文字幕| 91精品国产国语对白视频| av网站免费在线观看视频| 亚洲精品国产av蜜桃| 国产精品免费大片| 看十八女毛片水多多多| 久久久久国产精品人妻一区二区| 亚洲国产av影院在线观看| 久久毛片免费看一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久久久按摩| 亚洲美女搞黄在线观看| 一级毛片电影观看| 国产男女超爽视频在线观看| 国产日韩欧美视频二区| 免费观看a级毛片全部| 精品一区二区三卡| 一二三四中文在线观看免费高清| 欧美精品一区二区大全| 亚洲美女搞黄在线观看| 久久ye,这里只有精品| 最近中文字幕2019免费版| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片| 尾随美女入室| 久久国内精品自在自线图片| 免费观看a级毛片全部| 亚洲国产看品久久| 午夜福利视频精品| 亚洲精品视频女| av黄色大香蕉| 人人澡人人妻人| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| √禁漫天堂资源中文www| 波野结衣二区三区在线| a级毛色黄片| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区| 下体分泌物呈黄色| 精品一区二区三区四区五区乱码 | 精品久久国产蜜桃| 波野结衣二区三区在线| 国产老妇伦熟女老妇高清| 日韩伦理黄色片| 久久久国产欧美日韩av| 狂野欧美激情性xxxx在线观看| 不卡视频在线观看欧美| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 狂野欧美激情性bbbbbb| 1024视频免费在线观看| 青春草国产在线视频| 国产一区二区在线观看日韩| 黑人巨大精品欧美一区二区蜜桃 | 极品少妇高潮喷水抽搐| 亚洲综合色网址| 亚洲精品一二三| 国产1区2区3区精品| 日本免费在线观看一区| 国产成人aa在线观看| 如日韩欧美国产精品一区二区三区| 内地一区二区视频在线| 国产一区亚洲一区在线观看| 久久av网站| 9191精品国产免费久久| 国产熟女欧美一区二区| 欧美xxxx性猛交bbbb| 日本午夜av视频| 久久这里只有精品19| av在线老鸭窝| 国产亚洲最大av| 免费大片黄手机在线观看| 午夜福利影视在线免费观看| 22中文网久久字幕| 国产成人欧美| 最近最新中文字幕免费大全7| 久热这里只有精品99| 国产综合精华液| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 免费人妻精品一区二区三区视频| 熟妇人妻不卡中文字幕| 国产精品三级大全| 岛国毛片在线播放| 99久国产av精品国产电影| 国产 一区精品| 少妇被粗大的猛进出69影院 | 国产在线免费精品| 99热全是精品| 高清av免费在线| 九九在线视频观看精品| 三上悠亚av全集在线观看|