• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparison study of atmospheric circulations and potential vorticity anomaly between the two rapid-intensified typhoons

    2018-12-19 05:49:20XiTANGFnPINGShuiYANGMengXiLInJingPENG

    Xi-B TANG,Fn PING,Shui YANG,Meng-Xi LIn Jing PENG

    aLaboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;bPlateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdou,China;cCenter of Ecological Meteorology and Satellite Remote Sensing,Henan Institute of Meteorological Science,Zhengzhou,China;dKey Laboratory of Regional Climate-Environment for Temperate East Asia,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China

    ABSTRACT For two rapid-intensification typhoons— Mujigae(2015)and Vicente(2012)— the atmospheric circulation conditions and potential vorticity(PV)anomaly are compared.Although similar in their rapid-intensification(RI)rate,their atmospheric circulation conditions differ considerably,with the absence or presence of an upper-tropospheric inverted trough(IT)being their main difference.The IT provides useful clues for the onset of RI,by estimating the interaction between the environmental upper-tropospheric IT and the typhoon based on eddy momentum flux convergence calculation.The trough–typhoon interaction is examined by comparing the PV transport process for the two cases.An isolated positive PV column develops vertically near Mujigae’s onset of RI,which is not influenced by synoptic-scale PV advection.However,for Vicente,another source—advection from a high-latitude PV reservoir along the upper-tropospheric IT—joins the built-up high-PV anomaly in favor of RI.

    KEYWORDS Rapidly intensi fication;upper-tropospheric inverted trough;potential vorticity

    1.Introduction

    This study documents and compares the rapid intensification(RI)of two typhoons—Mujigae(2015)and Vicente(2012)— based on Japan Meteorological Agency best-track data.The purpose is to examine the role that the upper-tropospheric trough and potential vorticity(PV)play in the RI stage of Mujigae and Vicente.This task is aided by using National Centers for Environmental Prediction Global Forecast System(GFS)reanalysis data(resolution:0.5°× 0.5°),which is a globally gridded dataset representing the state of the Earth’s atmosphere,incorporating observations and numerical weather prediction model output.

    Significant progress has been made in the prediction of tropical cyclone(TC)tracks(DeMaria et al.2014).However,compared with the forecasting of TC tracks,the prediction of TC intensity change,especially those of TCs undergoing RI,is facing greater challenges(Rappaport et al.2009).Kaplan and DeMaria(2003)de fined RI in the Atlantic as an increase in maximum sustained 1-min surface averaged wind speed of 30 kt(1 kt=0.514 m s?1)in 24 h.Owing to the potential impacts of storms that undergo RI just prior to landfall,RI is significant from a forecasting perspective(Franklin et al.2006).

    Much of the research into intensity change and RI has focused on the environment the TC.Following Hoskins,McIntyre,and Robertson(1985),PV provides a more concise dynamical framework for examining TC–trough interactions.The added benefit of PV lies in its conservation properties in adiabatic and frictionless flow.Material changes in PV can be directly related to diabatic processes.Bosart et al.(2000)depicted the upper-tropospheric PV anomalies of Hurricane Opal(1995),demonstrating that those nearby were influenced by synoptic-scale PV advection originated from the upper-tropospheric trough before and after the RI process.Composite studies in the Atlantic(Hanley,Molinari,and Keyser 2001)and western North Pacific(WNP)(Ventham and Wang 2007)have suggested that upper-tropospheric trough interaction can affect TC intensity by upper-tropospheric PV advection.

    Several observational studies have documented the interaction of the RI of TCs with upper-tropospheric troughs(DeMaria,Baik,and Kaplan 1993;Bosart et al.2000;Shieh et al.2013).Numerical studies(Shi,Chang,and Raman 1997;Kimball and Evans 2002;Chen et al.2017)have identified relationships between TC intensity change and the structure of a nearby upper-tropospheric trough.However,the possible mechanism by which the RI of a TC might be caused by an upper-tropospheric inverted trough(IT)has yet to be described.In this study,we speculate the mechanism by which an upper-tropospheric IT can cause the RI of a TC,by analyzing the upper-tropospheric out flow,angular momentum,and PV anomaly.

    2.Case descriptions

    2.1.Overview of mujigae

    Mujigae was the strongest typhoon in 2015,striking Guangdong Province in October of that year,leading to 27 human fatalities and direct economic losses totaling more than¥27.02 billion(Tang et al.2018).

    Mujigae originated from a weak tropical disturbance near Palau on 30 September 2015.It then entered the South China Sea(SCS)on 2 October 2015.From 0600 UTC 3 October,the minimum sea level pressure(MSLP)decreased from 985 to 950 hPa and the maximum sustained 10-m wind increased from 28 to 43.7 m s?1in 18 h(Figure S1(a,b)),which satisfied the conditions of RI(Kaplan and DeMaria 2003).Thus,0600 UTC 03 October is considered as the onset of the RI of Mujigae.

    2.2.Overview of vicente

    Vicente is regarded as the most powerful storm to have attacked southern China in 2012.Eleven people died from the disaster and there were direct economic losses totaling more than¥20.5 billion(CMA 2012).

    Vicente developed into a tropical storm over the northeastern part of the SCS at 1200UTC21July.Starting at0000 UTC 23 July,the intensification rate of Vicente increased,with the MSLP dropping from 985 to 950 hPa and the maximum sustained 10-m wind increasing from 25 to 41.1 m s?1within 18 h(Figure S1(c,d)).As with Mujigae,these observations also support the criteria for RI.Therefore,we designate the time of 0000 UTC 23 July as the onset of the RI of Vicente.

    3.Large-scale environment

    The time series of the synoptic charts for both typhoons were plotted to explore the continuous evolution of their large-scale environments before RI(Figures 1 and 2).Based on these,we try to distinguish the similarities and differences in the characteristics of their large-scale environments with respect to their induction of RI.

    3.1.Synoptic situation for mujigae

    Figure 1 shows the 200-,500-,and 850-hPa fields from the GFS analysis data for Mujigae before and at onset of RI.At?12 h(1800 UTC 2 October;Figure 1(a)),the East Asian Trough(EAT)develops vigorously at 200 hPa,the trough line extends to the northeast of China,and the upper-tropospheric jet axis stretches zonally near 35°N along the air flow spanning the EAT.Double highs develop to the south of the EAT.One of them,the South Asia High(SAH),behind the EAT,extends westwards to 120°E.Two out flow channels — one polewards,forced by the pressure gradient between the EAT and the SAH,and the other equatorwards along the southeastern edge of the SAH system—are established.At 0 h of RI(Figure 1(b)),a northeast cold vortex develops while the EAT moves slowly eastwards.The upper-tropospheric jet remains stable north of 30°N.However,the poleward and equatorward out flows around Mujigae are obviously enhanced,accompanied by the merging of the double highs and thus an increase in divergence.This can accelerate the removal of the mass field and strengthen the secondary circulation,enhancing the TC’s primary circulation(Chen et al.2017).

    At 500 hPa,the general circulation of the atmosphere shows a meridional pattern,and the northeast cold trough develops vigorously at?12 h(Figure 1(c)).The cold air invades into North China,and the western Pacific subtropical high(WPSH)extends to 112°E.It is important to note that the Subtropical Ridge(STR)is located on the northern side of Mujigae,which inhibits the northward movement of Mujigae.At 0 h of RI(Figure 1(d)),the northeast cold vortex and trough line are stable and the WPSH is significantly enhanced,with the appearance of a 5950-gpm closed center.Meanwhile,the STR also increases significantly,which strengthens the transport of both water vapor and momentum on the eastern side of Mujigae,and enhances the asymmetric structure of the typhoon.

    At 850 hPa,the water vapor transportation towards Mujigae is vigorous,from the Bay of Bengal,at?12 h(Figure 1(e)).The relative humidity of the typhoon center exceeds 90%.As RI begins(Figure 1(f)),the water vapor transport from the Bay of Bengal increases significantly.In addition,water vapor from the Pacific is also transported to the vicinity of Mujigae.

    Figure 1.At?12 h(1800 UTC 2 October 2015),for typhoon Mujigae,the(a)200-hPa jet(shaded;units:m s?1),geopotential height(blue contours;units:10 gpm),temperature(red dotted lines;units:K),and horizontal winds(vectors;units:m s?1);(c)500-hPa geopotential height(blue contours;units:10 gpm),temperature(red dotted lines;units:K),and horizontal winds(vectors;units:m s?1);and(e)850-hPa water vapor flux(shaded;units:g s?1hPa?1cm?1),geopotential height(contours;units:10 gpm),relative humidity(purple contours;units:%),and horizontal winds(vectors;units:m s?1).Panels(b),(d),and(f)are the same as(a),(c),and(e)but at 0 h(0600 UTC 3 October).The black dotted line represents the trough line of the EAT,and the green dashed line shows the STR.The red letters‘C’and ‘W’stand for cold and warm centers,respectively.The black letters‘L’and ‘H’denote low and high pressure,respectively.The red typhoon symbol denotes the TC center at the surface level.

    3.2.Synoptic situation for vicente

    Figure 2 shows the synoptic situation for Vicente before and at onset of RI.At 200 hPa,different from the upperlevel situation for Mujigae,a two-troughs–one-ridge pattern is located north of 35°N.A stronger trough(the lefthand one)— the Lake Baikal Trough(LBT)— develops vigorously,and the trough line extends to the northwest of China at?12h relative to the onset of Vicente’s RI(1200 UTC 22 July;Figure 2(a)).Two upper-level jet axes are apparent,located in Uzbekistan to Xinjiang(China)and Japan,respectively.The SAH extends to 98°E.Vicente is located at the southeast edge of the SAH.In the mid-low latitudes,there is an upper-tropospheric IT on the northeast side of Vicente.The northeast air flow in front of the IT invades the typhoon circulation,which can result in the intensification of(in this case)Vicente(Shieh et al.2013).Two out flow channels—one westwards and another one equatorwards—are established,giving rise to a strong divergence pattern.As RI starts(Figure 2(b)),the LBT moves slowly eastwards.The locations of the two upper tropospheric jet axes vary little,but the westward and equatorward out flow are obviously enhanced.The upper-tropospheric IT moves to the north-northeast of Vicente.

    Figure 2.At?12 h(1200 UTC 22 July 2012),for typhoon Vicente,the(a)200-hPa jet(shaded;units:m s?1),geopotential height(blue contours;units:10 gpm),temperature(red dotted lines;units:K),and horizontal winds(vectors;units:m s?1);(c)500-hPa geopotential height(blue contours;units:10 gpm),temperature(red dotted lines;units:K),and horizontal winds(vectors;units:m s?1);and(e)850-hPa water vapor flux(shaded;units:g s?1hPa?1cm?1),geopotential height(contours;units:10 gpm),relative humidity(purple contours;units:%),and horizontal winds(vectors;units:m s?1).Panels(b),(d)and(f)are the same as(a),(c),and(e)but at 0 h(0000 UTC 23 July).The black dotted line represents the trough line of the EAT,and the green dashed line shows the STR.The red letters ‘C’and ‘W’stand for cold and warm centers,respectively.The black letters ‘L’and ‘H’denote low and high pressure,respectively.The red typhoon symbol denotes the TC center at the surface level.

    At 500 hPa,the atmospheric circulation presents a meridional pattern,and the cold vortex develops vigorously in Lake Baikal at?12 h(Figure 2(c)).Due to the rapid development of cold advection,cold air intrudes into the northwest of China.The WPSH extends to 112°E.It is also important to note that the STR is located on the north side of the typhoon,which inhibits the northward movement of Vicente.At 0 h of RI(Figure 2(d)),the Lake Baikal cold vortex and trough line move eastwards,while the STR is stable.

    And in the evening, when the young man was alone with his wife, she said to him, Why would you not let me touch you when you came back, but always thrust me away when I tried to put my arms round you or kiss you? Then the young man understood how true his brother had been to him, and he sat down and wept and wrung33 his hands because of the wicked murder that he had done

    At 850 hPa,the water vapor channel of Vicente is basically the same as that of Mujigae.There are two obvious water vapor passages on the southwest and east side of Vicente,which provide sufficient water vapor conditions for the development of Vicente.Prior to and at the onset of the RI of Vicente(Figure 2(e,f)),the warm moisture flow from the Bay of Bengal produces a rich stream of water vapor for Vicente.The relative humidity near the TC center exceeds 90%,which is conducive to the intensity of Vicente.

    By comparing the environmental field conditions of the two typhoons,we can see a considerable difference before and at onset of RI.It should be pointed out that there is an upper-tropospheric IT near Vicente,with a probable close relationship because of its near proximity,directly affecting the out flow mode.In view of whether there is an upper-tropospheric IT before and after the RI of the typhoon,the similarities and differences between the processes and mechanisms of RI are worth exploring.

    4.Upper-tropospheric trough interaction prior to and during RI

    Due to EFC that has been used successfully in previous studies of trough interactions(Molinari and Vollaro 1989;DeMaria,Baik,and Kaplan 1993;Hanley 2002),we will focus on contributions by upper-tropospheric trough and the large-scale environment to the RI based on the EFC.

    4.1.Eddy momentum flux convergence

    The definition of eddy momentum flux convergence(EFC)is the same as in DeMaria,Baik,and Kaplan(1993).Positive values of EFC commonly means the approach of a low-value system(here,an upper-tropospheric IT)to the TC and ensure that azimuthal eddies are acting to increase mean angular momentum in the out flow layer.

    The evolutions of EFC for the two cases at 200 hPa are shown in Figure 3.DeMaria,Baik,and Kaplan(1993)defined a moderate/strong trough interaction as having EFC of about 10–20 m s?1d?1/>20 m s?1d?1.Based on these thresholds,no significant interaction occurs between the upper-level tough and the TC circulation,because the EFC within radii of 300–600 km is less than 10 m s?1d?1(Figure 3(a))before RI.Thus,EFC does not provide a useful clue as to the RI of Mujigae,albeit the EAT is strong but far from the TC.The EFC value of Vicente,plotted in Figure 3(b),indicates the occurrence of a strong interaction beginning at 0000 UTC 22 July,with a sharp increase just at the onset time of RI,and climbing to peak values exceeding 130 m s?1d?1within 6 h.It suggests that the upper-tropospheric IT plays an important role in the RI process of Vicente.

    4.2.Upper-tropospheric PV

    PV provides a more concise dynamical framework for examining the interactions between the PV reservoir and upper-tropospheric PV anomaly.In this study,Ertel isentropic PV is calculated at the 350-K level(about 200 hPa),following Hoskins,McIntyre,and Robertson(1985).

    Figure 3.Time series of EFC(units:m s?1d?1)at 200 hPa,calculated over radii of 300–600 km:(a)Mujigae;(b)Vicente.

    Figure 4(e–h)show that the time series of the PV and streamlines at 350 K for Vicente,with the same relative time periods as for the RI of Mujigae.Through the evolution of the upper-tropospheric IT,whose main axis tilts in a northeast–southwest direction,Vicente moves slightly eastwards(Figure 2(a,b)).At 12 h prior to RI(Figure 4(e)),a PV value exceeding 0.5 PVU is within 500 km of the lower-level circulation.After 6 h(Figure 4(f)),a PV anomaly exceeding 0.5 PVU is within 300 km of the TC circulation.As RI begins(Figure 4(g)),the PV anomaly near the TC circulation rapidly dissipates.During RI(Figure 4(h)),only a small portion of the PV anomaly approaching the TC resembles the picture of interaction between an upper-tropospheric IT and TC Nelson (1985),plotted by Ventham and Wang(2007).Figure 5(a–d)depict the evolution of a vertical cross section of PV at the 350-K is entropic surface along the purple line shown in Figure 4(a–d),respectively.At 12 h and 6 h prior to RI(Figure 5(a,b)),there is no positive PV anomaly values near the TC circulation in excess of 0.5 PVU located in the upper troposphere(200–250 hPa).At onset of RI(Figure 5(c)),the PV values in excess of 0.5 PVU extend upwards to near 200 hPa as a result of the upper-tropospheric PV anomaly,which is caused by the strong updraft from the upper to the middle troposphere,which is also conducive to the RI of the typhoon(Tang et al.2018).Meanwhile,the positive mid-upper-level PV values in excess of 1.1 PVU extend upwards to near 275 hPa.During RI(Figure 5(d)),the positive mid-upper-level PV weakens rapidly,along with the development of high PV in the lower levels associated with the rapidly developing Mujigae.

    Figure 5(e–h)depict the evolution of a cross section of PV at 350 K along the purple line of Figure 4(e–h),respectively.At 12 h prior to RI(Figure 5(e)),the PV advection values in excess of 0.5 PVU extend downwards to near 450 hPa,approaching Typhoon Vicente but not directly crossing the storm.Within the following 12 h(Figure 5(f,g)),the PV anomaly band directly cuts through the storm from the middle troposphere.During RI(Figure 5(h)),the 0.5-PVU contour from the upper-tropospheric PV reservoir and Vicente connect throughout the troposphere.It is at,or shortly after,this time that the eyewall develops.

    By comparing the vertical distribution of Mujigae with that of Vicente,it is not difficult to find that a nearly isolated PV column stands in the inner-core region of Mujigae before and after the onset of RI(Figure 5(a,b,d)).Except at the onset time,a strong updraft cuts through the vertical channel between the TC system and upper-tropospherichigh-PV reservoir(Figure 5(c)).However,for Vicente,the northwestward in flow along the IT(Figures 2(a,b)and 5(e–h))keeps advecting high-PV air from high latitude areas during the overall stage.Even a double channel for PV transport is turned on(Figure 5(h)),with one from northwest of the middle troposphere and another from the upper troposphere.

    4.3.Possible mechanism by which the uppertropospheric IT causes the RI of vicente

    The mechanism of the upper-tropospheric IT causeing the RI of Vicente is considered from three aspects.Firstly, the upper-tropospheric IT is obviously enhanced(and maintained)before(and during)the RI of Vicente(Figure 2),which provides some predictive clue(and diagnostic sense)for RI.The northeast flow in front of the upper-tropospheric IT increases the westward out flow of Vicente,which is conducive to accelerating the removal of the upper-level mass field and thus strengthening the secondary(in–up–out)circulation,enhancing the TC primary circulation(Chen et al.2017).Secondly,the EFC index,which can embody the trough–TC interaction,is evaluated using the flux convergence of angular momentum by azimuthal eddies(Pfeffer and Challa 1981;Holland and Merrill 1984;Molinari and Vollaro 1989).Positive values of EFC commonly mean the approach of a low-value system(here,an upper-tropospheric IT)to the TC and ensure that azimuthal eddies are acting to increase the mean angular momentum in the out flow layer(Hanley,Molinari,and Keyser 2001).If EFC(R=300–600km)is positive,it represents the transport of angular momentum from 600km to300km.According to DeMaria,Baik,and Kaplan(1993),as the EFC is>20 m s?1d?1,a strong trough interaction presents.From ourcase study,the values of EFC(R=300–600km)exceeding 20 m s?1d?1occur before and during the RI of Vicente,which indicates a strong interaction between the upper-tropospheric IT and Typhoon Vicente.Thus,the angular momentum is transferred from 600 km to 300 km,which is conducive to the strengthening of the secondary circulation of the TC by increased upper-level out flows,especially on the azimuthal side close to the approaching trough,which is beneficial for the RI process of Vicente.Finally,Figure 5(e–h)show that the uppertropospheric IT helps to transport the high environmental PV from both the upper-level and high-latitude PV reservoir to Vicente,which would have contributed to the RI of the TC(Bosart et al.2000;Ventham and Wang 2007).

    Figure 4.The PV(shaded;units:PVU)and streamlines at 350 K for Typhoon Mujigae,relative to the onset of RI at(a)?12h,(b)?6 h,(c)0 h and(d)+6 h.Panels(e–h)are the same as(a–d)but for Typhoon Vicente.The red typhoon symbol denotes the TC center at the surface level.The purple lines denote the locations of the vertical cross section used in Figure 5.(i)Enlarged diagram of the area marked in(c)by the red box,showing the upper-tropospheric PV anomaly near the TC circulation.

    Figure 5.Vertical cross section through the center of Typhoon Mujigae and Vicente along the purple line in Figure 4.The PV(shaded;units:PVU)is shaded and isentropes(units:K)are contoured.Relative to the onset of RI at(a)?12h,(b)?6 h,(c)0 h,and(d)+6 h.Panels(e–h)are the same as(a–d).

    5.Conclusion

    By using GFS 0.5°reanalysis data,the atmospheric circulation conditions of Mujigae and Vicente were diagnosed and analyzed,and the following conclusions were obtained:

    (1)The intensity of Mujigae and Vicente was almost the same before and after the RI process.Despite similar RI rates for the two typhoons,considerable differences in the synoptic-scale environment were present.No significant interaction occurred between the upper-tropospheric tough and Mujigae’s circulation,while strong interaction occurred prior to the RI for Vicente,suggesting the upper-tropospheric IT played an important role in the RI process of Vicente.

    (2)The interaction between the upper-tropospheric IT and Vicente was estimated by calculating the EFC.The values of EFC exceeding 20 m s?1d?1occurred before and during the RI of Vicente,indicating strong interaction between the upper-tropospheric IT and Typhoon Vicente.

    (3)The trough–typhoon interaction was examined by comparing the PV transport processes of the two cases.An isolated upper-tropospheric positive PV column in excess of 0.5 PVU was located near Mujigae’s onset of RI,which was not influenced by synoptic-scale PV advection.However,for Vicente,the upper-tropospheric IT helped transport the high environmental PV from the upper-level and high-latitude PV reservoir to Vicente,which contributed to the RI of the TC.

    Acknowledgments

    The valuable comments of the three anonymous reviewers,which helped considerably in improving the original manuscript,are greatly appreciated.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(Grant No.PAEKL-2017-K3)and the National Natural Science Foundation of China (Grant Nos.41405059,41675059,41375066,and 41875077).

    日韩三级伦理在线观看| 大片电影免费在线观看免费| 国国产精品蜜臀av免费| 99久久精品国产国产毛片| 久久久久久久国产电影| 亚洲久久久国产精品| 国产永久视频网站| av天堂久久9| 精品一区二区三区视频在线| av线在线观看网站| 国产欧美亚洲国产| 亚洲天堂av无毛| 狂野欧美激情性xxxx在线观看| 国内精品宾馆在线| 久久精品熟女亚洲av麻豆精品| 国产av码专区亚洲av| 国产国语露脸激情在线看| 天堂8中文在线网| 九色亚洲精品在线播放| 蜜桃在线观看..| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 人妻人人澡人人爽人人| 日日啪夜夜爽| 日本黄大片高清| 99久久中文字幕三级久久日本| 少妇猛男粗大的猛烈进出视频| 欧美 日韩 精品 国产| 国产成人一区二区在线| 日韩中字成人| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久小说| 日韩成人av中文字幕在线观看| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 只有这里有精品99| 国产成人av激情在线播放| 97精品久久久久久久久久精品| 精品一品国产午夜福利视频| 亚洲精品久久久久久婷婷小说| 丰满乱子伦码专区| 青春草国产在线视频| 热99久久久久精品小说推荐| 亚洲色图 男人天堂 中文字幕 | 狠狠精品人妻久久久久久综合| 欧美激情国产日韩精品一区| 人人妻人人澡人人看| 国产1区2区3区精品| 亚洲精品国产av蜜桃| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 十八禁网站网址无遮挡| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| 国产亚洲最大av| 麻豆乱淫一区二区| 亚洲国产日韩一区二区| 少妇人妻久久综合中文| a级毛片黄视频| 久久狼人影院| 午夜日本视频在线| 日本av手机在线免费观看| 香蕉精品网在线| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| videosex国产| 国产男人的电影天堂91| 97精品久久久久久久久久精品| 蜜桃在线观看..| 亚洲av综合色区一区| 两个人免费观看高清视频| 日韩av不卡免费在线播放| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀 | 久久久a久久爽久久v久久| 亚洲国产日韩一区二区| 日韩大片免费观看网站| 熟女人妻精品中文字幕| 亚洲性久久影院| 男人操女人黄网站| 午夜福利影视在线免费观看| 一级爰片在线观看| av.在线天堂| 日韩中文字幕视频在线看片| 久久精品夜色国产| 日韩视频在线欧美| 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 激情视频va一区二区三区| 伦精品一区二区三区| 欧美日韩精品成人综合77777| 久久99热这里只频精品6学生| 免费黄色在线免费观看| 亚洲精品国产av蜜桃| 久久精品国产a三级三级三级| 亚洲国产精品国产精品| 国产免费又黄又爽又色| 国产精品免费大片| 免费久久久久久久精品成人欧美视频 | 国国产精品蜜臀av免费| 久久国产亚洲av麻豆专区| 少妇 在线观看| 午夜影院在线不卡| 国产精品人妻久久久久久| 久久久欧美国产精品| 99国产综合亚洲精品| 看免费成人av毛片| 满18在线观看网站| 少妇被粗大猛烈的视频| 国产成人精品婷婷| 亚洲,一卡二卡三卡| 99热6这里只有精品| 国产一级毛片在线| 免费少妇av软件| 亚洲成色77777| 亚洲综合色惰| av电影中文网址| 亚洲少妇的诱惑av| videosex国产| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av涩爱| 国产男女超爽视频在线观看| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 少妇熟女欧美另类| 亚洲伊人色综图| 亚洲精华国产精华液的使用体验| 久久免费观看电影| 啦啦啦在线观看免费高清www| 99九九在线精品视频| 国产一级毛片在线| 亚洲精华国产精华液的使用体验| 欧美精品人与动牲交sv欧美| 国产国拍精品亚洲av在线观看| 精品久久久精品久久久| 激情视频va一区二区三区| 久热这里只有精品99| 熟女电影av网| 日韩不卡一区二区三区视频在线| 狂野欧美激情性xxxx在线观看| 成人漫画全彩无遮挡| 欧美xxxx性猛交bbbb| 欧美成人午夜免费资源| 欧美变态另类bdsm刘玥| 老司机影院毛片| 日本色播在线视频| 欧美另类一区| 欧美国产精品va在线观看不卡| 一二三四在线观看免费中文在 | 老女人水多毛片| 国产精品久久久av美女十八| 九草在线视频观看| av在线观看视频网站免费| 青青草视频在线视频观看| a级毛色黄片| 丝袜喷水一区| av有码第一页| 中文字幕人妻丝袜制服| 久久99蜜桃精品久久| 国产一区二区在线观看av| 久久精品久久精品一区二区三区| a级毛色黄片| 18禁国产床啪视频网站| av.在线天堂| av片东京热男人的天堂| 最黄视频免费看| 亚洲美女视频黄频| 精品第一国产精品| 国产精品久久久久久精品电影小说| 久久人人97超碰香蕉20202| 蜜桃在线观看..| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 美女国产高潮福利片在线看| 国产色婷婷99| 国产欧美日韩综合在线一区二区| 一边摸一边做爽爽视频免费| 日本a在线网址| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区激情| 欧美日韩成人在线一区二区| 女性被躁到高潮视频| 99国产精品免费福利视频| 女人精品久久久久毛片| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| 中文字幕av电影在线播放| 欧美在线黄色| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 老司机影院毛片| 首页视频小说图片口味搜索| 亚洲专区字幕在线| 天天影视国产精品| 电影成人av| 精品久久蜜臀av无| 99国产精品一区二区三区| 午夜福利视频在线观看免费| 十八禁网站免费在线| 岛国毛片在线播放| 国产熟女午夜一区二区三区| av天堂久久9| 欧美乱色亚洲激情| 午夜福利欧美成人| 51午夜福利影视在线观看| 99久久精品国产亚洲精品| 精品高清国产在线一区| 下体分泌物呈黄色| 大型黄色视频在线免费观看| 国产精品九九99| 99精品久久久久人妻精品| 黄色丝袜av网址大全| 欧美 亚洲 国产 日韩一| 精品久久久久久,| 成人亚洲精品一区在线观看| 男人操女人黄网站| 精品国产乱子伦一区二区三区| 国产亚洲一区二区精品| 日韩欧美三级三区| 18禁黄网站禁片午夜丰满| 欧美最黄视频在线播放免费 | 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片 | 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 国产精品免费大片| 午夜激情av网站| 99re在线观看精品视频| 亚洲,欧美精品.| 亚洲国产欧美一区二区综合| 亚洲成a人片在线一区二区| 午夜91福利影院| 精品少妇一区二区三区视频日本电影| 18禁国产床啪视频网站| 夜夜爽天天搞| 欧美国产精品一级二级三级| 午夜91福利影院| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 久99久视频精品免费| 王馨瑶露胸无遮挡在线观看| 极品少妇高潮喷水抽搐| 在线观看免费午夜福利视频| 国产精品久久久久久精品古装| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 欧美午夜高清在线| 午夜久久久在线观看| 日韩制服丝袜自拍偷拍| 亚洲色图 男人天堂 中文字幕| 成年版毛片免费区| 亚洲精品中文字幕一二三四区| 窝窝影院91人妻| 热99久久久久精品小说推荐| 美女扒开内裤让男人捅视频| 啦啦啦免费观看视频1| 精品国产一区二区久久| 午夜视频精品福利| 中文欧美无线码| 午夜激情av网站| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 亚洲av电影在线进入| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 亚洲全国av大片| 久久性视频一级片| 亚洲熟女毛片儿| 在线看a的网站| 色播在线永久视频| 五月开心婷婷网| 久久午夜综合久久蜜桃| 黄色女人牲交| √禁漫天堂资源中文www| 精品久久久久久,| 无人区码免费观看不卡| 国产欧美日韩一区二区三区在线| 欧美色视频一区免费| 黄色成人免费大全| 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品在线电影| 真人做人爱边吃奶动态| 19禁男女啪啪无遮挡网站| 搡老乐熟女国产| 午夜福利欧美成人| 欧美成人免费av一区二区三区 | 国产熟女午夜一区二区三区| 欧美亚洲日本最大视频资源| 亚洲熟女精品中文字幕| 999精品在线视频| 丝袜人妻中文字幕| 欧美激情久久久久久爽电影 | 啦啦啦 在线观看视频| 国产精品一区二区在线不卡| 久久精品aⅴ一区二区三区四区| 欧美黄色淫秽网站| 精品亚洲成国产av| 国产区一区二久久| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 不卡一级毛片| 免费观看a级毛片全部| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频 | 欧美激情 高清一区二区三区| 中出人妻视频一区二区| 国产又爽黄色视频| 久久久国产一区二区| videos熟女内射| 久久这里只有精品19| 三上悠亚av全集在线观看| 久久九九热精品免费| 欧美成人午夜精品| 大香蕉久久成人网| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲成人免费电影在线观看| 久久性视频一级片| 国产一区二区三区视频了| 这个男人来自地球电影免费观看| 在线观看66精品国产| 夜夜爽天天搞| 又紧又爽又黄一区二区| 99riav亚洲国产免费| 黄色成人免费大全| 亚洲,欧美精品.| 多毛熟女@视频| 国产真人三级小视频在线观看| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 国产区一区二久久| 一级a爱片免费观看的视频| 首页视频小说图片口味搜索| 一级a爱片免费观看的视频| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| bbb黄色大片| 国产欧美日韩一区二区三区在线| 无人区码免费观看不卡| 国产男靠女视频免费网站| x7x7x7水蜜桃| 精品亚洲成国产av| 精品午夜福利视频在线观看一区| 亚洲精品久久成人aⅴ小说| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| av天堂久久9| 宅男免费午夜| 久久久久久久久免费视频了| 日本黄色日本黄色录像| 精品高清国产在线一区| 国产精品av久久久久免费| 好看av亚洲va欧美ⅴa在| 黄色视频,在线免费观看| 在线观看舔阴道视频| 亚洲熟妇熟女久久| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| av不卡在线播放| 男女之事视频高清在线观看| 9热在线视频观看99| 69av精品久久久久久| 亚洲一区中文字幕在线| 1024视频免费在线观看| 天堂俺去俺来也www色官网| 99riav亚洲国产免费| 国产亚洲精品久久久久久毛片 | 午夜免费成人在线视频| 久久久久视频综合| 久久狼人影院| 国产精品一区二区在线不卡| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人 | 亚洲情色 制服丝袜| 国产精品二区激情视频| 免费一级毛片在线播放高清视频 | 一本一本久久a久久精品综合妖精| 精品第一国产精品| 在线天堂中文资源库| 中文字幕av电影在线播放| 视频区欧美日本亚洲| 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 日本黄色视频三级网站网址 | 无遮挡黄片免费观看| 婷婷丁香在线五月| 午夜福利一区二区在线看| 国产高清videossex| 欧美老熟妇乱子伦牲交| xxx96com| 国产亚洲欧美在线一区二区| 欧美乱色亚洲激情| 亚洲五月天丁香| 亚洲熟女毛片儿| 欧美色视频一区免费| 大型黄色视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 国产又爽黄色视频| 欧美精品av麻豆av| 久久久水蜜桃国产精品网| 看黄色毛片网站| 俄罗斯特黄特色一大片| 亚洲午夜精品一区,二区,三区| 国产精品久久视频播放| 久久久久久免费高清国产稀缺| 欧美人与性动交α欧美精品济南到| 好男人电影高清在线观看| 极品人妻少妇av视频| 国产精品久久久av美女十八| 国产精品久久电影中文字幕 | 欧美另类亚洲清纯唯美| 亚洲,欧美精品.| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 好看av亚洲va欧美ⅴa在| 在线看a的网站| 少妇 在线观看| 欧美成狂野欧美在线观看| 日韩免费av在线播放| 国产97色在线日韩免费| 久热这里只有精品99| 国产在线精品亚洲第一网站| 久久久国产精品麻豆| 一本大道久久a久久精品| cao死你这个sao货| 国产亚洲一区二区精品| x7x7x7水蜜桃| av在线播放免费不卡| 欧美精品av麻豆av| av有码第一页| 757午夜福利合集在线观看| 久久久久国内视频| 中文字幕制服av| 最新在线观看一区二区三区| 国产免费av片在线观看野外av| 夜夜躁狠狠躁天天躁| 午夜福利在线免费观看网站| 精品国产美女av久久久久小说| 国内久久婷婷六月综合欲色啪| 亚洲av美国av| 色综合婷婷激情| 亚洲七黄色美女视频| 精品少妇一区二区三区视频日本电影| 操出白浆在线播放| 国产在线观看jvid| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| a级毛片黄视频| 国产精华一区二区三区| 国产深夜福利视频在线观看| 亚洲精品国产一区二区精华液| 一本一本久久a久久精品综合妖精| 亚洲中文日韩欧美视频| 大型av网站在线播放| 亚洲三区欧美一区| 极品人妻少妇av视频| 精品视频人人做人人爽| 怎么达到女性高潮| 91av网站免费观看| 欧美成人午夜精品| 日本wwww免费看| 国产淫语在线视频| 亚洲欧美日韩高清在线视频| 国内毛片毛片毛片毛片毛片| 在线观看免费视频日本深夜| bbb黄色大片| 精品一区二区三卡| 黄色a级毛片大全视频| 久久国产精品大桥未久av| 下体分泌物呈黄色| 99精品久久久久人妻精品| 免费黄频网站在线观看国产| 国产人伦9x9x在线观看| 一个人免费在线观看的高清视频| 水蜜桃什么品种好| av福利片在线| 亚洲国产看品久久| 精品国产乱子伦一区二区三区| 亚洲九九香蕉| 国产亚洲av高清不卡| 热99re8久久精品国产| 日韩精品免费视频一区二区三区| 精品少妇久久久久久888优播| 国产有黄有色有爽视频| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 国产一卡二卡三卡精品| 亚洲成人手机| 一级片免费观看大全| 午夜精品国产一区二区电影| 国产97色在线日韩免费| 黄片小视频在线播放| 91在线观看av| a在线观看视频网站| 日韩欧美国产一区二区入口| 丰满人妻熟妇乱又伦精品不卡| av有码第一页| 777久久人妻少妇嫩草av网站| 欧美日韩一级在线毛片| 久久狼人影院| 一级毛片精品| 久久久久久久久久久久大奶| 伊人久久大香线蕉亚洲五| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 美女国产高潮福利片在线看| 在线观看日韩欧美| av欧美777| 久久 成人 亚洲| 亚洲黑人精品在线| 自线自在国产av| 欧美国产精品一级二级三级| 午夜福利免费观看在线| 久久国产精品影院| 亚洲人成伊人成综合网2020| 久久天堂一区二区三区四区| 咕卡用的链子| 青草久久国产| 国产在线观看jvid| 精品国内亚洲2022精品成人 | 在线观看舔阴道视频| 亚洲一区二区三区欧美精品| 亚洲少妇的诱惑av| 亚洲情色 制服丝袜| 欧美日韩乱码在线| 久久婷婷成人综合色麻豆| 欧美一级毛片孕妇| 国产一区二区三区综合在线观看| 色婷婷久久久亚洲欧美| 亚洲人成电影免费在线| 久久精品国产亚洲av香蕉五月 | 国产精品 国内视频| 自线自在国产av| av一本久久久久| 老汉色av国产亚洲站长工具| 免费日韩欧美在线观看| 欧美日韩一级在线毛片| 久热这里只有精品99| 国产成人精品久久二区二区免费| 在线观看午夜福利视频| 亚洲美女黄片视频| 黄片播放在线免费| 在线看a的网站| 三上悠亚av全集在线观看| 国产精品 欧美亚洲| 国产男女超爽视频在线观看| 日本黄色视频三级网站网址 | 人人妻人人爽人人添夜夜欢视频| 亚洲自偷自拍图片 自拍| 免费观看a级毛片全部| 久久久国产欧美日韩av| 50天的宝宝边吃奶边哭怎么回事| 99国产精品一区二区蜜桃av | 一级片'在线观看视频| 国产精品九九99| 一级黄色大片毛片| 在线av久久热| 国产一区二区三区综合在线观看| 国产乱人伦免费视频| 极品人妻少妇av视频| 人妻一区二区av| 欧美国产精品va在线观看不卡| 欧美日韩福利视频一区二区| 丰满的人妻完整版| 午夜福利影视在线免费观看| 久9热在线精品视频| 欧美精品高潮呻吟av久久| 夜夜躁狠狠躁天天躁| 国产精品久久久久久人妻精品电影| 伊人久久大香线蕉亚洲五| av天堂久久9| 亚洲av第一区精品v没综合| 久久久久久久国产电影| 搡老乐熟女国产| 51午夜福利影视在线观看| 18禁观看日本| 国产精品一区二区在线不卡| 日本a在线网址| 成人国产一区最新在线观看| 丰满迷人的少妇在线观看| 高清黄色对白视频在线免费看| 黑人巨大精品欧美一区二区蜜桃| 黑人欧美特级aaaaaa片| 欧美日韩乱码在线| 久久久久久久国产电影| 国产aⅴ精品一区二区三区波| а√天堂www在线а√下载 | 午夜成年电影在线免费观看| 国产av精品麻豆| 老汉色∧v一级毛片| 成人18禁在线播放| 欧美日韩乱码在线| 亚洲专区中文字幕在线| 91大片在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一夜夜www| 嫩草影视91久久| xxx96com| 老鸭窝网址在线观看| 免费黄频网站在线观看国产|