• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigations for the impacts of triple-moment and double-moment condensation schemes on the warm rain formation

    2018-12-19 05:49:18DENGWeiSUNJiMingcandLEIHengChi

    DENG Wei,SUN Ji-Ming,cand LEI Heng-Chi,c

    aKey Laboratory of Cloud–Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Beijing,China;bCollege of Earth Science,University of Chinese Academy of Sciences,Beijing,China;cCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science&Technology,Nanjing,China

    ABSTRACT The initiation and intensity of warm rain are processes dominated by the evolution of cloud droplet spectra.To treat the cloud condensation process properly is a fundamental step for the simulation of warm rain formation.Double-moment bulk schemes with a limited number of prognostic variables cannot simulate the evolution of droplet spectra properly.A triple-moment bulk scheme,however,should overcome the problem of spurious cloud droplet spectrum broadening induced by double-moment schemes.To compare the effects of a newly developed triplemoment scheme with double-moment schemes on warm rain formation,the authors conducted WRF-LES numerical simulations to investigate the impacts of the two types of condensation scheme on rain initiation and intensity.In the early stage of raindrop formation,the simulation with the triple-moment scheme delays the raindrop initiation and produces droplet spectra with smaller average radii than those with the double-moment scheme.In the developing stage,the triple-moment scheme reduces the raindrop water content at the precipitation center.However,the further triple-moment scheme for raindrop is needed to simulate the development of warm rain accurately.

    KEYWORDS Warm rain formation;triple-moment bulk scheme;droplet spectra

    1.Introduction

    Precipitation produced by warm clouds normally takes place below the 0°C layer,without the occurrence of freezing microphysical processes.Warm rain is a typical precipitation process for some continental and maritime convective clouds.Raindrops are formed through water vapor diffusion growth for cloud droplets,and subsequent collision and coalescence.The description of such microphysical processes by bulk parameterization schemes determines the prediction of warm rain intensity and initiation in regional numerical weather models.The evolution of cloud droplet spectra during condensation is a fundamental step for warm rain formation.The size distributions of cloud droplets in bulk schemes are described by a three-parameter gamma equation in the form ofn(r)=N0rα-1e-βr.The cloud droplets spectrum can be determined by three variables,wheren(r)is number concentration of cloud droplets of radiusr,N0is intercept parameter of size distribution and β is slope parameter,the shape parameter α represents width of spectrum.The evolution of a droplet spectrum can be prescribed by the prognostic parameters(N0, α,β)during water vapor diffusion growth(Clark 1974).Theoretically,these parameters should be predicted by their respective exact differentials in all kinds of microphysical and dynamical processes through solving three prognostic equations of moments of the cloud droplet size distribution.

    Current two-moment bulk schemes of cloud droplets use just two prognostic variables,droplet number concentration and cloud water content,to predict the evolution of parametersN0and β.The value of the shape parameter(α)is kept constant to limit the number of prognostic variables(Morrison and Pinto 2005;Phillips,Donner,and Garner 2007).However,the width of the cloud droplet spectrum,which is closely related to α,observed in-situ,varies depending on the cloud type(maritime,continental,urban),and even within the same type(e.g.cumulus)at different heights.Undoubtedly,using a fixed parameter cannot describe the evolution of cloud droplet distributions properly during the condensation process.Zhang(2015)compared the simulations results of different bin and bulk schemes,and found that using a double-moment scheme leads to an abnormal broadening problem that overestimates cloud droplets sizes.

    Exaggerated cloud droplet radii is a problem that affects warm rain formation directly,since the raindrop water content in current bulk schemes is diagnosed through autoconversion and accretion rate equations that consider several characteristics of the cloud droplet spectra,such as cloud water content,spectrum width,and mean sizes(Berry and Reinhardt 1974;Phillips,Donner,and Garner 2007),and the evolution of cloud droplet spectra has a significant effect on the simulation of rain initiation and intensity(Cohard and Pinty 2000;Chen and Liu 2004;Lim,Donner,and Garner 2007).

    To overcome the deficiency of double-moment schemes,a triple-moment bulk scheme,referred to as IAP-LACS,has recently been developed at the IAP’s Laboratory of Cloud-Precipitation Physics and Severe Storms(LACS),that includes an additional prognostic variable of the aver ageradius.The triple-moment bulk scheme eliminates the problem of abnormal broadening of the cloud droplet spectrum in double-moment schemes,and can describe the evolution of droplet spectra more accurately during water vapor diffusional growth(Deng 2018).However,to what extent this new scheme affects the process of warm rain formation has yet to be simulated.

    The numerical tests in this study focus on the effect of condensation schemes on warm rain formation.We separately simulate a marine-type shallow convective cumulus cloud system with the new triple-moment scheme and a double-moment scheme.The large eddy simulation(LES)idealized case in the Weather Research and Forecasting(WRF)model is applied in our simulations.

    2.Methods

    2.1 Microphysics schemes

    The microphysics of warm clouds includes droplet nucleation from cloud condensation nuclei,water vapor diffusional growth (condensation and evaporation),and warm rain formation(autoconversion and accretion of cloud water).Both schemes use the same aerosol activation and raindrop formation algorithms.The aerosol activation scheme uses a log-normal distribution(Abdul-Razzak and Ghan 2000)to represent the size distributions of aerosols,and the activated aerosol number concentration is calculated through estimating the critical supersaturations of the aerosols with a K?hler curve and environment grid supersaturations(Deng 2018).The scheme for warm raindrop formation is from Phillips,Donner,and Garner(2007),which itself was based on Lin,Farley,and Orville(1983).The improved threshold value for autoconversion considers cloud droplet masses with larger radii(r>8 μm),and then the initiated raindrop water content is calculated by the cloud droplet number and content(Khairoutdinov and Kogan 2000).The accretion rate depends on the breadth and average size of the cloud droplet spectra effecting collision efficiencies,besides cloud liquid mass.

    The only difference in the microphysics lies in the water vapor diffusional growth for cloud droplets.The double-moment condensation scheme is the same as that of Phillips,Donner,and Garner(2007),i.e.the increment of raindrop water content comes from the solutions to ordinary differential equations for the mixing ratio of water vapor and temperature,whilst at the same time the cloud droplet number and shape parameter(α)remain constant.The evolution of cloud droplet spectra results only from the increase in the slope parameter(β).

    Based on Clark(1974),the triple-moment scheme predicts the time derivation of the shape parameter in cloud droplet spectra by using a prognostic variable:the average radius of the cloud droplet spectrum.Besides,the newly developed condensation scheme uses a new numerical algorithm to ensure stability of the integration.A detailed description of the newly developed triple-moment condensation scheme is presented in Deng(2018),and the two parameters(N0,β)of the droplet spectrum are derived from a combination of the mixing ratio of cloud water mass and the droplet number concentration.The triple-moment condensation scheme overcomes the problem of abnormal broadening and accurately describes the evolution of cloud droplet spectra.

    After each conversion step,the cloud droplet spectra should be recalculated using three prognostic variables according to the treatment of Phillips,Donner,and Garner(2007).The shape parameter(α)also remains constant in the rain conversion process,and the value of β should be updated in each time step.

    2.2 Initial conditions

    The initial thermodynamic conditions for all simulations are provided by the atmospheric profiles of temperature and dew point temperature from the RICO(Rain in Cumulus over the Ocean)observational experiment(Stevens and Seifert 2008).Horizontal wind is not considered.These profiles represent typical thermodynamic conditions for warm rain formation(Deng 2018).

    The dynamical framework of WRF-LES is applied in this study.The simulation domain is 12 km×12 km,and the cloud top height is 5 km.Convection is triggered by a spherical hot bubble at the center of the horizontal area.The heating temperature of the center is 3.0 K higher than the background,and the bubble radius is 300 m.The heating temperature decreases along the bubble radius.The simulation time for convection is set to 20 min.Both the vertical and horizontal resolution is 100 m.

    3.Results

    During the developing stage of convective cloud,there are cloud droplets with large radii around the cloud top for water vapor diffusional growth.The maximum value of cloud water content triggers warm rain initiation in the center of the cloud top,and the cloud water accretion accelerates raindrop formation around due to the increase in the average size of cloud droplets.When raindrop formation is mature enough,warm rain falls to the ground.The development of raindrop water content is closely associated with the evolution of the cloud water content and the average size of cloud droplets.We divide the development of warm rain into the initial formation stage,developing stage,and mature stage.

    The simulation results presented below include the spatial distribution of the cloud water content,the average radius of cloud droplets,and the raindrop water content.All the results are from a cross section along the center of south and north axis of the hot bubble.The vertical coordinate is altitude and horizontal coordinate represents west and east axis of horizontal panel in three-dimensional model.

    3.1 Raindrop initiation of warm rain

    The initiated raindrops appear near the center of the cloud top at 7 min.The spatial distributions of cloud water content are similar in the triple-and doublemoment schemes,as can be seen from Figure 1.The maximum values of cloud water content in both cases is 1.2 g kg?1at the center of the hot bubble.However,the droplet average radii are significantly different;the maximum average radius of the triple-moment scheme is no more than 15 μm,while the value of the double-moment scheme exceeds 20 μm.The overestimated average radii is indicative of the abnormal broadening problem in double-moment schemes.The radius growth rate of the cloud droplet is inversely proportional to the droplet radius during condensation.As a result,the widths of droplet spectra become increasingly narrower;and theoretically,the average radii of cloud droplets cannot exceed 20 μm through water vapor diffusion.

    With large enough values of cloud droplet mass and the average size reaching the threshold values for cloud water autoconversion,raindrops initiate near the center of the cloud top at the height of 1.5 km,when the raindrop water content exceeds 10?3g kg?1.At 7 min,the maximum value of rainwater content is 0.0009 g kg?1in the triple-moment scheme;meanwhile,the maximum value in the double-moment scheme is 0.002 g kg?1,and raindrop initiation appears earlier.The smaller values of average sizes simulated by the triple-moment scheme delay the warm rain initiation.

    The obvious difference in average radius and raindrop initiation results from the difference in the simulated size distribution of droplets between the two condensation schemes,as shown by Figure 2.The results of the cloud droplet spectra in the center grids at 1200 m and 1500 m,respectively,show the breadth of cloud droplets become broadened from the lower height to the cloud top with an increase in cloud water content in the two condensation schemes.

    The main difference is that the size distributions of cloud droplets in the triple-moment simulation are narrow and unimodal,while abnormal broadening spectra arise for the double-moment simulation and lead to overestimated average radii.

    The triple-moment condensation scheme overcomes the abnormal broadening problem of cloud droplet spectra in the double-moment condensation scheme.The narrower widths of spectra reduce cloud water autoconversion rates and then delay raindrop initiation.

    3.2 Developing stage of warm rain

    At 14 min,convection develops rapidly due to latent heat release (Figure 3).The cloud water content increases and reaches a peak value of 3.5 g kg?1.Figure 3 also shows that the values of the average radii are higher in the double-moment simulation than those in the triple-moment simulation.The maximum average radius of the triple-moment is 18 μm,while that of the double-moment scheme exceeds 30 μm.Such a big difference results in various cloud water accretion rates,which depend on the average size and cloud water mass of larger cloud droplets.Narrower breadths of cloud droplet spectra reduce accretion rates for the triple-moment scheme,while the broadening of cloud droplet spectra results in higher rates in the double-moment scheme.

    Figure 1.Spatial distributions of the mixing ratios of the(a,b)cloud water content(Qc)and,the(c,d)average radii of cloud droplets(Rc)and,the(e,f)rainwater content(Qr)simulated by the(a,c,e)triple-moment scheme(3M)and(b,d,f)double-moment(2M)scheme at 7 min.

    Figure 2.Size distributions of cloud droplets of the triple-moment scheme(3M)and the double-moment(2M)scheme at(a)1200 m and(b)1500 m at 7 min.

    The large values of cloud water content and the mean sizes of droplets are helpful to exceed the threshold values of rain conversion.Thus,warm rain develops rapidly around the center of the cloud top,with the mixing ratio of rainwater content reaching 1.0 g kg?1(Figure 3(e)and(f)).The maximum mixing ratio of raindrop water content for the triple-moment scheme is about 1.3 g kg?1,while the peak value can reach 2.0 g kg?1in the double-moment scheme.The evolution of the droplet spectra can affect the maximum intensity at the precipitation center(Zhou,Zhao,and Qin 2005).Therefore,the narrow droplet spectra of the triplemoment scheme can avoid overestimating the warm rain center intensity.

    It should be noted that warm rain formation is based on the double-moment scheme.Consequently,the shape parameter remains constant for the triplemoment scheme during warm rain formation,such that cloud water conversion reduces the accuracy of the simulated cloud droplet spectra.

    3.3 Mature stage of warm rain

    The top of the fully developed convection reaches a height near 4 km at 17 min(Figure 4),at which point the warm rain becomes mature.The decline of the mixing ratio of cloud water content indicates that warm rain formation accelerates below 3.5 km through effective autoconversion and accretion.The maximum value of the mixing ratio of the rainwater content reaches 6.0 g kg?1.The falling raindrops appearing on both sides of the cloud is due to the divergence of the cloud top vortex.Around cloud edges,there are peak values of average radii on both sides(Figure 4(c)).The entrainment accelerates the evaporation of cloud droplets.The reduction in small cloud droplets is obvious,because the evaporation rates of small droplets are larger than big ones,and the remaining small amount of cloud droplets with large radii increase the average radii values.

    Although the mixing ratios of the rainwater center in the triple-moment scheme are smaller than those of the double-moment scheme at the height of 2.6 km,the difference between the two condensation schemes decreases as the warm rain becomes mature.At 20 min,there is no significant difference in the spatial distributions of the two simulation results when precipitation reaches the ground(Figure 5).Meanwhile,most of the cloud water content turns to be warm rain,and the whole cloud dissipates.

    Cloud droplet condensation schemes affect warm rain initiation and center intensity evidently in the developing stage of warm rain,but such impacts become weak as the warm rain becomes mature.The reasons may be that current rain parameterizations are unable to accurately estimate the conversion rate of cloud water for triple-moment cloud parameterization schemes.These less proper conversion processes reduce the effects of cloud droplets condensation on warm rain formation when collision plays a more important role in warm rain development.

    Figure 3.Spatial distributions of the mixing ratios of the(a,b)cloud water content(Qc)and,the(c,d)average radii of cloud droplets(Rc)and,the(e,f)rainwater content(Qr)simulated by the(a,c,e)triple-moment scheme(3M)and(b,d,f)double-moment(2M)scheme at 14 min.

    Figure 4.Spatial distributions of the mixing ratios of the(a,b)cloud water content(Qc)and,the(c,d)average radii of cloud droplets(Rc)and,the(e,f)rainwater content(Qr)simulated by the(a,c,e)triple-moment scheme(3M)and(b,d,f)double-moment(2M)scheme at 17 min.

    Figure 5.Spatial distributions of the mixing ratios of the rainwater content(Qr)simulated by the(a)triple-moment scheme(3M)and(b)double-moment(2M)scheme at 20 min.

    4.Conclusions

    To study the effects of a newly developed triplemoment scheme on warm rain formation,we conduct marine-type shallow cumulus numerical tests and compare the simulation results of the triple-moment cloud scheme with those of a double-moment scheme.The triple-moment cloud scheme overcomes the abnormal spectrum broadening problem of the double-moment scheme,delays the formation of warm rain,and even reduces the rainfall intensity.However,such differences tend to become negligible as the convection develops.

    When warm rain falls to the ground,no obvious difference is observed between the simulated results of the two schemes,which can probably be attributed to the fact that the two cloud schemes both use the same double-moment rain parameterization.In the future,we hope to develop a new triple-moment rain parameterization scheme and couple it with the IAP-LACS scheme to further elucidate the advantages of triple-moment parameterization schemes in the simulation of warm rain formation.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This research was supported by the National Basic Research Program of China(973 Program)[Grant 2014CB441403],the National Natural Science Foundation of China [Grants 41275147],the National Key Research and Development Program of China[2016YFC0209000]and Ningxia scientific supporting program[Grants 2015KJHM31].

    国产伦人伦偷精品视频| 亚洲中文av在线| 成在线人永久免费视频| 成人午夜高清在线视频 | 在线看三级毛片| 久99久视频精品免费| 在线观看日韩欧美| 国产成人av教育| 老司机午夜十八禁免费视频| 亚洲免费av在线视频| 免费看日本二区| 久久久久国产一级毛片高清牌| 亚洲精品国产一区二区精华液| 亚洲国产中文字幕在线视频| 丰满人妻熟妇乱又伦精品不卡| 脱女人内裤的视频| 亚洲一区二区三区不卡视频| 亚洲电影在线观看av| 精品人妻1区二区| 亚洲熟妇熟女久久| 国产成人av教育| 亚洲 欧美一区二区三区| 亚洲熟女毛片儿| 国产av一区二区精品久久| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 我的亚洲天堂| 91在线观看av| 美女大奶头视频| 极品教师在线免费播放| 久久久国产成人精品二区| 精品卡一卡二卡四卡免费| 日本免费一区二区三区高清不卡| 宅男免费午夜| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| 黄片小视频在线播放| 亚洲五月天丁香| 国产真实乱freesex| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 久久中文看片网| 欧美成人一区二区免费高清观看 | 热99re8久久精品国产| 欧美久久黑人一区二区| 黄色 视频免费看| 美女高潮喷水抽搐中文字幕| 麻豆成人午夜福利视频| 男男h啪啪无遮挡| 国产爱豆传媒在线观看 | 久9热在线精品视频| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| a在线观看视频网站| 黄色丝袜av网址大全| 一二三四在线观看免费中文在| 久久亚洲精品不卡| 国产精华一区二区三区| 国内精品久久久久精免费| 亚洲精品国产区一区二| 亚洲中文av在线| 黄色片一级片一级黄色片| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| videosex国产| 两人在一起打扑克的视频| 午夜日韩欧美国产| 欧美+亚洲+日韩+国产| 亚洲成人国产一区在线观看| 精品欧美国产一区二区三| 亚洲在线自拍视频| 此物有八面人人有两片| 日日干狠狠操夜夜爽| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 国产精品久久久久久精品电影 | 18禁观看日本| 免费观看人在逋| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 国产一区二区三区视频了| 久久精品国产清高在天天线| 操出白浆在线播放| 婷婷精品国产亚洲av在线| 午夜免费观看网址| 免费搜索国产男女视频| 女人被狂操c到高潮| 啦啦啦韩国在线观看视频| 欧美日韩精品网址| 国产男靠女视频免费网站| 国产亚洲欧美在线一区二区| 两性夫妻黄色片| 国产成人啪精品午夜网站| av电影中文网址| 好男人电影高清在线观看| 亚洲,欧美精品.| 欧美日韩乱码在线| 热99re8久久精品国产| 91在线观看av| 久久婷婷人人爽人人干人人爱| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 99国产精品一区二区三区| 亚洲精品在线观看二区| 免费搜索国产男女视频| 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品久久久久久毛片| 黄片小视频在线播放| 欧美色视频一区免费| 黄色a级毛片大全视频| 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 精品无人区乱码1区二区| 国产亚洲精品综合一区在线观看 | 两个人免费观看高清视频| 亚洲av第一区精品v没综合| 老司机福利观看| 老司机在亚洲福利影院| 亚洲av成人av| 国产成人欧美在线观看| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩无卡精品| 琪琪午夜伦伦电影理论片6080| 在线观看免费午夜福利视频| 日本熟妇午夜| 亚洲精品色激情综合| 国产精华一区二区三区| 最近最新中文字幕大全电影3 | 人成视频在线观看免费观看| 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 日韩av在线大香蕉| 久久久国产成人精品二区| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久久亚洲精品蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 亚洲专区国产一区二区| 露出奶头的视频| 免费看日本二区| 国产精品免费视频内射| 一个人免费在线观看的高清视频| 伦理电影免费视频| 国产高清视频在线播放一区| 人成视频在线观看免费观看| 一区二区三区国产精品乱码| 久久精品国产亚洲av香蕉五月| 大香蕉久久成人网| 国产精品亚洲美女久久久| 国产不卡一卡二| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 亚洲国产毛片av蜜桃av| 俺也久久电影网| 成人精品一区二区免费| 男人舔奶头视频| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频| 精品不卡国产一区二区三区| 天天添夜夜摸| 91大片在线观看| 午夜视频精品福利| 免费搜索国产男女视频| 久久国产亚洲av麻豆专区| 在线视频色国产色| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 美女免费视频网站| 亚洲成人久久爱视频| 不卡av一区二区三区| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 亚洲五月色婷婷综合| 国产午夜精品久久久久久| 免费看日本二区| 亚洲国产高清在线一区二区三 | 50天的宝宝边吃奶边哭怎么回事| 亚洲中文字幕日韩| 精品久久久久久久毛片微露脸| 成熟少妇高潮喷水视频| 精品电影一区二区在线| 久久精品91无色码中文字幕| 欧美乱码精品一区二区三区| 一二三四社区在线视频社区8| bbb黄色大片| 国产精品乱码一区二三区的特点| 少妇被粗大的猛进出69影院| 成年免费大片在线观看| 国产高清视频在线播放一区| 在线观看午夜福利视频| 国产精品亚洲美女久久久| 久久天堂一区二区三区四区| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| 日韩视频一区二区在线观看| √禁漫天堂资源中文www| 国产精品综合久久久久久久免费| 又大又爽又粗| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2 | 侵犯人妻中文字幕一二三四区| 国产一区二区在线av高清观看| 精品午夜福利视频在线观看一区| 欧美又色又爽又黄视频| 国产色视频综合| 亚洲自偷自拍图片 自拍| 国产精品免费一区二区三区在线| 欧美一级毛片孕妇| 欧美又色又爽又黄视频| 1024手机看黄色片| 一级a爱视频在线免费观看| 欧美激情极品国产一区二区三区| 日韩欧美国产在线观看| 久久狼人影院| 国产日本99.免费观看| 久热爱精品视频在线9| 国产精品日韩av在线免费观看| 成人三级做爰电影| 老司机靠b影院| 亚洲av第一区精品v没综合| 一级毛片女人18水好多| 少妇被粗大的猛进出69影院| 精品日产1卡2卡| 午夜福利高清视频| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区| 精品欧美一区二区三区在线| 日韩国内少妇激情av| 88av欧美| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 91av网站免费观看| 欧美日韩亚洲国产一区二区在线观看| 12—13女人毛片做爰片一| 满18在线观看网站| 在线观看舔阴道视频| 久久久久久久久久黄片| 国产激情久久老熟女| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 精品不卡国产一区二区三区| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 成年版毛片免费区| 露出奶头的视频| 欧美久久黑人一区二区| 丰满的人妻完整版| 成人亚洲精品av一区二区| 欧美+亚洲+日韩+国产| 俺也久久电影网| 亚洲最大成人中文| 国产精品精品国产色婷婷| 欧美久久黑人一区二区| 免费av毛片视频| 两人在一起打扑克的视频| 身体一侧抽搐| 禁无遮挡网站| 一级黄色大片毛片| 男女视频在线观看网站免费 | 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 免费在线观看日本一区| 香蕉av资源在线| 亚洲第一欧美日韩一区二区三区| 大型黄色视频在线免费观看| 后天国语完整版免费观看| 亚洲av五月六月丁香网| 国产成人精品久久二区二区91| 精品卡一卡二卡四卡免费| 亚洲国产欧洲综合997久久, | 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 亚洲avbb在线观看| 男女午夜视频在线观看| 国产日本99.免费观看| 免费在线观看影片大全网站| 久久精品成人免费网站| 日韩国内少妇激情av| 久久久国产精品麻豆| 最近最新中文字幕大全电影3 | 两人在一起打扑克的视频| 免费在线观看影片大全网站| 精品欧美国产一区二区三| 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 丁香欧美五月| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 国产成人av教育| 亚洲一区二区三区色噜噜| 国产精品 国内视频| 无限看片的www在线观看| 色综合站精品国产| 一级毛片高清免费大全| 亚洲精品粉嫩美女一区| 一级毛片女人18水好多| АⅤ资源中文在线天堂| 午夜免费鲁丝| 亚洲熟妇中文字幕五十中出| 亚洲人成网站高清观看| 岛国视频午夜一区免费看| 国产精品永久免费网站| 国产高清激情床上av| 老司机午夜福利在线观看视频| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 每晚都被弄得嗷嗷叫到高潮| 精品欧美国产一区二区三| 国产亚洲av高清不卡| 亚洲av熟女| 老司机深夜福利视频在线观看| 亚洲人成77777在线视频| 免费观看精品视频网站| 黄色视频不卡| 精品国内亚洲2022精品成人| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 久久狼人影院| 亚洲国产精品久久男人天堂| 男女做爰动态图高潮gif福利片| 久久精品国产99精品国产亚洲性色| 伊人久久大香线蕉亚洲五| 别揉我奶头~嗯~啊~动态视频| 精品国产超薄肉色丝袜足j| 日韩高清综合在线| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 丁香六月欧美| www.999成人在线观看| 欧美久久黑人一区二区| 天堂动漫精品| 啦啦啦观看免费观看视频高清| 91麻豆精品激情在线观看国产| 国产精品 欧美亚洲| 久久精品夜夜夜夜夜久久蜜豆 | 国产成人一区二区三区免费视频网站| www.自偷自拍.com| 老司机午夜十八禁免费视频| 欧美又色又爽又黄视频| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 欧美日本亚洲视频在线播放| 精品久久蜜臀av无| 美女午夜性视频免费| 久久久国产成人精品二区| 亚洲美女黄片视频| 特大巨黑吊av在线直播 | 精品久久久久久久久久免费视频| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 长腿黑丝高跟| 热re99久久国产66热| 黄色视频不卡| 9191精品国产免费久久| 欧美日韩乱码在线| 欧美不卡视频在线免费观看 | 国产精品 欧美亚洲| 草草在线视频免费看| 亚洲男人的天堂狠狠| 久久亚洲精品不卡| 91大片在线观看| 在线免费观看的www视频| 天堂影院成人在线观看| 男女床上黄色一级片免费看| 丁香六月欧美| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| 精品久久久久久久末码| 久久久久久免费高清国产稀缺| 国产精华一区二区三区| 欧美一区二区精品小视频在线| 99在线视频只有这里精品首页| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 国产av一区在线观看免费| 香蕉av资源在线| xxx96com| 在线天堂中文资源库| 国产激情欧美一区二区| a级毛片a级免费在线| 亚洲国产欧美网| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 国产黄片美女视频| 一本久久中文字幕| 欧美一区二区精品小视频在线| 99久久国产精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 日本三级黄在线观看| 国产91精品成人一区二区三区| 人人澡人人妻人| 在线天堂中文资源库| 成人精品一区二区免费| 国产亚洲精品久久久久5区| 少妇熟女aⅴ在线视频| 精品欧美一区二区三区在线| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 男人舔女人的私密视频| 97超级碰碰碰精品色视频在线观看| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 午夜福利一区二区在线看| 观看免费一级毛片| 女性生殖器流出的白浆| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 热re99久久国产66热| 久久久久久久午夜电影| 老司机深夜福利视频在线观看| cao死你这个sao货| 久久精品91蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻1区二区| 精品欧美一区二区三区在线| 色播亚洲综合网| 国产精品一区二区精品视频观看| 成年人黄色毛片网站| 精品电影一区二区在线| 国产单亲对白刺激| 国产欧美日韩一区二区三| 高潮久久久久久久久久久不卡| 亚洲精品色激情综合| 国产高清videossex| 国产不卡一卡二| 亚洲成国产人片在线观看| 18禁观看日本| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| www.www免费av| 成人av一区二区三区在线看| 99久久精品国产亚洲精品| 成人三级黄色视频| 中文在线观看免费www的网站 | 一本一本综合久久| 日本五十路高清| 99久久综合精品五月天人人| 国产精品免费一区二区三区在线| 男男h啪啪无遮挡| 18禁美女被吸乳视频| 国产精品一区二区精品视频观看| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播| 免费看日本二区| 色综合亚洲欧美另类图片| 日韩大尺度精品在线看网址| 黑丝袜美女国产一区| 久久精品亚洲精品国产色婷小说| 免费高清在线观看日韩| 国产精品野战在线观看| 老汉色av国产亚洲站长工具| 精品国产国语对白av| 日日干狠狠操夜夜爽| 国产视频一区二区在线看| 1024手机看黄色片| 亚洲欧美日韩无卡精品| 91大片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲最大成人中文| 久久九九热精品免费| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 免费在线观看日本一区| 一夜夜www| 亚洲三区欧美一区| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久人妻精品电影| 757午夜福利合集在线观看| 99riav亚洲国产免费| 欧美一区二区精品小视频在线| 欧美中文日本在线观看视频| 久久天堂一区二区三区四区| 久久久久久久久中文| 色播亚洲综合网| 亚洲一区二区三区色噜噜| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月| 脱女人内裤的视频| а√天堂www在线а√下载| 亚洲国产高清在线一区二区三 | 老司机靠b影院| 久久久国产成人精品二区| 51午夜福利影视在线观看| 久久香蕉精品热| 中文字幕精品亚洲无线码一区 | 最新在线观看一区二区三区| 国产欧美日韩一区二区三| 国产1区2区3区精品| 99国产精品一区二区蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区久久 | 国产黄a三级三级三级人| 国产伦一二天堂av在线观看| 桃红色精品国产亚洲av| 国产野战对白在线观看| 日韩欧美国产在线观看| 国产精品自产拍在线观看55亚洲| 精品少妇一区二区三区视频日本电影| x7x7x7水蜜桃| 91麻豆精品激情在线观看国产| 色综合婷婷激情| 日本 欧美在线| 好男人电影高清在线观看| 国产激情久久老熟女| 欧美激情极品国产一区二区三区| 亚洲午夜精品一区,二区,三区| 一级作爱视频免费观看| 男人舔女人下体高潮全视频| 欧美最黄视频在线播放免费| 欧美在线一区亚洲| 一进一出抽搐gif免费好疼| 色av中文字幕| av有码第一页| 亚洲欧美精品综合一区二区三区| 99热6这里只有精品| 日韩欧美一区二区三区在线观看| 一级毛片高清免费大全| 色精品久久人妻99蜜桃| 人人妻,人人澡人人爽秒播| 国产片内射在线| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看 | 色播亚洲综合网| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| avwww免费| 精品久久久久久久人妻蜜臀av| a级毛片在线看网站| 日韩免费av在线播放| 亚洲国产精品久久男人天堂| 精品久久久久久久毛片微露脸| 精品不卡国产一区二区三区| 国产亚洲欧美98| 欧美黄色片欧美黄色片| 不卡av一区二区三区| 欧美人与性动交α欧美精品济南到| 久久国产精品男人的天堂亚洲| 99精品在免费线老司机午夜| 黄频高清免费视频| 国产精品99久久99久久久不卡| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 国产精品电影一区二区三区| 国产精品 国内视频| 亚洲精品在线观看二区| 观看免费一级毛片| 亚洲欧美一区二区三区黑人| 久久久久久九九精品二区国产 | 在线观看66精品国产| xxxwww97欧美| 国产精品一区二区三区四区久久 | 久久中文字幕人妻熟女| 久久久久久免费高清国产稀缺| 色综合欧美亚洲国产小说| 国产三级黄色录像| 亚洲精品一卡2卡三卡4卡5卡| 欧美色欧美亚洲另类二区| 亚洲男人天堂网一区| 女性被躁到高潮视频| bbb黄色大片| 91麻豆精品激情在线观看国产| 国产免费男女视频| 亚洲人成电影免费在线| 他把我摸到了高潮在线观看| 中文字幕精品免费在线观看视频| 制服诱惑二区| 一区二区日韩欧美中文字幕| 亚洲午夜理论影院| 两性夫妻黄色片| avwww免费| 国产亚洲精品av在线| 成年人黄色毛片网站| av欧美777| 国产熟女xx| tocl精华| 国内揄拍国产精品人妻在线 | 亚洲精品粉嫩美女一区| 久热爱精品视频在线9| 欧美黄色淫秽网站| 国产黄a三级三级三级人| 一级黄色大片毛片| 久久草成人影院| 国产精品九九99| 亚洲熟女毛片儿| 成人亚洲精品av一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲 欧美 日韩 在线 免费| 亚洲avbb在线观看| 极品教师在线免费播放| 日韩欧美 国产精品| 中文在线观看免费www的网站 | 国产激情久久老熟女| 久久香蕉国产精品|