• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dominant variation modes associated with Yangtze–Huai River Basin summer heavy rainfall events

    2018-12-19 05:49:18LIUHongBo

    LIU Hong-Bo

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China

    ABSTRACT The Yangtze–Huai River Basin(YHRB)always suffers from anomalously heavy rainfall during the warm season,and has been well explored as a whole area during the past several decades.In this study,the YHRB is divided into two core regions—the northern YHRB(nYHRB)and southern YHRB(sYHRB) — based on 29-year(1979–2007)June–July–August(JJA)temporally averaged daily rainfall rates and the standard deviation of rainfall.A spectral analysis of JJA daily rainfall data over these 29 years reveals that a 3–7-day synoptic-timescale high-frequency mode is absolutely dominant over the nYHRB,with 10–20-day and 15–40-day modes playing a secondary role.By contrast,3–7-day and 10–20-day modes are both significant over the sYHRB,with 7–14-day,15–40-day,and 20–60-day modes playing secondary roles.Based on a comparison between bandpass- filtered rainfall anomalies and original rainfall series,a total of 42,1,5,and 3 heavy rainfall events(daily rainfall amounts in the top 5%of rainy days)are detected over the nYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 15–40-dayvariation disturbances.Meanwhile,a total of 28,8,12,and 6 heavy rainfall events are detected over the sYHRB,corresponding to 3–7-day,7–14-day,10–20-day,and 20–60-day variation disturbances.The results have important implications for understanding the duration of summer heavy rainfall events over both regions.

    KEYWORDS Variation modes;heavy rainfall;Yangtze–Huai River Basin;summer

    1.Introduction

    The Yangtze–Huai River Basin(YHRB),covering roughly the area(27°–35°N,114°–121°E),is one of the most centralized regions over East China for summer(June–July–August,JJA)rainfall.The rainfall over this region is mainly caused by the low-level quasi-stationary mei-yu front,low pressure systems(e.g.,eastward-moving southwest vortices originating from Sichuan Basin),mesoscale convective systems,and the mid-level western Pacific subtropical high,as well as the midlatitude blocking high providing favorable large-scale circulations for rainfall(Dong and Zhao 2004;Zhu et al.2000;Sun and Zhao 2003;Chen and Zhai 2014,2016).Mei-yu is a representative precipitation phenomenon in this area.The mei-yu season is long-lasting,usually from mid-June to mid-July,and the rainfall is characterized by frequent heavy or torrential rainfall events(Ding 1994).Therefore,the YHRB always suffers from severe floods,like in the summer of 1991,1998,and 2003(Mao and Wu 2006;Huang et al.1998;Zhang and Zhang 2012).

    Previous studies indicate that persistent heavy rainfall events over the YHRB are always associated with the activities of low-frequency intraseasonal variation(ISV)modes(Cao et al.2012;Wang et al.2014).In other words,the above flooding events match well with the wet phases of ISVs.For example,the heavy rainfall events in the summer of 1991,1998,and 2003 are consistent with the propagation and activity of ISVs with periods of30–60 days,15–35 days,and 10–20 days(Zhu et al.2003;Chen et al.2005;Mao and Wu 2006;Liu et al.2014),respectively.These ISV modes provide favorable background conditions for persistent precipitation over the YHRB region(like the continuous water supply and anomalous cyclonic circulations);plus,they involve a series of interactions between different circulation systems from the lower to upper troposphere(Yang et al.2010,2014;Cao et al.2012;Cao,Ren,and Sun 2013;Zhang,Zhou,and Zhang 2012).

    Each rainfall event over the YHRB is always related to frequently appearing midlatitude moving synoptic systems(Chang et al.1998;Qian,Tao,and Lau 2004;Jiao et al.2004).These synoptic-scale weather systems can be viewed as a series of synoptic-timescale disturbances with periods of 3–8 days(Berry,Reeder,and Jakob 2012).However,most studies focus on the influence of medium-to low-frequency ISV modes(usually>10 days)on YHRB persistent heavy rainfall(e.g.,Cao et al.2012;Cao,Ren,and Sun 2013;Wang et al.2014).Despite the direct contributions of synoptic disturbance to precipitation,they are usually filtered out as highfrequency noise.Recently,Liu et al.(2014)found that five consistent synoptic-timescale disturbances led to the flooding events over the northern YHRB(nYHRB)in 2003.Meanwhile,they indicated that southern YHRB(sYHRB)heavy rainfall resulted from the superposition of quasi-biweekly(10–20-day)and synoptic-timescale disturbances.Following this work,Huang,Luo,and Zhang(2018)also revealed the important contribution of synoptic disturbances to the pre-summer extreme rainfall over South China.Therefore,synoptic-timescale modes should be given equal attention in heavy rainfall studies.

    Scientists used to regard the YHRB as a whole because the Yangtze and Huai River are spatially close(Hu and Ding 2003;Hu,Ding,and Liao 2008;Mao and Wu 2006;Yang et al.2010).In fact,the four catastrophic flooding events after 1990 happened over different areas,i.e.,1998 along the Yangtze River;2003 and 2007 along the Huai River;and 1991 between the Yangtze and Huai rivers(Huang et al.1998;Liu et al.2014;Zhao,Zhang,and Sun 2007;Mao and Wu 2006).Besides,the warm-season precipitation in East China experiences decadal changes,with increased rainfall in the Huang–Huai River region and decreased rainfall in the Yangtze River region during 2000–08,as compared with 1979–99(Zhu et al.2011).Therefore,it is necessary to check the detailed precipitation characteristics over the YHRB concerning the rainfall area.

    Accordingly,we try to answer the following questions in this study:Are there any differences between the Yangtze River Basin and Huai River Basin in terms of their multi-year summer rainfall climatologies?If yes,what are the dominant variation modes of summer rainfall over these different regions?And what are the heavy rainfall distribution characteristics corresponding to different frequency modes over different regions?

    The next section describes the data and methods used in this study.Section 3 reveals the dominant variation modes of summer rainfall over the two core regions and quantifies the different frequency distributions related to heavy rainfall events over the two regions.A summary and concluding remarks are given in the final section.

    2.Data and methods

    2.1.Data

    In this study,the daily rainfall data over land that were compiled by the Asian Precipitation-Highly Resolved Observational Data Integration towards Evaluation of the Water Resources(APHRODITE)project are adopted.The APHRODITE project began in 2006 through the collaborative efforts of the Research Institute for Humanity and Nature and the Meteorological Research Institute of the Japan Meteorological Agency.It aims to develop state-of the-art daily precipitation datasets on high-resolution grids covering the whole of Asia.The major differences between this and the previous versions,e.g.,V0902 in Liu et al.(2014),include improved quality control(QC)and the inclusion of new data.Detailed information about the algorithm,QC,and spatial interpolation can be found in Yatagai,Xie,and Alpert(2008)and Yatagai et al.(2012)and at the website www.chikyu.ac.jp/precip/.The time coverage and spatial resolution of the latest version,V1101,is 1951–2007 and 0.25°,respectively.Here,we focus on 1979–2007,a total of 29 years.

    2.2.Spectral analysis and filtering

    We use the same spectral analysis and filtering techniques as those in Liu et al.(2014),only a brief description of which is provided here,as follows.To identify the prominent temporal range of rainfall fluctuation periods in the core region,the fast Fourier transform method is performed on the area-averaged daily rainfall data.In view of the lack of knowledge on the relationship between synoptic-timescale disturbances and heavy rainfall events over the YHRB,we preserve the high-frequency variations,i.e.,based on the ‘raw’daily rainfall series with no running mean.The raw spectral estimates are smoothed and a tapered window(10%of the data)is adopted.Multi-year averaged power spectra are obtained from the mean of each spectrum(removing the climatology).The statistical significance of the power spectra is tested,following the method of Gilman,Fuglister,and Mitchell(1963),which is based on the mean red-noise power spectrum.

    Periodical rainfall events can be captured from both the raw area-averaged daily rainfall and at each grid point through a fixed-period bandpass filtering,which is based on the Fourier harmonic analysis.The bandpass filtering is carried out for the area-averaged daily rainfall throughout the whole year.We also adopt phase analysis to describe the evolution of each disturbance.There are a total of nine phases in one life cycle of the disturbance(one disturbance refers to one cycle from phase 1 to phase 9 of the bandpass- filtered rainfall series).The peak dry phase(phase 1)and peak wet phase(phase 5)refer to the minimum and maximum rainfall day,respectively(see Figure 3e in Liu et al.(2014)).

    3.Dominant variation modes of heavy rainfall events

    3.1.Rainfall climatology over the YHRB

    Overall,the 29-year averaged daily rainfall(JJA)shows an east–west belt shape,and the rainfall intensity gradually decreases from south to north over China(Figure 1(a)).Specifically,the rainfall intensity over the YHRB region is 6–8 mm d?1south of 31°N and 4–6 mm d?1north of 31°N.The standard deviation of daily rainfall presents a similar distribution as those of the daily rainfall but includes more locally large-value areas(Figure 1(b)).The rainfall south of 31°N features large intensity variation during 1979–2007,as reflected by the relatively larger values of standard deviation(>12 mm d?1).

    Obviously,the rainfall over the YHRB region presents a different climatology to the north and south of 31°N,which is consistent with the case study of Liu et al.(2014).Therefore,here,we also divide the YHRB into two subregions,i.e.,the nYHRB(31°–35°N,114°–121°E)and sYHRB(27°–31°N,114°–121°E)(Figure 1).The subsequent rainfall analyses in this paper are all based on these two regions.

    3.2.Averaged spectral characteristics over the subregions

    Figure 1.(a)Daily rainfall climatology(units:mm d?1)for JJA 1979–2007.(b)Standard deviation of daily rainfall for JJA 1979–2007.The boxes in(a,b)represent the core regions of the nYHRB(31°–35°N,114°–121°E)and sYHRB(27°–31°N,114°–121°E),respectively.

    Figure 2.Multi-year averaged power spectra of the APHRODITE daily rainfall rates over the(a)nYHRB and(b)sYHRB during JJA 1979–2007,with the calculated spectrum(solid line),Markov red-noise spectrum(dashed lines),95%upper(dot-dashed lines),and 5%lower(dotted lines)confidence bounds.The abscissa has been rescaled to the natural logarithm of frequency.

    In order to detect the dominant rainfall frequency bands,as the first step,we carry out power spectral analysis for the area-averaged daily rainfall series during JJA in 1979–2007 over the abovementioned two core regions,i.e.,the nYHRB and sYHRB,respectively.When the calculated spectrum exceeds the Markov red-noise spectrum,the corresponding frequency bands are regarded as significant.Over the nYHRB,the 29-year averaged spectrum shows four significant spectral peaks of 4–6,8–10,15,and 30 days(Figure 2(a)).It should be noted that the 3–7-day frequency band is well above the 95%confidence level with a variance contribution of 42.1%.To further detect the dominant frequency bands,the year-by-year power spectrum,the original rainfall series and the corresponding bandpass filtered rainfall anomalies are simultaneously analyzed over the two regions(Figures S1 and S2).Overall,synoptic-timescale high-frequency bands that are shorter than 10 days present an absolute dominant position in the 29-year spectral analyses of the rainfall over the nYHRB(Figure S1).Specifically,the 3–7-day frequency band is significant in 23 summers.The lowfrequency bands of 10–20(quasi-biweekly timescale),15–40,and 7–14 days are only significant in 5,4,and 1 summers,respectively.

    Over the sYHRB,the 29-year averaged spectrum also shows four significant spectral peaks,of 6,8–12,15,and 30 days(Figure 2(b)).In contrast to the nYHRB,the variance contribution of the 3–7-day frequency band is much lower,with a value of 33.1%.In fact,both the high and low-frequency bands are significant in the spectral analyses of daily rainfall over the sYHRB(Figure S2).More specifically,the 3–7-day synoptic-timescale frequency band is significant in 20 summers.The 10–20-,7–14-,20–60-,and 15–40-day frequency bands are significant in 8,5,5,and 4 summers,respectively.

    Figure 3 shows the mean power spectra of the daily rainfall for the summers dominated by different frequency bands for the nYHRB and sYHRB,respectively.The dominant frequency bands are all well above the 95%upper confidence bound for both regions,except the 20–60-day band over the sYHRB(still significant against the red-noise spectrum).It should be noted that,although the 7–14-,10–20-,15–40-,and 20–60-day frequency bands overlap,they are significant in different years over the nYHRB and sYHRB regions.Therefore,the dominant rainfall variation modes for the nYHRB are 3–7,10–20,and 15–40 days.By contrast,the dominant modes for the sYHRB are 3–7,10–20,7–14,20–60,and 15–40 days.

    3.3.Criteria and statistics of different frequency band heavy rainfall cases

    In order to extract the corresponding 3–7-day,7–14-day,10–20-day,and other low-frequency heavy rainfall events,we apply bandpass filtering to the are aaveraged daily rainfall series based on the spectral analyses over both the nYHRB and sYHRB regions for each year from 1979 to 2007.We use the following criteria to select the typical heavy rainfall events in each frequency band:(1)the maximum daily rainfall intensity in the peak wet phase(i.e.,P5)should be larger than 18(22)mm d?1for the nYHRB(sYHRB)region,which corresponds to the upper 5%of rainfall intensity(rainy days)during JJA 1979–2007;(2)the daily rainfall intensity in at least one dry phase should be smaller than 5 mm d?1;and(3)the amplitudes of the bandpass- filtered rainfall anomaly in the peak wet phase and in at least one peak dry phase should exceed one standard deviation(6.44 mm d?1for the nYHRB and 7.10 mm d?1for the sYHRB).

    Figure 3.Multi-year averaged power spectra of the APHRODITE daily rainfall rates for the summers of(a)1979–1984,1986–1990,1992–1997,1999,2000,2003–2005,and 2007 over the nYHRB;(b)1980–1990,1993–1996,1999,2003–2005,and 2007 over the sYHRB;(c)1980,1981,1987,1997,and 1998 over the nYHRB;(d)1981,1986,1989,1993,1997,1999,2000,and 2003 over the sYHRB;(e)1983,1991,2000,and 2002 over the nYHRB;(f)1979,1984,1987,and 1991 over the sYHRB;(g)1992,2001,2002,2005,and 2006 over the sYHRB;and(h)1982,1988,1994,1995,and 1998 over the sYHRB.

    Table 1.Statistics(period,number,and mean duration)of heavy rainfall–related disturbances over the nYHRB and sYHRB regions.

    Based on the above criteria,we make a year-by-year(JJA)comparison of area-averaged daily rainfall series against the corresponding different frequency bandpass- filtered rainfall anomaly series over the two regions.There are a total of 42 synoptic-timescale heavy rainfall events,with an average duration of five days(Table 1).The 7–14-,10–20-,and 15–40-day frequency band each has one, five and three heavy rainfall events for all the 29-year analyses,with a mean duration of 11,15,and 23 days,respectively.Only two heavy rainfall events are the result of the combined action of 3–7-and 10–20-day frequency disturbances. Obviously, synoptic-timescale-disturbance–related heavy rainfall events occupy an absolute large proportion(42 among 51 events).Because of the shorter duration,it seldom leads to severe flooding over this region.In addition,the vast majority of heavy rainfall events(42)happen in June and July;only eight synoptic-timescale and one 10–20-day-disturbance–related events occur in August.

    Over the sYHRB,the numbers of high-frequency synoptic-timescale disturbances and medium-and low frequency-disturbance–related heavy rainfall events are equivalent.Specifically,there are 28,8,12,and 6 heavy rainfall events corresponding to the 3–7-,7–14-,10–20-,and 20–60-day frequency bands,respectively.Also,the mean durations are 5,10,14,and 31 days(Table 1).An increase in medium-and low-frequency variations of heavy rainfall events usually results in the sYHRB being subjected to long-lasting flooding.Besides,among all the 54 heavy rainfall events,there are only two in August.This is easy to understand because the rainfall over this region focuses on June and July,i.e.,the mei-yu season.

    The heavy rainfall events over the sYHRB show more combined effects of synoptic-timescale and medium-or low-frequency variations in the summers of 1989,1993,1994,2003,and 2005.On 17 June 1989,18 June 1993 and 24 June 2003,the rainfall intensities are around 28.0,27.8,and 42.8mm d?1,all of which correspond to the peak wet phases of 3–7-day and 10–20-day bandpass- filtered rainfall series.On 13 June 1994(18 June 2005),the heavy rainfall similarly corresponds to the peak wet phases of 3–7-day and20–60-day(7–14-day)bandpass- filtered rainfall series.

    4.Summary and conclusion

    In this study,the major variation modes of the summer(JJA)rainfall over the YHRB during 1979–2007 are investigated.Based on the spatial distribution of 29-year-averaged summer daily rainfall rates and the standard deviation of daily rainfall in East China,the YHRB is separated into two core regions,i.e.,the nYHRB and sYHRB.Then,the dominant variation modes over each region are analyzed and compared,and heavy rainfall events corresponding to different frequency disturbances,based on the given criteria,are selected.

    The power spectral analyses indicate that high-,medium-,and low-frequency variations all exist over the two regions.The rainfall over the two core regions shows obvious differences,with different variation modes.Over the nYHRB,the dominant variation modes are 3–7,10–20,and 15–40 days,with occurrence times of 23,5,and 4 summers,respectively.Among them,the 3–7-day high-frequency band is prominent,with a variance contribution of 42.1%,in the 29-year mean power spectrum.Over the sYHRB,3–7,10–20,15–40,7–14,and 20–60 days are all dominant variation modes,with occurrence times of 20,8,4,5,and 5 summers,respectively.In contrast to the nYHRB,the medium-and high-frequency modes play more important roles over the sYHRB.

    Based on detailed criteria,we select specific heavy rainfall events corresponding to different frequency disturbances over the two regions.Consistent with the power spectral analyses,a total of 42 3–7-day synoptic-timescale-disturbance–related heavy rainfall events are selected over the nYHRB,which occupies an absolute high ratio in all the 51 selected events.Only five and three heavy rainfall events are detected corresponding to 10–20-day and 15–40-day disturbances.In contrast,the numbers of high-,medium-,and low-frequency-disturbance–related heavy rainfall events are comparable over the sYHRB.Specifically,a total of 28,8,12,and 6 heavy rainfall events are detected corresponding to 3–7-,7–14-,10–20-,and 20–60-day disturbances.Despite the differences in frequency and the subsequent heavy rainfall distributions between the two regions,the mean durations of 3–7-,7–14-,and 10–20-day related rainfall events are similar,i.e.,5,10–11,and 14–15 days.Also,most of the selected heavy rainfall events happen in June and July,with only 11 events in August(nine for the nYHRB and two for the sYHRB).

    It should be mentioned that the aim of this paper is to investigate the dominant variation modes of summer heavy rainfall over the nYHRB and sYHRB.Given the importance of synoptic-timescale variation for both the nYHRB and sYHRB,and the comparatively large amounts of investigations on low-frequency variations,the intention is to further explore the corresponding synoptic-scale circulation systems that lead to heavy rainfall events,based on both case studies and climatological statistics,in future work.The findings are expected to better our understanding of the heavy rainfall formation mechanisms and provide hints for heavy-rainfall forecasting.

    Acknowledgments

    The APHRODITE data used in this study were provided through APHRODITE’s water resources project(http://www.chikyu.ac.jp/precip).

    Disclosure statement

    No potential conflict of interest was reported by the author.

    Funding

    This work was jointly supported by the National Basic Research Program of China[973 Program,grant number 2015CB954102]and the National Natural Science Foundation of China[grant number 41475043].

    久久99热6这里只有精品| www.色视频.com| 国产精品一及| 久久人妻av系列| 亚洲av一区综合| 国产老妇女一区| av专区在线播放| 国产成人aa在线观看| 久久人人精品亚洲av| 亚洲欧美日韩高清在线视频| 精品午夜福利在线看| 国产老妇女一区| 久久久久精品国产欧美久久久| 成年人黄色毛片网站| 他把我摸到了高潮在线观看| 可以在线观看毛片的网站| 简卡轻食公司| 一级a爱片免费观看的视频| 蜜桃亚洲精品一区二区三区| 亚洲精品影视一区二区三区av| 一级a爱片免费观看的视频| 亚洲电影在线观看av| 欧美黑人巨大hd| 久久婷婷人人爽人人干人人爱| 在线播放无遮挡| 久久久国产成人免费| 一级a爱片免费观看的视频| 亚洲成人免费电影在线观看| 欧美一级a爱片免费观看看| 最近在线观看免费完整版| 国产午夜精品久久久久久一区二区三区 | 两人在一起打扑克的视频| 久久久久久大精品| 黄片wwwwww| 日韩国内少妇激情av| bbb黄色大片| 波多野结衣高清作品| 久久人人精品亚洲av| 欧美日韩国产亚洲二区| 直男gayav资源| 丰满乱子伦码专区| 伦精品一区二区三区| 久久国产乱子免费精品| 九九热线精品视视频播放| 精华霜和精华液先用哪个| 99久久成人亚洲精品观看| 久99久视频精品免费| 日日干狠狠操夜夜爽| 深夜a级毛片| 国产高清不卡午夜福利| 午夜精品一区二区三区免费看| 午夜老司机福利剧场| 亚洲第一区二区三区不卡| 国产伦一二天堂av在线观看| 人妻少妇偷人精品九色| 啪啪无遮挡十八禁网站| 一区福利在线观看| 成人三级黄色视频| 亚洲成人久久性| 真实男女啪啪啪动态图| 精品99又大又爽又粗少妇毛片 | 午夜久久久久精精品| 99热这里只有是精品在线观看| 国产午夜精品论理片| 免费观看精品视频网站| 亚洲国产日韩欧美精品在线观看| 中亚洲国语对白在线视频| 精品一区二区免费观看| 悠悠久久av| 成人毛片a级毛片在线播放| 一个人看视频在线观看www免费| 国产蜜桃级精品一区二区三区| h日本视频在线播放| 国产精品99久久久久久久久| 精品国内亚洲2022精品成人| 能在线免费观看的黄片| 亚洲国产色片| 简卡轻食公司| 日韩av在线大香蕉| 一本久久中文字幕| 久9热在线精品视频| 91久久精品国产一区二区三区| 在线观看一区二区三区| 日本色播在线视频| 美女大奶头视频| 神马国产精品三级电影在线观看| 欧美一区二区精品小视频在线| 搞女人的毛片| 亚洲天堂国产精品一区在线| 国产精品久久久久久久久免| 日韩高清综合在线| 久久久久国内视频| 狠狠狠狠99中文字幕| 91久久精品国产一区二区成人| 我要搜黄色片| 91久久精品国产一区二区三区| 色吧在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久中文| 女的被弄到高潮叫床怎么办 | 国产又黄又爽又无遮挡在线| 亚洲aⅴ乱码一区二区在线播放| 麻豆国产97在线/欧美| 久久中文看片网| 久久久成人免费电影| 国语自产精品视频在线第100页| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久久久亚洲 | 亚洲性夜色夜夜综合| 人人妻人人澡欧美一区二区| 不卡一级毛片| 日日摸夜夜添夜夜添av毛片 | 97超视频在线观看视频| 日韩欧美一区二区三区在线观看| 国产91精品成人一区二区三区| 久久精品国产自在天天线| 久久欧美精品欧美久久欧美| 欧美日韩综合久久久久久 | 婷婷精品国产亚洲av在线| 久久久午夜欧美精品| 国产白丝娇喘喷水9色精品| 麻豆国产av国片精品| 亚洲精品色激情综合| 免费高清视频大片| 亚洲精品色激情综合| 亚洲av美国av| 亚州av有码| 美女黄网站色视频| 久久久久久伊人网av| 国产精品av视频在线免费观看| 午夜福利欧美成人| 日日撸夜夜添| 亚洲av成人av| 天堂动漫精品| 国产av不卡久久| 丰满人妻一区二区三区视频av| 免费不卡的大黄色大毛片视频在线观看 | 丰满人妻一区二区三区视频av| 午夜福利欧美成人| 亚洲av免费在线观看| 亚州av有码| 露出奶头的视频| 色综合亚洲欧美另类图片| 他把我摸到了高潮在线观看| 国产精品一区二区三区四区久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲avbb在线观看| 亚洲国产精品成人综合色| 亚洲av日韩精品久久久久久密| 伦精品一区二区三区| 又爽又黄无遮挡网站| 麻豆成人午夜福利视频| 午夜免费激情av| 婷婷六月久久综合丁香| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| 亚洲第一电影网av| 麻豆精品久久久久久蜜桃| 亚洲精品久久国产高清桃花| 嫩草影院新地址| 国产主播在线观看一区二区| 日本与韩国留学比较| 日韩欧美一区二区三区在线观看| 日本精品一区二区三区蜜桃| 少妇的逼好多水| 色综合站精品国产| 日本免费a在线| 最近中文字幕高清免费大全6 | 国产精品美女特级片免费视频播放器| 亚洲一区高清亚洲精品| 欧美另类亚洲清纯唯美| 九九爱精品视频在线观看| 国产大屁股一区二区在线视频| 国产伦精品一区二区三区四那| 国产精品亚洲美女久久久| 欧美激情国产日韩精品一区| 久久天躁狠狠躁夜夜2o2o| 在线a可以看的网站| 国产午夜精品论理片| 欧美激情久久久久久爽电影| 久久久久国产精品人妻aⅴ院| 三级男女做爰猛烈吃奶摸视频| 午夜影院日韩av| 国产精品,欧美在线| 亚洲一级一片aⅴ在线观看| 国产av不卡久久| 乱人视频在线观看| 校园人妻丝袜中文字幕| 男插女下体视频免费在线播放| a在线观看视频网站| 国产精华一区二区三区| 亚洲一区高清亚洲精品| 黄色欧美视频在线观看| av专区在线播放| 欧美激情久久久久久爽电影| 波多野结衣高清无吗| 国产精品人妻久久久影院| АⅤ资源中文在线天堂| 欧美日韩中文字幕国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 久久久国产成人免费| 国内精品久久久久久久电影| 99热这里只有精品一区| 成人精品一区二区免费| 国产亚洲精品久久久久久毛片| 国产精品综合久久久久久久免费| 永久网站在线| 欧美日韩精品成人综合77777| 国产精品免费一区二区三区在线| 嫩草影院精品99| 国产精华一区二区三区| 少妇人妻精品综合一区二区 | 欧美zozozo另类| 99九九线精品视频在线观看视频| 给我免费播放毛片高清在线观看| 欧美在线一区亚洲| 嫩草影院入口| 桃色一区二区三区在线观看| 欧美另类亚洲清纯唯美| 看黄色毛片网站| 亚洲成人免费电影在线观看| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩一区二区精品| 亚洲人成网站在线播| 免费人成在线观看视频色| 日本成人三级电影网站| 村上凉子中文字幕在线| 亚洲国产欧美人成| a级毛片a级免费在线| 亚洲精华国产精华精| 精品无人区乱码1区二区| 久久久久久久亚洲中文字幕| 在线国产一区二区在线| 免费av不卡在线播放| 日韩精品有码人妻一区| 波多野结衣高清作品| 午夜福利在线观看吧| 99热6这里只有精品| 久久久久久久亚洲中文字幕| 国产激情偷乱视频一区二区| 国产视频一区二区在线看| 亚洲乱码一区二区免费版| 国产成人福利小说| 久久九九热精品免费| 亚洲avbb在线观看| 成人一区二区视频在线观看| a在线观看视频网站| 国产麻豆成人av免费视频| 国产v大片淫在线免费观看| 亚洲av电影不卡..在线观看| 久久久久免费精品人妻一区二区| 我的老师免费观看完整版| av天堂在线播放| 18禁黄网站禁片免费观看直播| 欧美日韩精品成人综合77777| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av天美| 久久久久免费精品人妻一区二区| 成人毛片a级毛片在线播放| 美女黄网站色视频| 两个人视频免费观看高清| 国产成人aa在线观看| 天堂影院成人在线观看| 国内精品一区二区在线观看| av在线观看视频网站免费| 免费高清视频大片| 免费人成视频x8x8入口观看| 精品欧美国产一区二区三| 国内久久婷婷六月综合欲色啪| 久久久久免费精品人妻一区二区| 嫩草影视91久久| 五月玫瑰六月丁香| 中国美女看黄片| xxxwww97欧美| 免费在线观看日本一区| 亚洲色图av天堂| 最好的美女福利视频网| АⅤ资源中文在线天堂| 丝袜美腿在线中文| 夜夜爽天天搞| 成年免费大片在线观看| 国产精品电影一区二区三区| av在线蜜桃| 村上凉子中文字幕在线| 高清日韩中文字幕在线| 国产一区二区三区av在线 | aaaaa片日本免费| 真人做人爱边吃奶动态| 国产免费一级a男人的天堂| 哪里可以看免费的av片| 亚洲欧美日韩高清专用| 级片在线观看| 免费av不卡在线播放| 久久精品国产自在天天线| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 啦啦啦韩国在线观看视频| 国产极品精品免费视频能看的| 久久中文看片网| 校园人妻丝袜中文字幕| 女人被狂操c到高潮| 免费av观看视频| 色哟哟哟哟哟哟| 国产av不卡久久| 麻豆国产av国片精品| 黄色欧美视频在线观看| 欧美三级亚洲精品| 亚洲综合色惰| 亚洲va在线va天堂va国产| 亚洲人成网站在线播| 看十八女毛片水多多多| 精品国产三级普通话版| 免费人成视频x8x8入口观看| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 国产 一区精品| 精品免费久久久久久久清纯| 亚洲成人久久爱视频| 最近最新中文字幕大全电影3| 搞女人的毛片| 男女下面进入的视频免费午夜| 国产精品自产拍在线观看55亚洲| 别揉我奶头~嗯~啊~动态视频| 尤物成人国产欧美一区二区三区| 在线a可以看的网站| 国产一区二区在线观看日韩| 18禁在线播放成人免费| 美女高潮的动态| 亚洲va日本ⅴa欧美va伊人久久| 午夜a级毛片| 国产精品久久久久久av不卡| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| eeuss影院久久| 超碰av人人做人人爽久久| 干丝袜人妻中文字幕| 国产在线男女| 男人舔奶头视频| avwww免费| 最近最新免费中文字幕在线| 老司机福利观看| 日日摸夜夜添夜夜添av毛片 | 丝袜美腿在线中文| 欧美高清性xxxxhd video| 韩国av一区二区三区四区| av中文乱码字幕在线| 听说在线观看完整版免费高清| 桃色一区二区三区在线观看| 日韩在线高清观看一区二区三区 | 欧美黑人欧美精品刺激| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av| 亚洲av中文av极速乱 | 亚洲在线自拍视频| 不卡一级毛片| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产 | 精品午夜福利在线看| 99精品久久久久人妻精品| 国产在视频线在精品| 国产精品一区www在线观看 | 亚洲七黄色美女视频| 俄罗斯特黄特色一大片| 国产亚洲欧美98| 99久国产av精品| 搡老熟女国产l中国老女人| 亚洲精品日韩av片在线观看| 日韩亚洲欧美综合| 国产高清三级在线| 大型黄色视频在线免费观看| 国产精品三级大全| 午夜激情福利司机影院| 91在线观看av| 少妇人妻一区二区三区视频| 国内毛片毛片毛片毛片毛片| 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 草草在线视频免费看| 国模一区二区三区四区视频| 老女人水多毛片| 内射极品少妇av片p| 日韩人妻高清精品专区| 亚洲av一区综合| 亚洲av不卡在线观看| 在线观看66精品国产| 亚洲国产欧洲综合997久久,| 国产成人av教育| 亚洲va日本ⅴa欧美va伊人久久| av在线观看视频网站免费| 一区二区三区四区激情视频 | 国内少妇人妻偷人精品xxx网站| 亚洲无线在线观看| 国产精品伦人一区二区| 白带黄色成豆腐渣| 亚洲18禁久久av| 亚洲无线在线观看| 长腿黑丝高跟| 亚洲欧美日韩卡通动漫| 国产69精品久久久久777片| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 亚洲va在线va天堂va国产| 欧美日本视频| 婷婷六月久久综合丁香| 亚洲国产色片| 搞女人的毛片| 高清日韩中文字幕在线| 99精品久久久久人妻精品| 久久精品国产亚洲av涩爱 | 99精品久久久久人妻精品| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看 | 如何舔出高潮| 日韩中文字幕欧美一区二区| a级毛片免费高清观看在线播放| 国产v大片淫在线免费观看| 国产高清不卡午夜福利| 波多野结衣高清作品| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 亚州av有码| 最新在线观看一区二区三区| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av香蕉五月| 麻豆国产av国片精品| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久久亚洲 | 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 97超级碰碰碰精品色视频在线观看| 一个人看视频在线观看www免费| 黄片wwwwww| 中文字幕精品亚洲无线码一区| 国产一级毛片七仙女欲春2| 久久久久久久久大av| 亚洲熟妇中文字幕五十中出| 久久99热6这里只有精品| 一级黄色大片毛片| 亚洲最大成人av| 国产精品永久免费网站| 神马国产精品三级电影在线观看| 夜夜爽天天搞| 中文字幕高清在线视频| 黄色女人牲交| 可以在线观看的亚洲视频| 伦理电影大哥的女人| 少妇的逼好多水| 欧美另类亚洲清纯唯美| 12—13女人毛片做爰片一| 欧美日韩乱码在线| 天堂网av新在线| 国产 一区精品| 午夜精品久久久久久毛片777| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 亚洲精品456在线播放app | 精品久久久久久久末码| 在线国产一区二区在线| 日日撸夜夜添| 成人二区视频| av在线蜜桃| 夜夜爽天天搞| a级一级毛片免费在线观看| 搡女人真爽免费视频火全软件 | 久久久久久国产a免费观看| 欧美另类亚洲清纯唯美| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 观看美女的网站| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 99热这里只有精品一区| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| 午夜免费男女啪啪视频观看 | 国产私拍福利视频在线观看| 亚洲av不卡在线观看| 麻豆久久精品国产亚洲av| 欧美在线一区亚洲| 赤兔流量卡办理| 精品一区二区免费观看| 亚洲欧美激情综合另类| 日本-黄色视频高清免费观看| 一夜夜www| 少妇的逼水好多| 国产91精品成人一区二区三区| 国产单亲对白刺激| 国产免费一级a男人的天堂| 俺也久久电影网| 国产伦一二天堂av在线观看| 九色成人免费人妻av| 直男gayav资源| 国产真实伦视频高清在线观看 | 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 999久久久精品免费观看国产| 91久久精品国产一区二区成人| 国产成人一区二区在线| 有码 亚洲区| 精品一区二区三区av网在线观看| 少妇被粗大猛烈的视频| 桃色一区二区三区在线观看| 日本-黄色视频高清免费观看| 免费人成视频x8x8入口观看| 色5月婷婷丁香| 成年女人永久免费观看视频| 如何舔出高潮| 精品人妻1区二区| 能在线免费观看的黄片| 99视频精品全部免费 在线| а√天堂www在线а√下载| 中文字幕高清在线视频| 国产亚洲91精品色在线| 天堂影院成人在线观看| 无遮挡黄片免费观看| 三级毛片av免费| 不卡一级毛片| 97热精品久久久久久| 欧美日韩瑟瑟在线播放| 黄色视频,在线免费观看| 国产激情偷乱视频一区二区| 有码 亚洲区| 窝窝影院91人妻| 精品久久国产蜜桃| 麻豆一二三区av精品| 久久精品综合一区二区三区| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产人妻一区二区三区在| av.在线天堂| 中国美女看黄片| 特级一级黄色大片| 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产日韩欧美精品在线观看| 免费高清视频大片| 国产色爽女视频免费观看| 久久精品国产亚洲av香蕉五月| 老司机福利观看| www日本黄色视频网| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼| 最近在线观看免费完整版| av在线蜜桃| 国产精品嫩草影院av在线观看 | 男女下面进入的视频免费午夜| 99热6这里只有精品| 国产乱人视频| 久久久国产成人免费| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频| 国产视频一区二区在线看| av视频在线观看入口| 一个人看视频在线观看www免费| 国产伦人伦偷精品视频| 韩国av一区二区三区四区| 亚洲国产欧美人成| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 别揉我奶头 嗯啊视频| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色| 2021天堂中文幕一二区在线观| 日本撒尿小便嘘嘘汇集6| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 亚洲成人久久性| 欧美色视频一区免费| 99久久久亚洲精品蜜臀av| 国产精品嫩草影院av在线观看 | 日韩精品有码人妻一区| 校园春色视频在线观看| 精品国产三级普通话版| 亚洲不卡免费看| 我的女老师完整版在线观看| 亚洲av中文字字幕乱码综合| 露出奶头的视频| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 国产精品久久久久久精品电影| 色尼玛亚洲综合影院| 我的女老师完整版在线观看| 国产在线精品亚洲第一网站| 亚洲av免费在线观看| 大又大粗又爽又黄少妇毛片口| 哪里可以看免费的av片| 国产在线男女| 亚洲最大成人av| 久久久久久久久久成人| 国产精品精品国产色婷婷| 国产午夜精品论理片| 日本a在线网址| 看十八女毛片水多多多| 精品久久久久久久末码| 国产熟女欧美一区二区| 一本一本综合久久| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 亚洲精品日韩av片在线观看| 成人亚洲精品av一区二区|