• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Has the regional Hadley circulation over western Pacific during boreal winter been strengthening in recent decades?

    2018-12-19 05:49:16HUANGRuPingCHENShngFengCHENWenndHUPeng

    HUANG Ru-Ping,CHEN Shng-Feng,CHEN Wennd HU Peng

    aCenter for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;bCollege of Earth Sciences,University of Chinese Academy of Sciences,Beijing,China

    ABSTRACT Previous studies suggest a robust intensification of the zonally averaged hadley circulation(HC)during boreal winter in recent decades,but little is known regarding the regional HC.This study investigates long-term trends of the winter regional HC over the western pacific(WPHC)since 1979 using six reanalysis datasets.It is found that there are large discrepancies in the long-term trends of WPHC intensity among the six datasets.Specifically,three of the six reanalyses(erainterim,20CR and CFSR)show no discernible long-term trends,whereas NCEP-1,NCEP-2 and JRA-55 display pronounced intensification tendencies.Results in this study suggest that,although the warming trend of SST in the western tropical pacific identified in previous studies is robust,uncertainty remains regarding the long-term trends in the WPHC intensity.This raises a question about the factors involved in changes of the WPHC intensity.

    KEYWORDS Regional Hadley circulation;western Pacific;long-term trend

    1.Introduction

    The Hadley circulation(HC)is a large-scale thermally driven meridional circulation,with a rising branch in the tropics, flowing poleward aloft,a sinking branch in the subtropics,and flowing equatorward at the surface,generating an enclosed circulation in each hemisphere(e.g.Hadley 1735;Held and Hou 1980).It is generally known that change in the HC has great impacts on global weather and climate systems through transferring energy and momentum from the tropics to the extratropics(Hadley 1735;Quan,Diaz,and Hoerling 2004).In particular,studies have found that the descending branch of the HC is associated with the locations of the subtropical dry zones,which could affect global precipitation distributions and further exert a profound influence on the whole natural ecosystem,agriculture,water resources,as well as socioeconomic development(Lu,Vecchi,and Reichler 2007;Seidel et al.2008).

    In recent years,there has been growing interest in the long-term trend of the zonally averaged HC(ZAHC)with respect to its intensity and width.As to the width of the ZAHC,previous studies commonly reported that the ZAHC width has expanded during recent decades(e.g.Fu et al.2006;Hu and Fu 2007;Davis and Rosenl of 2012;Lucas,Timbal,and Nguyen 2014).As to the strength of the ZAHC,previous studies have indicated that there are great discrepancies in the long-term trend of the annual mean ZAHC intensity during recent decades among different reanalyses datasets (e.g. Stachnik and Schumacher 2011;Nguyen et al.2013;Chen et al.2014).However,it was found that long-term change of the ZAHC in boreal winter shows a robust strengthening trend during recent decades.For example,Quan,Diaz,and Hoerling(2004)inferred that the HC has strengthened since the 1950s,based on NCEP–NCAR reanalysis data.Mitas and Clement(2005)showed that the boreal winter Hadley cell has increased in the NCEP–NCAR and ERA-40reanalyses.Several other researchers(e.g.Maand Li 2008)have obtained the similar conclusions.Nguyen et al.(2013)used eight reanalysis datasets to show that there is greater consistency and more evident intensification of the HC intensity in winter compared with other seasons.The increasing trend of the winter ZAHC intensity during recent decades may be partly related to the warming of the SST over the tropics(Quan,Diaz,and Hoerling 2004).

    Given that the land,sea,and topography are not evenly distributed,the ZAHC could mask the huge spatial variability at the regional scale and changes in the HC may be different in different regions(e.g.Chen et al.2014;Schwendike et al.2014;Nguyen et al.2017).For example,although Oort and Yienger(1996)suggested that the intensity of the ZAHC is stronger during the positive phase of ENSO,studies have found that connections of ENSO with HC are different over various regions(Zeng et al.2011;Freitas and Ambrizzi 2015;Freitas et al.2017).For instance,intensities of the regional HC over the Indian Ocean and South America are weaker during El Ni?o(Freitas and Ambrizzi 2015;Freitas et al.2017).By contrast,the regional HC in the eastern Pacific tends to be stronger related to an El Ni?o event(Wang 2002;Zeng et al.2011).In addition,several studies have reported that changes in the regional HC have great influences on regional climate variability(e.g.Wang 2002;Zhang and Wang 2013;Chen et al.2014).For example,Chen et al.(2014)found that changes in the regional HC have a profound impact on local precipitation.Zhang and Wang(2013)showed that the interannual variability of the regional HC over the Atlantic strongly modulates the activity of Atlantic tropical cyclones.Some studies have suggested that there is a robust regional HC in the western Pacific(WPHC)during boreal winter(e.g.Wang 2002;Zeng et al.2011;Huang et al.2018),which could exert significant influences on climate anomalies over East Asia.For instance,Zeng et al.(2011)indicated that the anomalously warm SST in the central-eastern tropical Pacific is accompanied by a weakened WPHC,related to a weaker East Asian winter monsoon event.

    Above all,on the one hand,the DJF ZAHC intensity has experienced a marked strengthening trend during recent decades,which may be partly related to the SST warming over the tropics(Quan,Diaz,and Hoerling 2004;Ma and Li 2008).On the other hand,the tropical SST warming trend is most pronounced over the tropical Indian ocean–western Pacific region(Deser,Phillips,and Alexander 2010;Sun et al.2017).Hence,a natural question is:has the WPHC intensity also been strengthening in recent decades during boreal winter?Answering this question is the main aim of the present paper.Furthermore,investigating the long-term trend of the WPHC intensity is crucial for understanding the trend of the weather and climate over the Asia–Australia region(e.g.Huang et al.2018).The structure of this paper is arranged as follows:The data and methods used are briefly described in section 2.In section 3,we focus on investigating the long-term trends of the WPHC intensity during recent decades based on six reanalyses.Section 4 provides conclusions and discussion.

    2.Data and methods

    The data used in this study are derived from six reanalysis datasets:NCEP-1,NCEP-2,ERA-Interim,JRA-55,20CR,and CFSR.Detailed descriptions of these six reanalyses are provided in Table 1.

    The period analyzed in this study is 1979–2016,except for 20CR spanning 1979–2014 and CFSR spanning 1979–2012.We focus on the boreal winter(December–February(DJF))seasonal mean,with winter referring to the three months from the December of the reference year to the February of the following year—for example,December 1979 and January–February 1980.This results in 35 winters(1979/80–2013/14)in the 20CR data,33 winters(1979/80–2011/12)in CFSR data,and 37 winters(1979/80–2015/16)in the other datasets.

    3.Results

    In this section,we first describe the climatological features of the WPHC,and then de fine an index to analyze the long-term trends of the WPHC intensity(WPHCI).According to Krishnamurti(1971),horizontal winds can be decomposed into rotational and divergent components.As only the divergent part of the wind contributes to the atmospheric divergence–convergence that drives the vertical motion and circulation in the tropics(Hastenrath 2001),we thus focus on the vertical velocityand divergent component of the meridional wind when describing vertical circulation.Figure 1 shows the climatology of the vertical circulation related to the WPHC from the six reanalyses,described by the divergent meridional wind and vertical velocity averaged between 110°E and 160°E.Note that the longitudinal bands selected for the WPHC are according to previous studies(e.g.Zeng et al.2011;Chen et al.2014;Schwendike et al.2014),which indicate that the regional HC in these locations has an important influence on the East Asian climate.In addition,we have conducted a series of tests and found that the results obtained in this study are not sensitive to a reasonable change in the longitudinal bands(e.g.110°–165°E,105°–165oE,120°–165°E,and 120°–160°E),in good agreement with the conclusion in Chen et al.(2014).From Figure 1 we can see that the climatological spatial patterns of the WPHC captured by the six reanalyses are highly consistent with each other.Air parcels ascend in the tropical region, flow poleward in the upper troposphere,descend in the subtropics and midlatitudes,and return to the tropics(Figure 1).In particular,the WPHC during boreal winter is much stronger over the Northern Hemisphere (NH)than that over the Southern Hemisphere(SH),generally consistent with previous studies(e.g.Wang 2002;Zeng et al.2011;Huang et al.2018).

    Table 1.Reanalysis datasets used in this study and their detailed information.

    Figure 1.Climatology of the boreal winter WPHC by averaging the divergent meridional wind(units:m s?1)and vertical velocity(units:10?2Pa s?1)between 110°E and 160°E in(a)NCEP-1,(b)NCEP-2,(c)ERA-Interim,(d)JRA-55,(e)20CR,and(f)CFSR.Vertical velocity has been multiplied by?100.

    We also employ the meridional mass streamfunction to describe the WPHC.Following the approach of Schwendike et al.(2014),which allows for defining the regionally averaged HC using the mass streamfunction,we derive a regional meridional mass streamfunction to depict the regional HC:

    where ψ,R,?,g,p,andVddenote the meridional mass streamfunction,Earth’s radius,latitude,gravitational acceleration,pressure,and divergent meridional wind,respectively.The square brackets represent the zonal average over a specified limited domain.Downward integration is applied to calculate the ψ field by assuming ψ=0 at the top of the atmosphere.The positive(negative)ψ represents a clockwise(counterclockwise)meridional circulation.To ensure vertical-mean mass balance,the divergent meridional wind fields are corrected by removing their mass-weighted vertical mean value(Oort and Yienger 1996).Figure 2 displays the boreal winter climatological meridional mass streamfunction over the western Pacific(110°–160°E)derived from the six reanalysis datasets.In all reanalyses,ψ shows a quite similar spatial pattern,with positive(negative)values indicative of clockwise(anticlockwise)rotation.The WPHC has two cells with nonequivalent amplitude.The most prominent cell is the northern HC,with the upward motion around 5°S and the downward motion around 35°N,similar to the climatological vertical circulation in Figure 1.The asymmetry of the WPHC between the winter and summer hemispheres corresponds to the findings of previous studies(e.g.Wang 2002;Zeng et al.2011;Huang et al.2018).The similar results obtained from Figures 1 and 2 reveal that the approach of the meridional mass streamfunction,proposed by several researchers(e.g.Zhang and Wang 2013;Schwendike et al.2014),is useful for de fining and assessing the variations of the regionally averaged circulation.In addition,the regional meridional mass streamfunction has been used widely in previous studies(e.g.Zhang and Wang 2013;Schwendike et al.2014;Nguyen et al.2017).Thus,the de finition of the WPHCI used in the present paper is based on the mass streamfunction.Besides,as the strength of the WPHC over the SH is much weaker,this study mainly focuses on the WPHC over the NH.Note that the flow in the SH may still have strong variability(Nguyen et al.2017),even if the climatological mean WPHC is relatively weak there,which will be investigated in the future.

    Figure 2.Climatology of the boreal winter regional meridional mass streamfunction(ψ;units:1010kg s?1)over the western Pacific(110°–160°E)in(a)NCEP-1,(b)NCEP-2,(c)ERA-Interim,(d)JRA-55,(e)20CR,and(f)CFSR.Positive(negative)values are indicated with solid(dashed)contours representing clockwise(counterclockwise)circulations.The thick solid contours correspond to values where ψ =0.Contour interval for ψ:3.5 × 1010kg s?1.

    Figure 3a shows time series of the WPHCI in the NH derived from the six reanalysis datasets over their respective time periods.Note that,following previous studies(Oort and Yienger 1996;Mitas and Clement 2005),the WPHCI over the NH is de fined as the maximum value of the meridional mass streamfunction of the WPHC between 0°and 30°N.The WPHCI exhibits a similar interannual variability among the six reanalysis datasets.For example,the extremely positive(negative)values of the WPHCI in 1990 and 1996(1982 and 1997)can be captured by all six reanalyses(Figure 3(a)),which may be related to the ENSO events,consistent with previous studies(e.g.Wang 2002;Zeng et al.2011).Moreover,we calculate the correlation correlations of different pairs of the WPHCIs.Results show that the WPHCIs from the six reanalysis datasets are highly correlated with each other,with the correlation coefficients all larger than 0.8.This indicates that there is high consistency among the six reanalysis datasets on the interannual timescale.Figure 3(b)displays the longterm trends of the WPHCI derived from the six reanalysis datasets.From Figure 3(b),we can see that discrepancies remain concerning the long-term trends in the DJF WPHC intensity between the six reanalysis products.Three of the six reanalysis datasets(NCEP-1,NCEP-2,and JRA-55)show a significant upward tendency of the DJF WPHC strength over the past several decades(Figure 3(b)).However,ERA-Interim,20CR and CFSR do not show any significant discernible trend over their respective periods in the NH(Figure 3(b)).In addition,CFSR has a slight insignificant decreasing trend,different from the other datasets(Figure 3(b)).Note that,although the different reanalyses have different temporal coverage,the results do not change when the trends in all datasets are computed over the same interval(1979–2011)(not shown).

    Figure 3.(a)Time series of the boreal winter WPHC intensity indices over the NH obtained from six reanalyses.(b)As(a)but for the linear trends of the WPHC intensity indices for six reanalysis datasets over their respective time periods.The error bars of the 95%confidence intervals according to a two-tailed Student’s t-test are also shown in(b).Units for(a,b):1010kg s?1and 1010kg s?1/decade,respectively.Positive(negative)trend values indicate strengthening(weakening)of the NH WPHC.

    To further confirm the reliability of the results obtained from Figure 3(b)(using the meridional mass streamfunction to de fine the WPHCI),Figure 4 shows the linear trends of the boreal winter WPHC derived from the six reanalysis datasets over their respective time periods.For all reanalyses,there are pronounced intensifying trends in the ascending motion over the tropics(Figure 4),consistent with the significant SST warming trend in the tropical western Pacific identified in previous studies(e.g.Deser,Phillips,and Alexander 2010;Sun et al.2017).However,from Figure 4 we can see that there are significant upward trends over the subtropics(around 30°N)in all datasets,weakening the climatological descending motion there(Figure 1).Note that previous studies have suggested that the poleward edges of the HC tend to shift equatorward when the intensity of the HC is stronger(Lu,Vecchi,and Reichler 2007).Significant intensified descent appears within 10°–20°N in NCEP-1,NCEP-2 and JRA-55(Figure 4(a),(b)and(d)).This indicates that these three reanalyses produce a significant increasing trend of the WPHCI,consistent with the results shown in Figure 3(b).In comparison,the descent trends around 20°N in ERA Interim and 20CR are not clear(Figure 4(c)and(e)).In particular,notable upward motion anomalies can be observed around 10°–20°N in CFSR(Figure 4(f)),which result in a weakening trend of the WPHCI.Overall,the results obtained from Figures 3(b)and 4 are in agreement with each other,indicating that the long-term trend of the WPHC intensity shows large discrepancies among different reanalysis datasets.

    4.Conclusions and discussion

    Based on six reanalyses(NCEP-1,NCEP-2,ERA-Interim,JRA-55,20CR and CFSR),the present study investigates the long-term trends of the WPHC intensity during boreal winter.

    Results show that there is good agreement among the six reanalysis datasets in capturing the climatology and interannual variations of the WPHC.The DJF WPHC over the NH is located within 10°S–40°N,with ascent around the tropics and subsidence around the subtropics.Its main ascending center is at about 5°S,while its descending center is at about 35°N.Nevertheless,the intensity trends are inconsistent among the datasets.Three of the six reanalyses(ERA-Interim,20CR and CFSR)show no discernible long-term trend in the DJF WPHC;whereas,NCEP-1,NCEP-2,and JRA-55 show pronounced upward tendencies.

    In conclusion,uncertainty remains regarding the long-term trends of the WPHC intensity.An important question that needs further investigation is why the long-term trend in the WPHC intensity varies among different reanalysis datasets.One potential source of the disagreements may be attributable to the fact that the divergent wind fields used to describe the WPHC and calculate the mass streamfunction are not directly observed and may strongly depend on the assimilation technique(Andersson et al.2005;Chen et al.2014).Besides,previous studies have shown that the intensification of the ZAHC could be due to artificial errors(e.g.Mitas and Clement 2006;Hu,Zhou,and Liu 2011).For example,Mitas and Clement(2006)argued that the positive trends of the ZAHC in the reanalyses may be due to the weak cooling trend in the tropical midtroposphere.However,since there are errors and biases in radiosonde and satellite datasets,the observational temperature trends are far from certain,and thus the strengthening of the HC could be artificial(Mitas and Clement 2006).Therefore,it is reasonable to speculate that the inconsistent trends of the DJF WPHC intensity among different reanalysis datasets may also be associated with the thermodynamic structure of the tropical atmosphere in each dataset.Figure 5 displays the linear trends of the boreal winter regionally averaged potential temperature over the western Pacific region(110°–160°E)derived from the six reanalysis datasets.From Figure 5 we can see that discrepancies remain concerning the DJF regionalmean temperature trends over the western Pacific between the six reanalysis products.NCEP-1 and NCEP-2 show a significant cooling trend in the upper-tropospheric tropical region(Figure 5(a)and(b)),corresponding to the strengthening of the DJF WPHC intensity captured by these two reanalyses(Figure 3(b),4(a)and 4(b)).JRA-55 also captures a cooling trend in the tropical upper-troposphere,but this cooling trend is much weaker and less significant compared to those in NCEP-1 and NCEP-2(Figure 5(a),(b),and(d)).By contrast,ERA-Interim,20CR and CFSR show distinct warming trends throughout the tropical free troposphere without any significant discernible cooling trend in the uppertropical troposphere(Figure 5(c),(e)and(f)).From the above,it is indicated that the inconsistent DJFWPHC intensity trends among the six different reanalysis datasets may be partly associated with the trends in their respective thermodynamic structures of the tropical troposphere,which is generally consistent with the findings of previous studies regarding the ZAHC(Mitas and Clement 2006).Nevertheless,because of uncertainties in the actual observations of tropospheric temperature,the results in the strengthening trends of the DJF WPHC intensity from the reanalyses could be artificial(Mitas and Clement 2006).Therefore,the linear trend of the DJF WPHC intensity is still a controversial issue,and remains to be explored.

    In addition,although the warming trend in the western tropical Pacific is robust(e.g.Deser,Phillips,and Alexander 2010;Sun et al.2017),there is no consensus as to the trend in WPHC intensity,with no significant tendencies in ERA-Interim,20CR and CFSR;particularly,the multi-reanalysis ensemble average also shows no significant increasing trend(not shown).This raises questions about the true sources for changes in the WPHC.These will be investigated in a further study.Aside from the WPHC intensity,the long-term trend of the width of the WPHC remains unclear.Although previous studies have commonly reported that the ZAHC width has expanded during recent decades(e.g.Fu et al.2006;Hu and Fu 2007;Davis and Rosenl of 2012;Lucas,Timbal,and Nguyen 2014),there are some potential difficulties in de fining the poleward edges of the regional HC(Nguyen et al.2017).Therefore,whether the WPHC has been widening in recent decades deserves further investigation in the future.

    Figure 5.Linear trends of the boreal winter regionally averaged potential temperature over the western Pacific region(110°–160°E)during 1979–2015 in(a)NCEP-1,(b)NCEP-2,(c)ERA-Interim and(d)JRA-55;during 1979–2013 in(e)20CR;and during 1979–2009 in(f)CFSR.Units for the trends of potential temperature are K/decade in(a–f).Shading indicates trends that are significantly different from zero at the 95%confidence level.

    Acknowledgments

    The NCEP-1,NCEP-2,and 20CR data were downloaded from ftp://ftp.cdc.noaa.gov/.The ERA-Interim data were downloaded from http://apps.ecmwf.int/.The JRA-55 data were downloaded from http://jra.kishou.go.jp/JRA-55/index_en.html.The CFSR data were downloaded from https://rda.ucar.edu/pub/cfsr.html.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was supported jointly by the National Key Research and Development Program[grant number 2016YFA0600604],the National Natural Science Foundation of China[grant numbers 41605050,41230527,and 41661144016],the Jiangsu Collaborative Innovation Center for Climate Change,the Young Elite Scientists Sponsorship Program by CAST[grant number 2016QNRC001],and the China Postdoctoral Science Foundation[grant number 2017T100102].

    Notes on contributors

    Ru-Ping HUANGis a PhD student interested in the Hadley circulation.She has published several papers focus on the regional Hadley circulation.Recently,she is studying the regional Hadley circulation over the western Pacific.

    Shang-Feng CHENis interested in the Climate Dynamics and Air-sea Interaction.He has published several papers in the international journals of atmospheric sciences.Recently,he is investigating impacts of the extratropical atmospheric forcings on the ENSO occurrences and the physical mechanisms for spring Eurasian climate changes.

    Wen CHENis interested in the East Asian Monsoon,interaction between the stratospheric and tropospheric circulation.

    Peng Huis a PhD student interested in the Monsoon Dynamics and Tropical Meteorology.He has published several papers focus on the South China Sea summer monsoon.Recently,he is studying the tropical-extratropical interaction like the Hadley circulation.

    久久国产亚洲av麻豆专区| 极品少妇高潮喷水抽搐| 久久久久久久亚洲中文字幕| 成人手机av| 免费看光身美女| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 国产成人午夜福利电影在线观看| 咕卡用的链子| 欧美丝袜亚洲另类| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 亚洲av电影在线进入| 日本91视频免费播放| 免费日韩欧美在线观看| 久久青草综合色| 边亲边吃奶的免费视频| 97在线人人人人妻| 美女福利国产在线| 中文字幕最新亚洲高清| 亚洲精品,欧美精品| 国产伦理片在线播放av一区| 国产精品久久久久成人av| 最后的刺客免费高清国语| 高清av免费在线| 两性夫妻黄色片 | 国产男女超爽视频在线观看| 国产成人免费无遮挡视频| 亚洲av日韩在线播放| 高清视频免费观看一区二区| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 久久久国产欧美日韩av| 在线观看人妻少妇| 日本91视频免费播放| 欧美3d第一页| 国产av国产精品国产| 欧美精品av麻豆av| 少妇的逼好多水| 国产麻豆69| 性高湖久久久久久久久免费观看| 丝袜在线中文字幕| 亚洲精品第二区| 三级国产精品片| 日韩中文字幕视频在线看片| 国产av码专区亚洲av| 中文字幕免费在线视频6| 亚洲色图综合在线观看| 婷婷色综合大香蕉| 亚洲经典国产精华液单| 亚洲丝袜综合中文字幕| 999精品在线视频| 亚洲精品国产av成人精品| 久久热在线av| 99香蕉大伊视频| 亚洲av电影在线进入| 亚洲精品一二三| 新久久久久国产一级毛片| 免费观看无遮挡的男女| 成人国语在线视频| 国产一区二区三区av在线| 成年美女黄网站色视频大全免费| 久久久久久久久久成人| 久久久久久久亚洲中文字幕| 欧美成人精品欧美一级黄| 老司机影院成人| 美女内射精品一级片tv| 男男h啪啪无遮挡| 国产精品秋霞免费鲁丝片| 久久99蜜桃精品久久| 一级,二级,三级黄色视频| 久久这里有精品视频免费| 国产成人欧美| 精品少妇久久久久久888优播| 欧美精品av麻豆av| 亚洲精品久久午夜乱码| 国产综合精华液| 中文天堂在线官网| 日韩精品免费视频一区二区三区 | 青春草视频在线免费观看| av黄色大香蕉| 亚洲四区av| 免费av中文字幕在线| 亚洲美女黄色视频免费看| 国产免费一级a男人的天堂| 色5月婷婷丁香| 制服人妻中文乱码| 国产精品 国内视频| 免费人妻精品一区二区三区视频| 丝袜人妻中文字幕| 制服诱惑二区| 国产精品.久久久| 一区二区日韩欧美中文字幕 | 内地一区二区视频在线| 欧美 日韩 精品 国产| 美女国产高潮福利片在线看| 国产亚洲最大av| 精品午夜福利在线看| 成人国产av品久久久| 亚洲成av片中文字幕在线观看 | 久久亚洲国产成人精品v| 久久久久久久国产电影| 高清毛片免费看| 9色porny在线观看| 色吧在线观看| 久久精品国产自在天天线| 看非洲黑人一级黄片| 久久久久精品久久久久真实原创| 看十八女毛片水多多多| 黄色配什么色好看| 日本免费在线观看一区| 色94色欧美一区二区| 亚洲精品久久午夜乱码| av电影中文网址| 午夜91福利影院| 22中文网久久字幕| 国产精品久久久久久久电影| 美女脱内裤让男人舔精品视频| 久久人妻熟女aⅴ| 国产一区二区三区综合在线观看 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日韩在线中文字幕| 青春草视频在线免费观看| 又黄又爽又刺激的免费视频.| 日韩制服丝袜自拍偷拍| 久热久热在线精品观看| 欧美成人午夜精品| 水蜜桃什么品种好| 久久久久网色| av电影中文网址| 国产亚洲精品久久久com| 精品卡一卡二卡四卡免费| 免费观看无遮挡的男女| 91在线精品国自产拍蜜月| 欧美少妇被猛烈插入视频| 国产国拍精品亚洲av在线观看| 日韩大片免费观看网站| 久久久久久伊人网av| 亚洲综合色惰| 亚洲国产av影院在线观看| 日韩精品有码人妻一区| 看非洲黑人一级黄片| 日本色播在线视频| 如日韩欧美国产精品一区二区三区| 精品国产乱码久久久久久小说| 男女无遮挡免费网站观看| 欧美成人午夜免费资源| 国产精品嫩草影院av在线观看| 一二三四在线观看免费中文在 | 免费在线观看黄色视频的| 精品国产一区二区三区久久久樱花| 制服丝袜香蕉在线| 久久久亚洲精品成人影院| 国产成人精品在线电影| 大话2 男鬼变身卡| 日韩精品有码人妻一区| xxx大片免费视频| 美女xxoo啪啪120秒动态图| 亚洲国产av影院在线观看| 永久网站在线| 成人毛片60女人毛片免费| 男人添女人高潮全过程视频| 精品亚洲乱码少妇综合久久| 成年av动漫网址| 综合色丁香网| 青春草亚洲视频在线观看| 亚洲,一卡二卡三卡| 美女国产高潮福利片在线看| 欧美精品亚洲一区二区| 9热在线视频观看99| 少妇人妻精品综合一区二区| 中文字幕亚洲精品专区| 欧美日韩亚洲高清精品| 精品视频人人做人人爽| av在线app专区| 午夜影院在线不卡| 亚洲国产日韩一区二区| 亚洲国产精品999| 捣出白浆h1v1| 亚洲av日韩在线播放| 九九在线视频观看精品| 狠狠婷婷综合久久久久久88av| 视频在线观看一区二区三区| 视频区图区小说| 精品国产一区二区久久| 国产免费又黄又爽又色| 三上悠亚av全集在线观看| 久久精品aⅴ一区二区三区四区 | 精品酒店卫生间| 久久久国产欧美日韩av| 亚洲精品一二三| 22中文网久久字幕| 一本色道久久久久久精品综合| 国产精品女同一区二区软件| 高清av免费在线| 国产精品三级大全| 国产1区2区3区精品| 九色亚洲精品在线播放| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 最近手机中文字幕大全| 亚洲一级一片aⅴ在线观看| 国产亚洲午夜精品一区二区久久| 好男人视频免费观看在线| 久久久久久久精品精品| 精品久久蜜臀av无| 国产成人精品在线电影| 国产免费一级a男人的天堂| 亚洲av日韩在线播放| 亚洲国产精品一区二区三区在线| 天天躁夜夜躁狠狠久久av| 亚洲美女黄色视频免费看| 精品一区二区三区四区五区乱码 | 韩国精品一区二区三区 | 91午夜精品亚洲一区二区三区| 亚洲av.av天堂| 国产一区二区三区综合在线观看 | xxx大片免费视频| 欧美少妇被猛烈插入视频| 成人无遮挡网站| 国产精品久久久久久精品电影小说| 高清毛片免费看| 黑人巨大精品欧美一区二区蜜桃 | av福利片在线| 少妇的逼好多水| 亚洲国产最新在线播放| 秋霞在线观看毛片| 我要看黄色一级片免费的| 午夜久久久在线观看| 黑人高潮一二区| 精品久久国产蜜桃| 看十八女毛片水多多多| 精品亚洲成国产av| 国产日韩欧美亚洲二区| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 午夜福利网站1000一区二区三区| 国产一区二区激情短视频 | 亚洲av中文av极速乱| 亚洲国产av新网站| 国产精品无大码| 欧美少妇被猛烈插入视频| 色视频在线一区二区三区| 大香蕉97超碰在线| 婷婷色av中文字幕| 亚洲国产精品国产精品| 国产亚洲精品第一综合不卡 | 国产极品粉嫩免费观看在线| 99热网站在线观看| 男人操女人黄网站| 少妇精品久久久久久久| 久久这里有精品视频免费| 性色av一级| 欧美xxxx性猛交bbbb| 亚洲美女搞黄在线观看| 丝袜喷水一区| 中国美白少妇内射xxxbb| 国产探花极品一区二区| 国产有黄有色有爽视频| 日本wwww免费看| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 一本大道久久a久久精品| 国产亚洲一区二区精品| 欧美97在线视频| 一级毛片黄色毛片免费观看视频| 男女啪啪激烈高潮av片| 只有这里有精品99| 街头女战士在线观看网站| 日本vs欧美在线观看视频| 91久久精品国产一区二区三区| 国产精品久久久久成人av| 韩国高清视频一区二区三区| 亚洲av综合色区一区| 高清毛片免费看| 91精品三级在线观看| 亚洲一区二区三区欧美精品| 成年美女黄网站色视频大全免费| 日本与韩国留学比较| 一本色道久久久久久精品综合| 青春草亚洲视频在线观看| 亚洲精品国产av成人精品| 欧美丝袜亚洲另类| 国产一区有黄有色的免费视频| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻丝袜制服| 国产精品成人在线| 大码成人一级视频| 91精品国产国语对白视频| 男人爽女人下面视频在线观看| 丝袜在线中文字幕| 久久久久久久国产电影| 国产成人午夜福利电影在线观看| 熟女电影av网| 69精品国产乱码久久久| 激情五月婷婷亚洲| 欧美日韩国产mv在线观看视频| 欧美3d第一页| 亚洲欧美色中文字幕在线| kizo精华| 男女下面插进去视频免费观看 | av电影中文网址| 欧美成人精品欧美一级黄| 中文精品一卡2卡3卡4更新| 亚洲美女视频黄频| 国产视频首页在线观看| 国产精品久久久久成人av| 国产色爽女视频免费观看| 国产又色又爽无遮挡免| 在线天堂中文资源库| 99精国产麻豆久久婷婷| 中文欧美无线码| 两个人看的免费小视频| 欧美日韩av久久| 久久精品aⅴ一区二区三区四区 | av国产精品久久久久影院| 欧美3d第一页| 午夜视频国产福利| 精品国产一区二区三区久久久樱花| 最近最新中文字幕大全免费视频 | 精品人妻熟女毛片av久久网站| 精品酒店卫生间| 午夜日本视频在线| 亚洲国产精品专区欧美| 97在线视频观看| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 日韩在线高清观看一区二区三区| 交换朋友夫妻互换小说| 久久久国产一区二区| 国产av国产精品国产| 婷婷成人精品国产| 蜜桃在线观看..| 22中文网久久字幕| 爱豆传媒免费全集在线观看| 美女福利国产在线| 欧美成人午夜免费资源| 女人久久www免费人成看片| av福利片在线| 黄色毛片三级朝国网站| 热re99久久精品国产66热6| 99re6热这里在线精品视频| 国产一区二区三区av在线| 一区二区三区四区激情视频| 久久人人97超碰香蕉20202| 国产成人精品福利久久| 中文字幕另类日韩欧美亚洲嫩草| 中文欧美无线码| 观看av在线不卡| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| 欧美变态另类bdsm刘玥| 国产精品一区二区在线观看99| 如日韩欧美国产精品一区二区三区| 精品第一国产精品| 精品一区二区三区视频在线| 久久这里有精品视频免费| 欧美精品一区二区大全| 九色成人免费人妻av| 国产在视频线精品| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 亚洲四区av| 天天影视国产精品| 久久毛片免费看一区二区三区| 国产成人精品在线电影| 91国产中文字幕| 一边亲一边摸免费视频| 婷婷色综合www| 国产精品久久久av美女十八| 国产成人精品久久久久久| 爱豆传媒免费全集在线观看| 久久99热这里只频精品6学生| 亚洲欧美日韩另类电影网站| 精品人妻在线不人妻| 超色免费av| 美女福利国产在线| 久久久久久人妻| 亚洲成av片中文字幕在线观看 | 如何舔出高潮| 国产在线视频一区二区| 69精品国产乱码久久久| 黄色怎么调成土黄色| 另类精品久久| 免费看光身美女| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 婷婷成人精品国产| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| 亚洲国产精品一区三区| 免费看av在线观看网站| 欧美+日韩+精品| 国产精品成人在线| 亚洲 欧美一区二区三区| 亚洲精品456在线播放app| 亚洲精品美女久久久久99蜜臀 | 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 女的被弄到高潮叫床怎么办| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 国产成人91sexporn| 好男人视频免费观看在线| 国产色婷婷99| 免费人妻精品一区二区三区视频| 免费观看无遮挡的男女| 欧美成人精品欧美一级黄| 看免费成人av毛片| 日韩伦理黄色片| 欧美国产精品va在线观看不卡| 97超碰精品成人国产| 最黄视频免费看| 久久精品国产综合久久久 | 亚洲av中文av极速乱| 欧美另类一区| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 在线观看三级黄色| 99久久精品国产国产毛片| 91午夜精品亚洲一区二区三区| 男女边吃奶边做爰视频| 亚洲精品456在线播放app| 国产一区二区激情短视频 | 内地一区二区视频在线| 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 伊人亚洲综合成人网| 久久影院123| 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 国产精品三级大全| 飞空精品影院首页| 精品熟女少妇av免费看| 色婷婷av一区二区三区视频| 好男人视频免费观看在线| 又黄又爽又刺激的免费视频.| 1024视频免费在线观看| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 22中文网久久字幕| 校园人妻丝袜中文字幕| 成人二区视频| 亚洲精品美女久久av网站| 人人妻人人澡人人看| 免费日韩欧美在线观看| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 亚洲国产精品999| 亚洲美女视频黄频| 国产亚洲精品久久久com| 18+在线观看网站| 日韩不卡一区二区三区视频在线| a级毛片黄视频| 亚洲中文av在线| 亚洲欧洲日产国产| 久久精品久久久久久久性| 女人久久www免费人成看片| 精品国产一区二区久久| 日韩 亚洲 欧美在线| 少妇的丰满在线观看| 日韩大片免费观看网站| 午夜激情av网站| 久久久久国产网址| 99久久中文字幕三级久久日本| 亚洲欧美日韩另类电影网站| av有码第一页| 一边亲一边摸免费视频| 激情视频va一区二区三区| 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 丝袜在线中文字幕| 大话2 男鬼变身卡| 视频中文字幕在线观看| 老女人水多毛片| 亚洲国产av新网站| 婷婷成人精品国产| 制服诱惑二区| 亚洲国产精品成人久久小说| 成年人免费黄色播放视频| 女人精品久久久久毛片| 国产精品国产三级国产专区5o| 亚洲经典国产精华液单| 男女高潮啪啪啪动态图| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 亚洲精品久久午夜乱码| 亚洲国产看品久久| 免费观看a级毛片全部| a级毛片黄视频| 久久久久久久久久人人人人人人| 9色porny在线观看| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 欧美丝袜亚洲另类| 男女免费视频国产| 日韩成人av中文字幕在线观看| 免费黄频网站在线观看国产| av免费观看日本| 久久久久精品性色| 中文字幕另类日韩欧美亚洲嫩草| 人人澡人人妻人| 秋霞伦理黄片| 黑人高潮一二区| 久久人人97超碰香蕉20202| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产69精品久久久久777片| 亚洲精品aⅴ在线观看| 春色校园在线视频观看| 亚洲在久久综合| 男女边吃奶边做爰视频| 涩涩av久久男人的天堂| 国产 一区精品| 亚洲人与动物交配视频| 永久网站在线| 一区二区三区乱码不卡18| 亚洲中文av在线| 国产日韩一区二区三区精品不卡| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区| 男人爽女人下面视频在线观看| 免费高清在线观看日韩| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 黑人高潮一二区| videos熟女内射| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 男女下面插进去视频免费观看 | av黄色大香蕉| 免费播放大片免费观看视频在线观看| 51国产日韩欧美| 成人毛片a级毛片在线播放| av电影中文网址| 少妇高潮的动态图| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲 | 国产无遮挡羞羞视频在线观看| 亚洲国产精品一区二区三区在线| 久久韩国三级中文字幕| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 久热这里只有精品99| 国产成人91sexporn| 久久久久久久国产电影| 91国产中文字幕| 侵犯人妻中文字幕一二三四区| 母亲3免费完整高清在线观看 | 国产亚洲午夜精品一区二区久久| 国产精品蜜桃在线观看| 街头女战士在线观看网站| a级毛片黄视频| 久久精品人人爽人人爽视色| 91在线精品国自产拍蜜月| 亚洲久久久国产精品| 两个人看的免费小视频| 18禁国产床啪视频网站| 国产片内射在线| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 免费人成在线观看视频色| 久久久国产一区二区| 夜夜爽夜夜爽视频| 亚洲综合色网址| av在线app专区| 日本vs欧美在线观看视频| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 久久久久久人人人人人| 免费观看a级毛片全部| 国产精品久久久久久久久免| 国产精品成人在线| 欧美3d第一页| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 边亲边吃奶的免费视频| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜制服| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| av电影中文网址| 成年美女黄网站色视频大全免费| av卡一久久| 国产精品一区二区在线观看99| 免费观看无遮挡的男女| 国产一区二区激情短视频 | 久久久久国产网址| 欧美日韩视频高清一区二区三区二| 亚洲人成网站在线观看播放| 激情五月婷婷亚洲| 秋霞伦理黄片| 男女高潮啪啪啪动态图| 久久这里有精品视频免费| 国产精品免费大片| 精品国产一区二区三区四区第35| 亚洲综合色网址| 成人综合一区亚洲| xxx大片免费视频| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 国产淫语在线视频| 免费久久久久久久精品成人欧美视频 | 国产av国产精品国产| 国产在线视频一区二区| 中文字幕av电影在线播放| 大香蕉久久网| 91精品伊人久久大香线蕉| 黑丝袜美女国产一区| 午夜老司机福利剧场|