• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Atlantic Multidecadal Oscillation(AMO)in winter intraseasonal variability over Ural

    2018-12-19 05:49:14LIShuanglinLIDinganCHENYing

    LI Shuanglin,LI Dingan CHEN Ying

    aInstitute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;bCollege of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing,China;cJoint Center for Global Change Studies(JCGCS),Beijing,China;dShanxi Climate Center,Shanxi Provincial Meteorological Administration,Taiyuan,China

    ABSTRACT The modulation of winter intraseasonal variability(ISV)by the Atlantic Multidecadal Oscillation(AMO)is investigated through three sets of reanalysis data and numerical experiments with the NCEP’s atmospheric general circulation model(AGCM).Results show that the positive phase of the AMO tends to intensify ISV activity over the northern Atlantic and shift ISV activity over the Ural Mountains toward the south,causing weakened ISV activity at 200 hPa in the north to the Urals and intensified activity in the south.The modulation of ISV activity by the AMO over the Urals is then explored through comparison of the composite evolution of anomalous ISV cases for the different AMO phases.Fewer ISV cases are found in the AMO positive phase than the negative phase,but no substantial difference in the temporal evolution of anomalous ISV events between the two opposing phases of the AMO.Thus,the AMO exerts its modulation through influencing the occurrence frequency of ISV events,rather than their development or evolution processes.A similar result is seen in the AGCM sensitivity experiments.

    KEYWORDS Atlantic Multidecadal Oscillation;modulation;intraseasonal variability;atmospheric stationary wave

    1.Introduction

    The region around the Ural Mountains(~ 60°N,60°E)is one of three regions with the strongest ISV activity in mid-to-upper-troposphere geopotential height in the extratropics of the Northern Hemisphere.One important origin of ISV over the Urals is the anomalous persistence or intensified activity of the Urals blocking,which is a key circulation system for the East Asian winter monsoon(Ye et al.1962).The collapse of the Urals blocking is often the precursor of cold-air outbreaks in East Asia(Tao 1959;Wang et al.2010).The colder SAT in most regions of central and eastern Asia is closely related with a more frequent occurrence of the Urals blocking (Takayaand Nakamura2005;Cheung et al.2013;Wu,Diao,and Zhuang 2016).This is consistent with Yang and Li(2016)analysis based on SAT.The impact of the Urals blocking on the East Asian winter climate can even be seen on the decadal time scale(Wang and Chen 2014;Chang and Lu 2012;Cheung et al.2015).

    The Atlantic Multidecadal Oscillation(AMO)is a basin-scale sea surface temperature(SST)warming or cooling phenomenon in the North Atlantic,with an oscillation periodicity of 65–80 years(Kerr 2000).Previous studies have suggested that the AMO substantially modulates the East Asian summer and winter climate(Lu,Dong,and Ding 2006;Li and Bates 2007;Wang,Li,and Luo 2009;Zhou et al.2015;Sun,Li,and Zhao 2015;Hong,Lu,and Li 2017).The role of the AMO was also discussed in a recent study by Wang et al.(2017).However,the underlying mechanism for the AMO’s impacts remains poorly understood.Whether the AMO modulates the ISV of the Urals blocking is unclear.

    On the one hand,a positive phase of the AMO causes intensified thermal flux from the sea surface of the North Atlantic to the overlying atmosphere and enhanced warmer air advection downstream,which may provide a background favorable for the development and maintenance of atmospheric blocking.On the other hand,it can induce sea-ice reduction in the Barents and Kara seas,which in turn contributes to amplification of the Urals blocking(Luo et al.2017).Nonetheless,the AMO’s modulation of ISV over the Urals cannot be excluded.Such a consideration motivates the present study,which aims at investigating the modulation of ISV over the Urals by the AMO.

    2.Data,methods,and experimental design

    2.1.Data and methods

    The atmospheric circulation data used in this study include the NCEP–NCAR reanalysis from 1948 to 2015(Kalnay and Coauthors 1996),the ECMWF’s 20th century reanalysis(ERA-20C)from 1970 to 2015(Poli et al.2013),and ERA-Interim from 1979 to 2015(Dee et al.2011).The horizontal resolution of these datasets is 2.5°longitude × 2.5°latitude.Winter(November to the following February)daily averaged geopotential heights are utilized.Since the intraseasonal time scale is the focus,Lanczos bandpass filtering is used to extract the components(Duchon 1979)with a time scale of 10–90 days.Before filtering,the climatological annual cycle is removed from the raw data.The climatological annual cycle is calculated as the daily mean during 1970–2010,and a nine-day running mean is then applied to the resultant series to reduce the day to-day gaps owing to missing data or other mistakes.Due to the limited length of the atmospheric circulation dataset,we use only one AMO positive phase(1996–2015)and one negative phase(1970–90)to reflect the different AMO phases.The SST data used to derive the AMO-related SST anomaly is from the Kaplan Extended SST dataset(version 2),beginning from 1856,which was processed by the Lomont-Doherty Earth Observatory and can be downloaded from NOAA’s Earth System Research Lab website:www.esrl.noaa.gov/~psd.

    2.2.Model and experimental design

    Sensitivity experiments in an atmospheric general circulation model(AGCM)—an earlier version of the NCEP’s Global Forecasting System for seasonal prediction—are analyzed.The model does not have a well-resolved stratosphere,with the atmospheric top at 10 hPa only,which does not reach the top of the stratosphere(~1 hPa).We adapt two sets of experiments performed previously(Li and Bates 2007;Wang,Li,and Luo 2009;Zhou et al.2015).The first set is termed as the‘control experiment’,in which the model is forced with the climatological SST seasonal cycle in the North Atlantic(0°–60°N,75°–7.5°W).The second experiment is termed the ‘AMO+experiment’,in which the AGCM is forced with the AMO-related SST anomaly added on to the climatological SST.The AMO-related SST anomaly is calculated as the difference of SST in the North Atlantic during the positive-phase AMO period(1935–55)minus that during the negative-phase AMO period(1970–90).So,it is a doubled AMO anomaly.Each experiment consists of three members with an integration period of 12 months starting from initial fields from the NCEP–NCAR reanalysis at 0000 UTC 1–3 September1980–99,individually.It is equivalent to each member including a total of 20 one-year integrations from September to the following August.

    3.Results

    3.1.Observational analysis

    3.1.1.ISV activity intensity

    Figure 1 compares the standard deviation of 10–90-day filtered 200-hPa geopotential heights in various datasets for the opposite AMO phases.For the positive phase of the AMO(Figure 1(a,d,g),overall consistency is apparent among the datasets insofar as the three strongest ISV activity centers are over the North Atlantic,North Pacific,and the Ural Mountains.The situation is similar for the negative phase of the AMO(Figure 1(b,e,h)).However,differences between the opposite phases of the AMO are also clear.For example,the activity center over the eastern Atlantic during the positive phase the AMO is evidently stronger than during the negative phase,with the maximum value being 10 m greater(130 m versus 120 m;cf.Figure 1(a,b,d,e,g,h).Besides,the strong ISV activity center over the Urals extends southward during the positive phase of the AMO,with the contour of 100 m closer to Lake Baikal.The difference in ISV activity is seen even more clearly from their difference(Figure 1(c,f,i)).A negative ISV anomaly is located over the northern Urals,along with a positive one in the south.This is seen in all three datasets.Thus,a positive phase of the AMO tends to intensify the ISV over the North Atlantic and shift the ISV activity over the Urals to the south.In other words,the AMO significantly modulates the ISV activity over the Urals.

    Figure 1.Comparison of the standard deviation of winter 10–90-day filtered 200-hPa geopotential heights during the different phases of the AMO and their difference.The upper(middle)panels represent the positive-phase(negative-phase)AMO,and the lower panels represent their difference.The left-hand,middle,and right-hand panels correspond to the results derived from NCEP–NCAR,ERA-20C,and ERA-Interim,respectively.The rectangular frames in the lower panels highlight the anomaly region.Dotted areas are statistically significant at the 95%confidence level(F-test).Units:m.

    3.1.2.ISV events and their temporal evolution

    22.I must send my child thither: The mother, horrified56 to see her youngest daughter receive such wealth, decides to send her preferred daughter to achieve the same goal. She still can t love the youngest daughter despite her new source of wealth.Return to place in story.

    In this next part of our study we compare the evolution of ISV events during the positive phase of the AMO with that during the negative phase to obtain indications regarding the mechanism for the AMO’s modulation of ISV activity.First,we extract positive or negative ISV events over the Urals from the NCEP–NCAR reanalysis.Then,we conduct a composite analysis for the positive and negative phase the AMO,separately.

    Here,a positive(negative)ISV event is defined as when the filtered 200-hPa geopotential height anomaly over the Urals(60°E,60°N)is greater than 1.5(smaller than?1.5)times the standard deviation.As such,a total of 55 cases(26 positive and 29 negative)are obtained for the positive-phase AMO period.Meanwhile,a total of 74 cases(31 positive events and 43 negative)are derived for the negative-phase AMO.There are evidently fewer cases in the positive phase the AMO relative to the negative phase(55 versus 74).This is in agreement with the southward shift of the Urals ISV activity,as seen in the lower panels of Figure 1(negative anomalies of standard deviation over the Urals).

    Since a power spectral analysis of daily 200-hPa geopotential heights over the Urals suggests a peak periodicity of 10–40 days for both the positive-and negative phase AMO(not shown),a composite evolution of a total of 40 days,20 days prior to the ISV occurrence and 20 days since its disappearance,is analyzed.Figure 2 compares the composite evolution of ISV events derived from the positive-phase AMO with that from the negative phase.Because of an overall symmetry,the difference of the positive ISV cases minus the negative cases is shown here.For the composite from the cases in the positive AMO phase period(the two left columns in Figure 2),on day(?16),a negative height anomaly is located over the Urals.Then,it moves westward and develops,reaching the northeastern Atlantic and West Europe on day(?4).Meanwhile,a positive height anomaly develops over Siberia,then propagates westward and reaches the Urals.The positive height anomaly develops rapidly and reaches its maximum on day(0).It then weakens and breaks into two centers before vanishing on day(8).At the same time,a negative anomaly develops rapidly over the Urals.For the ISV events derived from the cases in the negative-phase AMO(the two right columns in Figure 2),the composite evolution exhibits a similar process,albeit with a discernible difference in magnitude.For example,the maximum anomaly in the positive-phase AMO is visually smaller than that in the negative-phase AMO,which is even clearer on day(0)and day(4).This suggests that the AMO’s phase does not influence the development and evolution,but does influence the occurrence and amplitude,of the ISV over the Urals.

    Figure 2.Comparison of the composite evolution of 10–40-day filtered 200-hPa geopotential heights during the positive AMO phase with those during the negative AMO phase.Displayed is the difference of the positive ISV cases minus the negative ISV cases from day(?20)to day(16),with an interval of 4 days.Units:m.Dotted areas are statistically significant at the 95% confidence level(Student’s t-test).

    3.2.AGCM results

    3.2.1.ISV activity intensity

    Figure 3 displays the standard deviation of filtered 200-hPa geopotential heights in the AGCM experiments.In comparison with the observational results(cf.Figures 1 and 3),the simulated ISV activity centers show consistency,with the maxima over the North Pacific and North Atlantic,extending eastward to reach western Siberia,albeit the latter being relatively weaker.This suggests that the model captures the observed ISV activity well,forming a basis for elucidating the AMO’s influence on ISV by using the AGCM experiments.

    Comparing the results from ‘AMO+Experiment’with‘Control Experiment’,the simulated climatological ISV activity over the Urals in the former is obviously weaker,along with intensified ISV activity in the south of the Urals.In other words,the simulated ISV in the SST-forced experiments shifts evidently to the south.This shift is even clearer in their difference plot(Figure 3(c)),with positive values in the southern Urals but negative values in the north.Besides,the simulated ISV activity over the North Atlantic(55°–60°N,0°–30°E)in the AMO-SST-forced experiments is evidently weaker than in the control experiment.These results bear an overall consistency with the observational findings(cf.Figure 1(c,f,i)with Figure 3(c)).

    3.2.2.ISV events over the Urals and their temporal evolution

    As in the observational analysis,we compare the ISV events over the Urals in the AMO-SST-forced experiments with those in the control experiments.Based on the same method,a total of 72 ISV events(32 positive and 40 negative)are derived from the SST-forced experiment.The number of ISV events is 74 in the control experiments,consisting of half positive and half negative.Regardless of the polarity of ISV events,there are fewer ISV cases corresponding to the positivephase AMO(72 versus 74).This illustrates that a positive AMO favors a weakening of ISV events over the Urals,as seen in the observational analysis.

    Figure 4 compares the composite temporal evolution of ISV events derived from the AMO-SST-forced and control experiments.As in the observational analysis(Figure 2),we compare the difference in positive ISV cases minus negative cases.From the results,the development and evolution processes in the AGCM experiments are similar to those seen in the observational analysis,in that no significant difference is seen between the two experiments.This suggests that the AMO exerts its modulation through affecting the occurrence rather than the development and evolution of ISV events over the Urals,consistent with the observational findings.No significant modulation by the AMO of the development and evolution of ISV events over the Urals seems reasonable,since the SST forcing does not usually change the intrinsic atmospheric dynamics(e.g.,Peng and Robinson 2001).

    4.Concluding remarks and discussion

    The AMO’s modulation of ISV activity over the Urals is studied through three sets of reanalysis data and AGCM sensitivity experiments,and the results provide form evidence for such a relationship.Specifically,a positive phase of the AMO tends to intensify the ISV activity over the North Atlantic and shift the ISV activity to the south.However,the AMO does not change the development and evolution processes of the Urals ISV.Consistency is found between the observational results and those of the AMO-SSTA-forced experiments.Thus,the AMO’s modulation of the ISV over the Urals is robust.

    Why the AMO modulates the occurrence of Urals ISV events remains unclear.It is well known that atmospheric stationary waves play a role in the maintenance and variation of ISV.Figure 5 compares the observed atmospheric stationary wave activity,expressed as the winter seasonal mean 500-hPa geopotential height with the zonal-mean removed,in the different AMO phases.Clearly,there is a wavenumber-three stationary structure in the mid-to-high latitudes,regardless of the polarity of the AMO,with deep troughs over East Asia and North America,respectively,along with one shallow trough over Europe.However,a substantial difference exists between the different AMO phases(cf.Figure 5(a,b))insofar as,during the AMO positive phase,the stationary ridge over the eastern North Atlantic is significantly weaker,and meanwhile the ridge over the Urals is obviously stronger and shifts to the north.This is even clearer in their difference plot(Figure 5(c)),with a negative anomaly over the eastern North Atlantic and a positive one over the Urals.This implies that the difference in stationary waves between the opposite AMO phases may play a role in modulating the ISV activity.The observed weakened stationary ridge over the eastern North Atlantic can be explained by the AMO-related warm SST,which can be seen from the simulated negative height response to the AMO in Wang,Li,and Luo(2009,Figure 12,left-hand panels).

    Figure 4.Composite evolution of 10–40-day filtered 200-hPa geopotential heights of the ISV cases in the AGCM experiments.Displayed is the difference of the positive ISV cases minus the negative ISV cases.The left two columns are for the ‘AMO+SST’experiments,and the right two columns are for the control experiments.

    Figure 5.Comparison of stationary waves at the winter geopotential height of 500 hPa during the different phases of the AMO:(a,b)positive-and negative-phase AMO;(c)their difference.‘H’indicates the stationary ridge;‘L’indicates the stationary trough.The frame in(c)represents the location of the climatological ridge around the Urals.Units:m.

    In addition,stratosphere–troposphere coupling may play a role in connecting the AMO with the ISV over the Urals(Omrani et al.2014).The AMO-related downward propagating signal from the stratosphere might contribute to the ISV.Thus,the AGCM without a well-resolved stratosphere will be unable to simulate the downward propagating signal,resulting in weaker ISV responses.The evidently weaker standard deviation and responses in the AGCM(cf.Figures 3 and 4 with Figures 1 and 2)may be attributable in part to the poor expression of the stratosphere in the AGCM used here,which has an atmospheric top at 10 hPa.

    Recently,Li et al.(forthcoming)demonstrated that the cold phase of the AMO tends to be associated with a more frequent occurrence of the Urals blocking,which to a certain extent backs up our findings.Besides,Luo et al.(2017)revealed increased quasi-stationarity and persistence of the Urals blocking in the context of Arctic warming.Considering that the ISV over the Urals is in part related to the long persistence of the blocking,and the recent rapid warming of the Arctic coincides with a shift in the AMO phase from negative to positive,an outstanding issue is the relative importance of Arctic warming and the AMO in determining the nature of the Urals ISV.This issue is deserving of further study.

    Finally,it is important to acknowledge that the period used to derive the positive-AMO-related SSTA(1935–55)for the experiments does not match that used to derive the atmospheric circulation variability(1996–2015).This is certainly a caveat of the present study;however,a qualitative resemblance between the AMO-related SSTA in the two periods can be found(not shown).Furthermore,in the observational analysis we only compare one AMO positive-phase period(1996–2015)and one negative-phase period(1970–1990)to derive the AMO’s modulation of the ISV.This too is recognized as a limitation that should be addressed in follow-up work.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA19070401],the National Natural Science Foundation ofChina [grantnumbers 41790473 and 41421004],and the Fundamental Research Funds for the Central Universities.

    欧美成人午夜免费资源| 看十八女毛片水多多多| 永久免费av网站大全| 国产精品秋霞免费鲁丝片| 亚洲av电影在线观看一区二区三区| 在线 av 中文字幕| av在线app专区| 人妻一区二区av| 最近中文字幕2019免费版| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久av| 欧美精品亚洲一区二区| 国产又色又爽无遮挡免| 欧美亚洲 丝袜 人妻 在线| 日本猛色少妇xxxxx猛交久久| 一区二区三区乱码不卡18| 中文字幕免费在线视频6| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在| av免费观看日本| 偷拍熟女少妇极品色| 国产欧美另类精品又又久久亚洲欧美| 午夜福利影视在线免费观看| av在线app专区| 波野结衣二区三区在线| 日韩精品有码人妻一区| 王馨瑶露胸无遮挡在线观看| 亚洲av在线观看美女高潮| 五月开心婷婷网| 91aial.com中文字幕在线观看| 伦理电影免费视频| 色视频www国产| 亚洲欧美成人精品一区二区| 精品人妻视频免费看| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜爱| 亚洲精品日本国产第一区| 免费观看的影片在线观看| 人妻少妇偷人精品九色| 亚洲精品中文字幕在线视频 | 男女边吃奶边做爰视频| 视频中文字幕在线观看| 成人无遮挡网站| 久久人人爽人人片av| 精品人妻一区二区三区麻豆| 久热这里只有精品99| 久久鲁丝午夜福利片| 亚洲电影在线观看av| 国产高潮美女av| 黄片无遮挡物在线观看| 视频区图区小说| 中国三级夫妇交换| 又粗又硬又长又爽又黄的视频| 国模一区二区三区四区视频| 成人美女网站在线观看视频| 亚洲精品自拍成人| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 熟女av电影| 精品人妻偷拍中文字幕| 亚洲成人中文字幕在线播放| 国产伦精品一区二区三区视频9| 五月玫瑰六月丁香| 超碰av人人做人人爽久久| 美女福利国产在线 | 黄色欧美视频在线观看| 欧美人与善性xxx| 亚洲国产高清在线一区二区三| 中文欧美无线码| 亚洲精品色激情综合| 亚洲精品久久午夜乱码| 99久久精品国产国产毛片| 建设人人有责人人尽责人人享有的 | 熟女人妻精品中文字幕| 亚洲不卡免费看| 99国产精品免费福利视频| 久久久午夜欧美精品| 成人影院久久| 日本黄色片子视频| 亚洲久久久国产精品| 国产一区二区三区av在线| 美女xxoo啪啪120秒动态图| 五月天丁香电影| 精品亚洲成国产av| 在线播放无遮挡| 免费看光身美女| 亚洲国产高清在线一区二区三| 日日啪夜夜撸| 亚州av有码| 久久99热这里只频精品6学生| 超碰av人人做人人爽久久| 成人免费观看视频高清| 老司机影院毛片| 22中文网久久字幕| 日日撸夜夜添| 久久综合国产亚洲精品| 大香蕉97超碰在线| 美女视频免费永久观看网站| 免费人成在线观看视频色| 成人亚洲精品一区在线观看 | 99久久中文字幕三级久久日本| 国产综合精华液| 国产淫片久久久久久久久| 丝瓜视频免费看黄片| 欧美+日韩+精品| 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 国产精品爽爽va在线观看网站| av不卡在线播放| 精品久久久噜噜| 精品人妻偷拍中文字幕| 我要看日韩黄色一级片| 国产久久久一区二区三区| 九九在线视频观看精品| 伦理电影免费视频| 国产深夜福利视频在线观看| av网站免费在线观看视频| 久久ye,这里只有精品| 热re99久久精品国产66热6| 亚洲最大成人中文| av又黄又爽大尺度在线免费看| 亚洲国产色片| 看免费成人av毛片| 久久99热这里只有精品18| 夜夜骑夜夜射夜夜干| 大又大粗又爽又黄少妇毛片口| 欧美xxⅹ黑人| 一区二区av电影网| 国产欧美另类精品又又久久亚洲欧美| 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 国产深夜福利视频在线观看| 国产在线男女| 日韩成人伦理影院| 波野结衣二区三区在线| av国产免费在线观看| 五月玫瑰六月丁香| 校园人妻丝袜中文字幕| 成人综合一区亚洲| 国产精品99久久久久久久久| 国产女主播在线喷水免费视频网站| 国产黄频视频在线观看| 日韩av免费高清视频| 欧美xxxx黑人xx丫x性爽| 亚洲av综合色区一区| 免费看不卡的av| 欧美日韩综合久久久久久| 精品久久久久久久久亚洲| 中国国产av一级| 人妻少妇偷人精品九色| 99热这里只有是精品50| 亚洲色图av天堂| av播播在线观看一区| 99九九线精品视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 久久久色成人| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 热re99久久精品国产66热6| av天堂中文字幕网| 久久久久人妻精品一区果冻| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 啦啦啦视频在线资源免费观看| 国产亚洲av片在线观看秒播厂| 久久久久久九九精品二区国产| 天堂8中文在线网| av线在线观看网站| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 色网站视频免费| 九色成人免费人妻av| 久久精品久久久久久久性| 色网站视频免费| 精品一区在线观看国产| 99久久人妻综合| 国产女主播在线喷水免费视频网站| 免费大片18禁| 黄色欧美视频在线观看| 搡女人真爽免费视频火全软件| 国产淫片久久久久久久久| 色5月婷婷丁香| 亚洲伊人久久精品综合| 成年免费大片在线观看| 高清黄色对白视频在线免费看 | 五月天丁香电影| 亚洲国产精品999| 菩萨蛮人人尽说江南好唐韦庄| 黄色视频在线播放观看不卡| 波野结衣二区三区在线| 超碰av人人做人人爽久久| 涩涩av久久男人的天堂| 午夜日本视频在线| 毛片女人毛片| 伦理电影大哥的女人| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 身体一侧抽搐| 嫩草影院入口| 亚洲不卡免费看| 三级经典国产精品| 男人舔奶头视频| 国产精品免费大片| 丰满少妇做爰视频| 亚洲图色成人| 精品国产一区二区三区久久久樱花 | 午夜福利在线在线| 一级a做视频免费观看| 大香蕉97超碰在线| 成年女人在线观看亚洲视频| 国产免费一级a男人的天堂| 亚洲自偷自拍三级| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美清纯卡通| 国产 一区 欧美 日韩| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 国模一区二区三区四区视频| 晚上一个人看的免费电影| 久久精品熟女亚洲av麻豆精品| 欧美高清成人免费视频www| freevideosex欧美| 国产亚洲欧美精品永久| 亚洲精品国产av成人精品| 精品人妻一区二区三区麻豆| av在线蜜桃| 99热网站在线观看| 免费大片18禁| 免费看日本二区| 国产成人精品福利久久| 永久网站在线| 国产亚洲91精品色在线| 春色校园在线视频观看| 超碰97精品在线观看| 亚洲久久久国产精品| 日本av免费视频播放| 多毛熟女@视频| 精华霜和精华液先用哪个| 精品久久久久久久久av| 在线 av 中文字幕| 精品一区二区三卡| 国产高清不卡午夜福利| 亚洲精品日韩在线中文字幕| 一级a做视频免费观看| 国产美女午夜福利| 欧美变态另类bdsm刘玥| 国产精品国产三级专区第一集| 久久久久人妻精品一区果冻| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 日本午夜av视频| 在线观看免费高清a一片| 亚洲美女搞黄在线观看| 成人亚洲欧美一区二区av| 一本色道久久久久久精品综合| 毛片女人毛片| 午夜免费男女啪啪视频观看| 午夜日本视频在线| 观看美女的网站| 在线亚洲精品国产二区图片欧美 | 久久精品国产亚洲av天美| 在线播放无遮挡| 国产精品成人在线| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| 日韩一区二区三区影片| 十八禁网站网址无遮挡 | 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 亚洲人成网站在线观看播放| 国产精品无大码| 日日摸夜夜添夜夜爱| 18禁在线无遮挡免费观看视频| 男女无遮挡免费网站观看| 午夜福利在线观看免费完整高清在| 精品久久国产蜜桃| 日本黄色片子视频| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 久久国产亚洲av麻豆专区| 99热这里只有是精品50| 久久精品人妻少妇| 日日摸夜夜添夜夜爱| 日韩视频在线欧美| 国产一区二区三区av在线| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区免费观看| 亚洲国产精品专区欧美| 高清欧美精品videossex| 国产精品人妻久久久久久| 亚洲精品久久久久久婷婷小说| 久久影院123| 干丝袜人妻中文字幕| 麻豆成人av视频| 男女下面进入的视频免费午夜| 亚洲欧美日韩卡通动漫| 18禁动态无遮挡网站| av视频免费观看在线观看| 欧美97在线视频| 制服丝袜香蕉在线| 国产精品精品国产色婷婷| 乱码一卡2卡4卡精品| 91久久精品电影网| 一级毛片久久久久久久久女| 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 一本—道久久a久久精品蜜桃钙片| 久久久久网色| av黄色大香蕉| 欧美区成人在线视频| 亚洲综合色惰| 人妻少妇偷人精品九色| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 六月丁香七月| 中文字幕人妻熟人妻熟丝袜美| .国产精品久久| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 十分钟在线观看高清视频www | 街头女战士在线观看网站| 欧美日韩视频高清一区二区三区二| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 少妇人妻 视频| 美女cb高潮喷水在线观看| 精品久久久噜噜| 男女边摸边吃奶| 超碰av人人做人人爽久久| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 久久久久人妻精品一区果冻| 久久久久久久国产电影| 日韩人妻高清精品专区| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 永久网站在线| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 久久 成人 亚洲| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 久久久色成人| 国产男女超爽视频在线观看| 一级毛片久久久久久久久女| 日韩欧美一区视频在线观看 | 日韩大片免费观看网站| 免费观看的影片在线观看| 成人美女网站在线观看视频| 国产极品天堂在线| 一级毛片久久久久久久久女| 久久99热6这里只有精品| 欧美激情极品国产一区二区三区 | 老女人水多毛片| 欧美日韩综合久久久久久| 国产成人精品婷婷| 男人狂女人下面高潮的视频| 蜜桃在线观看..| 亚洲人成网站在线观看播放| 国产乱人视频| 一级二级三级毛片免费看| 尤物成人国产欧美一区二区三区| 高清黄色对白视频在线免费看 | 亚洲av成人精品一二三区| 欧美xxxx性猛交bbbb| 欧美三级亚洲精品| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 我的老师免费观看完整版| 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| av免费观看日本| 国产精品嫩草影院av在线观看| 久久毛片免费看一区二区三区| 精品人妻视频免费看| 婷婷色综合www| 成人高潮视频无遮挡免费网站| 亚洲欧洲日产国产| 蜜桃久久精品国产亚洲av| 国产免费福利视频在线观看| 综合色丁香网| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| av播播在线观看一区| 丝袜脚勾引网站| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 国产中年淑女户外野战色| 亚洲成人av在线免费| 一级二级三级毛片免费看| 人人妻人人看人人澡| 久久久久精品久久久久真实原创| 99久国产av精品国产电影| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片 | 欧美日韩一区二区视频在线观看视频在线| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 国产成人免费无遮挡视频| 成人美女网站在线观看视频| 亚洲欧美日韩无卡精品| 一二三四中文在线观看免费高清| 丝袜喷水一区| 午夜福利网站1000一区二区三区| 天天躁日日操中文字幕| 蜜桃在线观看..| 少妇人妻 视频| 亚洲精品第二区| 国产爱豆传媒在线观看| av卡一久久| kizo精华| 色吧在线观看| 日本黄色片子视频| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频| 国产伦在线观看视频一区| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 老司机影院毛片| 一级毛片电影观看| 黄色欧美视频在线观看| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式| 亚洲美女黄色视频免费看| 能在线免费看毛片的网站| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 狂野欧美白嫩少妇大欣赏| 精品国产露脸久久av麻豆| 国产综合精华液| 午夜视频国产福利| 黄片wwwwww| 久热久热在线精品观看| 亚洲av日韩在线播放| 春色校园在线视频观看| 三级国产精品欧美在线观看| 人妻少妇偷人精品九色| 街头女战士在线观看网站| 女的被弄到高潮叫床怎么办| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 亚洲美女视频黄频| av在线app专区| 777米奇影视久久| 欧美高清成人免费视频www| 777米奇影视久久| 老熟女久久久| 国产一区二区三区av在线| 免费观看性生交大片5| 人妻 亚洲 视频| 爱豆传媒免费全集在线观看| 蜜桃久久精品国产亚洲av| 国产精品偷伦视频观看了| 在线免费观看不下载黄p国产| 亚洲国产高清在线一区二区三| 亚洲精品久久午夜乱码| 蜜桃在线观看..| 久久久久久伊人网av| 啦啦啦啦在线视频资源| 天堂中文最新版在线下载| 男男h啪啪无遮挡| 日本欧美视频一区| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的 | 亚洲精品中文字幕在线视频 | 97超碰精品成人国产| 久久久久视频综合| 精品久久久久久久末码| 另类亚洲欧美激情| 成人国产麻豆网| 日本黄色片子视频| 国产黄色免费在线视频| 国产精品99久久99久久久不卡 | 免费大片黄手机在线观看| 国产高清国产精品国产三级 | 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 黄色日韩在线| 久久久久视频综合| 久久久久久久大尺度免费视频| av网站免费在线观看视频| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 只有这里有精品99| 麻豆成人午夜福利视频| 亚洲av二区三区四区| 成人漫画全彩无遮挡| 少妇的逼水好多| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| 精品久久国产蜜桃| 国产大屁股一区二区在线视频| 在线观看免费日韩欧美大片 | 纵有疾风起免费观看全集完整版| 美女福利国产在线 | 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 一本色道久久久久久精品综合| 蜜桃亚洲精品一区二区三区| 99热全是精品| 免费人成在线观看视频色| 国产精品无大码| 人妻少妇偷人精品九色| 全区人妻精品视频| 久久午夜福利片| 亚洲欧美日韩东京热| 18禁在线播放成人免费| 日韩欧美一区视频在线观看 | 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 久久精品国产a三级三级三级| 久久99热这里只有精品18| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| 一级爰片在线观看| 久久热精品热| 一级二级三级毛片免费看| av卡一久久| 老司机影院毛片| 嫩草影院入口| 99视频精品全部免费 在线| 久久久久人妻精品一区果冻| 国产成人一区二区在线| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 一区二区三区免费毛片| 久久国内精品自在自线图片| 国产精品不卡视频一区二区| 一本久久精品| 久久久久久久亚洲中文字幕| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 自拍偷自拍亚洲精品老妇| 在线免费观看不下载黄p国产| 深夜a级毛片| 久久久久久人妻| 一本色道久久久久久精品综合| 国产淫语在线视频| 日韩强制内射视频| 看免费成人av毛片| 日韩欧美精品免费久久| av.在线天堂| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 香蕉精品网在线| 成人国产麻豆网| 精品一品国产午夜福利视频| 国产亚洲最大av| 小蜜桃在线观看免费完整版高清| 欧美少妇被猛烈插入视频| 人妻一区二区av| 亚洲aⅴ乱码一区二区在线播放| 97热精品久久久久久| 久久鲁丝午夜福利片| 欧美xxxx黑人xx丫x性爽| 亚洲欧美一区二区三区黑人 | 成人毛片60女人毛片免费| 在线 av 中文字幕| 欧美xxⅹ黑人| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 久久精品夜色国产| 只有这里有精品99| 中文字幕制服av| 亚洲伊人久久精品综合| 精品亚洲成国产av| 一级二级三级毛片免费看| 亚洲欧美一区二区三区黑人 | 国产探花极品一区二区| 国产老妇伦熟女老妇高清| av免费观看日本| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频 | 国产 一区 欧美 日韩| 美女xxoo啪啪120秒动态图| 国产精品一区二区性色av| 亚洲精品国产av蜜桃| 欧美少妇被猛烈插入视频| 全区人妻精品视频| 国产精品伦人一区二区| 777米奇影视久久| 一个人看的www免费观看视频| 久久人人爽人人片av| 国产精品国产三级国产av玫瑰| 日韩国内少妇激情av| 丝袜脚勾引网站| 国产成人免费观看mmmm| 99re6热这里在线精品视频| 在线 av 中文字幕| 日韩制服骚丝袜av| 色5月婷婷丁香| 国产精品熟女久久久久浪| 一区二区av电影网| 亚洲精品一二三| 日韩亚洲欧美综合| 成人国产麻豆网| 欧美日本视频| 成年人午夜在线观看视频|