• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Majorana fermions induced fast-and slow-light in a hybrid semiconducting nanowire/superconductor device

    2022-02-24 08:59:16HuaJunChen陳華俊PengJieZhu朱鵬杰YongLeiChen陳詠雷andBaoChengHou侯寶成232001
    Chinese Physics B 2022年2期

    Hua-Jun Chen(陳華俊), Peng-Jie Zhu(朱鵬杰), Yong-Lei Chen(陳詠雷), and Bao-Cheng Hou(侯寶成) 232001

    We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots (QDs)based on a hybrid QD-semiconducting nanowire/superconductor(SNW/SC)device mediated by Majorana fermions(MFs).Under the condition of pump on-resonance and off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. In addition,the Fano resonances are accompanied by the rapid normal phase dispersion,which will indicate the coherent optical propagation. The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs,which can reach the conversion between the fast-and slow-light. Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.

    Keywords: majorana fermions, Fano resonance, slow and fast light, hybrid semiconducting/superconductor device

    1. Introduction

    Majorana fermions (MFs) have witnessed significant progress over the past decade in solid state systems for their potential applications in topological quantum computation and quantum information processing[1—7]due to the fact that they obey non-Abelian statistics. Although MFs were proposed originally as a model for neutrinos,the analogous Majorana zero modes have been observed in condensed matter systems,[8]such as hybrid semiconducting nanowire/superconductor (SNW/SC) structures,[9—12]ferromagnetic atomic chains on a superconductor,[13]ironbased superconductor device,[14]topological superconductor devices,[15,16]and topological insulator structure.[17]In order to observe Majorana-like signatures, several significant experimental schemes have been proposed, including the zerobias peaks(ZBPs)in tunneling spectroscopy,[9—13]the Josephson effect,[18]the Coulomb blockade spectroscopy,[15]and the spin-resolved measurements.[19]

    On the other hand, due to the significant progress in modern nanoscience and nanotechnology, artificial atoms,i.e., quantum dots (QDs),[20—25]manifest the attractive intermediary for probing MFs both theoretically[26—30]and experimentally.[31]However, in the detection of MFs with QDs in the electrical domain, QDs are always considered as only a resonant level.[26—30]Different from the previous schemes for probing MFs, we have presented an optical scheme for probing MFs with a QD considered as a twolevel system (TLS) and driven by the optical pump-probe technology,[32—35]which may provide a potential supplement for probing MFs. However,Rabi splitting and Fano resonance induced by MFs in optical domain based on a hybrid QDSNW/SC device have not yet been explored to the best of our knowledge,needless to say reaching the coherent optical propagation,such as the fast-and slow-light effects.

    In this paper,firstly we demonstrate that the probe absorption spectra of the QD show the switch from Rabi-like splitting to Fano resonance induced by MFs for different detuning regimes in the hybrid QD-SNW/SC device, which can be illustrated using the interference effect with the dressed state theory. Under the condition of pump on-resonance,the probe absorption spectra present a distinct Rabi splitting behavior with increasing the QD-MFs coupling strengthβ,which manifests a strong interaction of the QD and MFs,and the width of the splitting is 2β, which indicates an approach to determine the QD-MFs coupling strength. In the pump off-resonance,the probe absorption spectra can show a series of asymmetric Fano line shapes,and the Fano resonances are tunable under different parametric regimes, such as the Majorana-pump field detuningΔMand the exciton-pump field detuningΔc. As Fano resonances are characterized by a rapid steeper dispersion, the light pulses can be accelerated and decreased significantly, which correspond to the negative and positive dispersions, respectively, and then reach the fast and slow light effect. Secondly, we investigate the coherent optical propagation properties, i.e., the fast and slow light effect via the group delay of the probe field around the transparency window accompanied by the steep phase dispersion. The results show that a controllable fast-to-slow light propagation can be reached with manipulating the parametric regimes.

    2. Model and method

    The system under consideration is sketched in Fig. 1,where a QD coupled to a near by MFs appearing in the hybrid SNW/SC device,[9—12]and the Hamiltonian is given by[26—30,32—35]

    where the first term indicates the Hamiltonian of the QD with the exciton frequencyωex. In the previous works for probing MFs, the QD is consider as a single resonant level with spinsinglet state,[26—30]here we consider that the QD is a TLS with the ground state|0〉and the single exciton state|1〉, which is described by the pseudospin operatorsSzandS±with the commutation relations[Sz,S±]=±S±and[S+,S?]=2Sz.

    Fig. 1. The schematic of the hybrid QD-SNW/SC device, in which a QD driven by a pump field and a probe field coupled to a nearby MF in the end of SNW.

    The second term is the interaction of the two MFs in the end of SNW in the hybrid SNW/SC device. To describe MFs,we introduce the Majorana operatorsγ1andγ2with the relationγ?=γandγ2=1 as they are their own antiparticles.Here,εM=ωM~e?l/ξis the coupling energy withlbeing the length of the SNW andξthe superconducting coherent length with Majorana frequencyωM. If the lengthlof the SNW is large enough, we can find the coupling energyεM~e?l/ξ ~0. Thus,we need to discuss the two cases,i.e.,εM/=0 in terms of coupled Majorana edge states,andεM=0 in terms of uncoupled Majorana edge states.

    The third gives the nearby MFsγ1coupled to the QD with the coupling strengthβ, and the coupling strength is related to the distance of the QD and SNW/SC device. For simplicity, we introduce the regular fermion creation and annihilation operatorsf?andfwith the anti-commutative relation=1,thus,according to the relation ofγ1=f?+fandγ2= i(f??f), Majorana operatorγcan be transformed into the regular fermion operatorf. Then the third term reduces to i(S?f??S+f) with neglecting the non-conservation terms of energy i(S?f ?S+f+)based on the rotating wave approximation.[36]

    The last two terms indicate the interactions between the QD and two laser fields including a strong pump field with frequencyωpand a weak probe field with frequencyωssimultaneously irradiating to the QD,whereμis the electric dipole moment of the exciton,εpandεsare the slowly varying envelope of the pump field and probe field,respectively. In a frame rotated to the frequencyωpof the pump field, Eq. (1) can be rewritten as

    whereΔp=ωex?ωpindicates the exciton-pump field detuning,ΔM=ωM?ωpmeans the Majorana-pump field detuning, andδ=ωs?ωpgives the probe-pump detuning. Here,Ωp=μεp/is the Rabi frequency of the pump field. According to the Heisenberg equation of motion i=[ρ,H](ρ=Sz,S?,f),we can obtain the Heisenberg—Langevin equations of the operators with the corresponding noise and damping terms as follows:

    whereΓ1(Γ2)is the exciton relaxation rate(exciton dephasing rate), andκMis the decay rate of the MFs.is theδcorrelated Langevin noise operator with zero mean, andξis Langevin force arising from the interaction between the Majorana modes and the environment.

    Morning came, and the king got up, pale and sulky, and, after learning from the hermit which path to take, was soon mounted and found his way home without much difficulty

    We introduce the perturbation theory:ρ=ρ0+δρ,whereρindicates the operatorsSz,S?, andf, thenρ0(i.e.,,S0,andf0)means the steady parts,andδρ(i.e.,δSz,δS?,andδ f) indicates the fluctuation ones. Substituting the perturbation method into Eqs. (3)—(5) we obtain the steady state solutions of the variables as follows:

    which determine the steady-state population inversion (w0=)of the exciton as follows:

    where, andΞ3=. As all the pump fields are assumed to be sufficiently strong, all the operators can be identified withtheir expectation values under the mean-field approximation〈Qc〉=〈Q〉〈c〉,[37]after being linearized by neglecting nonlinear terms in the fluctuations,the H-LEs for the expectation values are

    In order to solve the equation set of the above H-LEs, we make the ansatz[38]〈δρ〉=ρ+e?iδt+ρ?eiδt. Solving the equation set and working to the lowest order inεsbut to all orders inεp, we obtain the linear optical susceptibility aswithand then the dimensionless linear susceptibilityχ(1)(ωs) is given by

    According to the light group velocity[39,40]υg=c/[n+ωs(dn/dωs)],wheren ≈1+2πχ(1)

    eff,we obtain

    where. One can observe the slow light ifng>0, and the superluminal light whenng<0.[41]The parameter values used in the paper:[9—12,35,42]the QD-MFs coupling strengthβ= 0.1 GHz, the decay rate of the MFsκM= 0.1 MHz,Γ1= 0.3 GHz,Γ2= 0.15 GHz, and=0.005(GHz)2.

    3. Results and discussion

    Firstly, we discuss the case of uncoupled Majorana edge state, i.e.,εM= 0 (orΔM= 0) under the condition of the exciton-pump field detuningΔp=0,and the Hamiltonian describing the coupling between the QD and nearby MFs reduces toHint=i(S?f??S+f). Then the absorption spectra will display the symmetric splitting due to the fact that the coupled Hamiltonian is analogical to the J—C Hamiltonian of the standard model. In Fig. 2, we plot the probe absorption (the imaginary part of the dimensionless susceptibility i.e.,Imχ(1))versus the probe-exciton detuningΔs=ωs?ωexfor several different MF-QD coupling strengthsβ. Obviously,in the case ofβ=0,i.e.,without MF-QD coupling,the absorption spectrum shows a lorentz peak. However, when the MF-QD couplingβis considered,the absorption spectra display an evident splitting behavior, and the splitting is enhanced prominently with increasing the MF-QD couplingβfromβ=0.1 GHz toβ=0.6 GHz. In addition,the splitting in the absorption spectrum is symmetric, which is like the vacuum Rabi splitting,and the width of splitting is 2β, and the peak splitting manifests the strong interaction between MF and QD.The physical origin of the results comes from the coherent interaction of the QD and MFs,and we introduce the dressed state theory to explain this physical phenomena.[35]Because QD is considered as TLS with the ground state|0〉and exciton state|1〉, when QD is coupled to the nearby MFs,QD will be modified by the number states of the MFsnMinducing the Majorana dressed states|0,nM〉,|0,nM+1〉,|1,nM〉,|1,nM+1〉. The left sharp peak of splitting in the absorption spectra indicates the transition from|0〉to|1,nM〉,and the right sharp peak is due to the transition of|0〉to|1,nM+1〉. On the other hand,we find that the absorption dip will reach zero atΔs=0 whenβ /=0,that is to say,the input probe field is transmitted completely without any absorption, which is very similar to electromagnetically induced transparency(EIT)[43]inΛ-type atoms systems.Since EIT can induce slow light,the hybrid QD-SWN/SC system can also reach slow light effect.

    Fig. 2. The probe absorption versus the probe-exciton detuning Δs =ωs ?ωex for several different MF-QD coupling strengths β. The other parameters are Γ1 =0.3 GHz, Γ2 =0.15 GHz, κM =0.1 MHz,=0.005(GHz)2,ΔM=Δp=0.

    In Fig. 3(a), we investigate the dispersion (the real part of the dimensionless susceptibility, i.e., Reχ(1)) as a function ofΔsfor several different MF-QD coupling strengthsβatΔp=0. It is obvious that the dispersion exhibits the negative steep slope atΔs=0 forβ=0(the black curve in Fig.3(a)),which combines the lorentz peak atΔs=0 in Fig. 2, leading to the fast light effect. However, ifβ /=0, the dispersion will exhibit the positive steep slope atΔs=0,which combines the zero absorption atΔs=0 in Fig. 2, resulting in the slow light effect. It is analogous to EIT[43]inΛ-type atoms systems,a transparency window will lead to the slow light effect,in our system the MF-QD coupling also results in the analogous zero absorption transparency window, which is accompanied with the rapid normal phase dispersion, indicating the coherent optical propagation, such as the fast and slow light effect. No matter what regimes result in the zero absorption,when a transparency window is observed, the slow light or fast light will be induced. In our hybrid coupled QD-SNW/SC system,when the transparency appears in the absorption spectrum,the slope around transparency window of the dispersion will experience the conversion between the negative to positive. The positive steep slope of dispersion will induce the positive group velocity index,i.e.,ng>0,then the slow light phenomenon will appear in the system. On the contrary, if the dispersion shows the negative steep slope, the group velocity index will be negative, i.e.,ng<0, as a result the fast light will be achieved. In Fig. 3(b), we plot the group velocity indexngof probe laser versus QD-MF coupling strengthβunder the condition ofΔM=0 andΔp=0. We can find that the group velocity indexngexperiences the positive—negative—positive change,which corresponds to the slow-fast-slow light.In Fig. 3(c), we also give the group velocity indexngas a function of Rabi frequencyin the case ofβ=0. As the dispersion shows a negative steep slope atΔs=0 forβ=0 as shown in the black curve in Fig. 3(a), which combines a lorentz peak in Fig.2 resulting in the fast light effect. Furthermore, the group velocity indexngvaries significantly around=0.1(GHz)2. In Fig.3(d),we consider the case ofβ /=0,due to the fact that the dispersion exhibits the positive steep slope atΔs=0, and then the group velocity indexngis positive with varying the Rabi frequency,therefore,the slow light effect can be obtained.

    Fig.3. (a)The dispersion as a function of Δs for several different MF-QD coupling strengths β at ΔM=Δp=0. (b)The group velocity index ng versus QD-MF coupling strength β under the condition of ΔM=0 and Δp=0. (c)ng as a function of for β =0. (d)ng versus for β =0.1 GHz.

    Secondly, we consider the coupled Majorana edge state,i.e.,εM/=0(orΔM/=0)still in the case ofΔp=0. In Fig.4,we display the probe absorption spectra versusΔsfor differentΔM,which experience the conversion from unsymmetrical splitting(Fano resonance like splitting)to symmetric splitting(EIT like splitting)to Fano resonance. Unlike EIT with symmetric splitting,the Fano resonance-like splitting is an asymmetry shape due to the fact that the scattering of light amplitude under the condition of EIT is not met and a detuning is introduced. Obviously,the absorption spectra show the Fanoresonance-like splitting underΔM/=0 due to the MF-QD interaction,and the Fano-like resonance will change into a symmetric EIT-like splitting atΔM=0.Furthermore,the evolution process of the two sharp unsymmetrical peaks varies significantly for different detuningΔM, and the amplitude intensity of the left peaks is enhanced and the right peaks are reduced with changingΔMfromΔM=?0.3 GHz toΔM=0.3 GHz.In addition,we find that the absorption spectra are asymmetricand a prominent avoided crossing phenomenon occurs in the system,[44]which is very different from the case ofΔM=0 in Fig. 2, where the absorption spectra split into a doublet with symmetrical splitting and each peak has equal strength. This behavior is attributed to the off-resonant coupling between the QD and MF.

    Fig.4. The probe absorption spectra versus Δs for several different ΔM at the parameters of=0.005(GHz)2 and β =0.1 GHz.

    Therefore, in Fig. 5, we further investigate the slow and fast light effect under the condition of the coupled Majorana edge state (ΔM/=0) for the case ofΔp=0. In Fig. 5(a), we plot the absorption and dispersion spectra for the fixed QDMF coupling strengthβ=0.1 GHz and the Rabi frequency=0.005 (GHz)2underΔM=?0.1 GHz, and the absorption shows a Fano resonance and the steep slope aroundΔs=0 in the dispersion changes significantly. Thus,in Fig.5(b),we further display the dispersion versusΔsfor several differentΔM, and the processes of evolutions of the dispersion are related to the coupled Majorana edge state. Here,we only consider the case ofΔM≤0. Figure 5(c)shows the group velocity indexngas a function of QD-MF coupling strengthβunder several differentΔM, and it is obvious thatngcan realize the conversion from fast to slow light. Comparing the condition ofΔM=0 withΔM/=0,we can see that the experience of the group velocity indexnginΔM=0 is salient from the condition ofΔM/=0. Because the parameterβcan be manipulated with controlling the distance between the QD and SNW/SC device,we can obtain fast-to-slow light(or vice versa)by controlling the parameterβin the system. In Fig. 5(d), we also present the group velocity indexngversusfor threeΔM. We obtain thatngexperiences the conversion from slow to fast to slow light atΔM=?0.1 GHz. However, ifΔM

    Fig.5. (a)The absorption and dispersion versus Δs at ΔM =?0.1 GHz. (b)The dispersion versus Δs for several different ΔM at Δp =0. (c)The group velocity index ng versus β for several different ΔM. (d)The group velocity index ng versus for several different ΔM.

    In the above discussions,we only consider the case of the exciton-pump field detuningΔp=0,while under the condition ofΔp/=0, the Fano resonance will be altered tempestuously.In Fig.6(a),we plot the absorption spectra versusΔswith increasingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz under the parameters of=0.005 (GHz)2andβ=0.2 GHz in the uncoupled Majorana edge state (ΔM=0), which experiences the conversion from Fano resonance to Rabi-like splitting to Fano resonance. Furthermore, besidesΔp=0, we find that the peaks in the absorption spectra present mirror symmetry atΔp=±Θ(Θindicates the definite numerical value)in the uncoupled Majorana edge state. Here, we takeΔp=?0.3 GHz andΔp=0.3 GHz as an example. IfΔp=?0.3 GHz, in the absorption spectrum as shown by the red curve in Fig. 6(a),the left peak locates atΔs=?0.4 GHz and the right peak locates atΔs= 0.1 GHz. However, ifΔp= 0.3 GHz, in the absorption spectrum as shown by the purple curve in Fig.6(a),the left peak locates atΔs=?0.1 GHz and the right peak locates atΔs=0.4 GHz. It is obvious that the left peak atΔp=?0.3 GHz is mirror symmetric with the right peak atΔp=0.3 GHz, and the right peak atΔp=?0.3 GHz is mirror symmetric with the left peak atΔp=0.3 GHz in the absorption spectra. When we change the condition ofΔM=0 intoΔM/=0,the Fano resonance manifests evident distinction compared withΔM=0 with varyingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz as shown in Fig.6(b). We find that,with increasingΔpfromΔp=?0.3 GHz toΔp=0,the splitting width of the two peaks in the absorption spectra is reduced,i.e.,the absorption spectra is squeezed. However, with increasingΔpfromΔp=0 toΔp=0.3 GHz, the splitting width of the two peaks in the absorption spectra is enhanced,i.e.,the absorption spectra is stretched. No matter whetherΔM=0 orΔM/=0,we obtain that the full width at half maximum (FWHM) of the left peak is reduced and the FWHM of the right peak is enhanced in the absorption spectra with increasingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz as shown in Figs.6(a)and 6(b).

    Fig. 6. The absorption spectra versus Δs for several different Δp at ΔM =0. (b) The absorption spectra versus Δs for several different Δp at ΔM/=0. The other parameters are =0.005(GHz)2 and β =0.2 GHz.

    Fig.7. (a)and(b)The group velocity index ng versus for several Δp at ΔM=0 and β =0.2 GHz. (c)and(d)The group velocity index ng versus for several Δp at ΔM/=0 and β =0.2 GHz.

    Then,on the other hand,we also demonstrate the coherent optical propagation properties for differentΔp/=0 andΔM/=0.In Fig. 7(a), we investigate the group velocity indexngas a function offorΔp=?0.3 GHz andΔp=0.3 GHz underΔM=0 at fixedβ=0.2 GHz. Figure 7(b)givesngversusforΔp=?0.1 GHz andΔp=0.1 GHz underΔM=0 at fixedβ=0.2 GHz. Compared Fig.7(a)with Fig.7(b)corresponding to Fig.6(a),we find that the group velocity indexngundergoes the conversion from advance to delay which corresponds to fast to slow light,and the conversion is more remarkable atΔp<0 than atΔp>0. In Fig. 7(c), we givengversusatΔM/=0 with increasingΔpfromΔp=0 toΔp=0.3 GHz,and Fig. 7(d) plotsngversusatΔM=?0.1 GHz forΔp<0,which corresponds to Fig. 6(b). We can obtain that the conversion from fast to slow light can reach in the two conditions,and compared with Fig. 7(c), the process of evolution of the conversion from fast to slow light is slightly different from Fig. 7(d). Thus, with controlling different detuning regimes,the fast-to-slow light,or vice versa,can be reached in our system.

    In our system, we only consider the QD coupling to the nearby MFs, i.e., QD only couples to one MF due to the fact that it is confined by the length of the SNW and the superconducting coherent length.If QD is coupled to a pair of MFs,the results are significantly different. We have ever designed a hybrid QD-SNW/SC ring device,where QD is coupled to a pair of MFs,[34,35]and the results indicate that both the absorption spectra and the slow light(fast light)are enhanced observably compared with the results in this paper. In order to enhance the coherent optical properties(such as the linear or nonlinear optical phenomena)of QD induced by MFs,we have ever considered introducing a hybrid QD-nanoresonator system to investigate MFs induced coherent optical phenomena,[32,33]and the results manifest that both the linear or nonlinear optical phenomena induced by MFs are enhanced significantly due to the fact that the nanoresonator behaves as a phononic cavity,which enhances the linear and nonlinear optical effect. Therefore, to reach enhanced fast and slow light effect, the hybrid QD-nanoresonator system can be brought,and we will investigate the issue in the future work.

    4. Conclusions

    In summary, we have demonstrated the coherent optical propagation properties in a hybrid QD-SWN/SC device,which includes a QD driven by a pump field and a probe field coupled to a nearby MF in the hybrid SWN/SC system, and we investigate the absorption spectra of the probe field under both the conditions of the pump on-resonance (Δp= 0) and offresonance (Δp/=0). In the situation of pump on-resonance,the absorption spectra displays a Rabi-like splitting manifesting the strong interaction between the QD and MF. In pump off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. Moreover, the narrow transparency window(i.e.,the absorption dip approaches zero)in the absorption spectrum and the corresponding rapid phase dispersion allow for reaching the slow light effect. The results show that the group velocity index can be controlled by the QD-MF coupling,which can reach the conversion from fast to slow light.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804004 and 11647001),the China Postdoctoral Science Foundation(Grant No. 2020M681973), and Anhui Provincial Natural Science Foundation,China(Grant No.1708085QA11).

    久久久久久久午夜电影| 一本一本综合久久| 人妻系列 视频| 尤物成人国产欧美一区二区三区| 尾随美女入室| 亚洲精品乱码久久久久久按摩| 男女下面进入的视频免费午夜| 我要看日韩黄色一级片| 国产黄色视频一区二区在线观看| 午夜精品一区二区三区免费看| 黄色配什么色好看| 亚洲自拍偷在线| 午夜激情久久久久久久| 好男人在线观看高清免费视频| 亚洲精品乱码久久久v下载方式| 尾随美女入室| 亚洲自拍偷在线| 国国产精品蜜臀av免费| 最近2019中文字幕mv第一页| 成人欧美大片| 久久久亚洲精品成人影院| 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院新地址| 熟女人妻精品中文字幕| 日韩欧美一区视频在线观看 | 久99久视频精品免费| 丝袜喷水一区| 久久久久久久久久人人人人人人| 国产精品久久久久久精品电影| 国产黄片视频在线免费观看| 久久久久久久大尺度免费视频| 波多野结衣巨乳人妻| 国产午夜福利久久久久久| 亚洲欧美成人综合另类久久久| 久久综合国产亚洲精品| 又爽又黄无遮挡网站| 国产激情偷乱视频一区二区| 男女啪啪激烈高潮av片| 日韩强制内射视频| 建设人人有责人人尽责人人享有的 | 久久这里只有精品中国| 性色avwww在线观看| 亚洲美女搞黄在线观看| 老司机影院毛片| 亚洲真实伦在线观看| 久久精品久久久久久噜噜老黄| 日韩伦理黄色片| 99久久精品热视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 极品教师在线视频| 亚洲国产成人一精品久久久| 欧美高清性xxxxhd video| 国产在视频线在精品| 国产高清三级在线| 天堂网av新在线| 精品久久久噜噜| 青春草视频在线免费观看| 夜夜爽夜夜爽视频| 老女人水多毛片| 精品国内亚洲2022精品成人| 在线播放无遮挡| 边亲边吃奶的免费视频| 国产黄a三级三级三级人| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 成人亚洲精品一区在线观看 | 啦啦啦啦在线视频资源| 少妇的逼水好多| 男的添女的下面高潮视频| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 中文字幕久久专区| 日韩人妻高清精品专区| 九色成人免费人妻av| 99久国产av精品国产电影| 尤物成人国产欧美一区二区三区| 国产午夜福利久久久久久| 亚州av有码| 亚洲国产最新在线播放| 91精品国产九色| 日韩视频在线欧美| 人人妻人人看人人澡| 国产欧美日韩精品一区二区| 久久久精品免费免费高清| 十八禁国产超污无遮挡网站| 精品一区二区三卡| 国产午夜精品一二区理论片| 日本一本二区三区精品| 亚洲在线自拍视频| 天堂av国产一区二区熟女人妻| 久久亚洲国产成人精品v| 亚洲在久久综合| 亚洲成色77777| 成年版毛片免费区| 亚洲精品aⅴ在线观看| av在线蜜桃| freevideosex欧美| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影| 爱豆传媒免费全集在线观看| 国产亚洲午夜精品一区二区久久 | 99视频精品全部免费 在线| 尾随美女入室| 日韩国内少妇激情av| 少妇熟女aⅴ在线视频| 免费看不卡的av| kizo精华| 波多野结衣巨乳人妻| 国产成人精品福利久久| 亚洲色图av天堂| 少妇高潮的动态图| 国产男女超爽视频在线观看| 最近中文字幕2019免费版| 伦精品一区二区三区| 国产成人午夜福利电影在线观看| 啦啦啦韩国在线观看视频| 久久鲁丝午夜福利片| 亚洲精品久久久久久婷婷小说| 亚洲内射少妇av| 国产精品熟女久久久久浪| 在线观看人妻少妇| 黄色日韩在线| 日韩大片免费观看网站| 国产在视频线精品| 中文字幕久久专区| 久久99精品国语久久久| 校园人妻丝袜中文字幕| 精品久久久久久成人av| 国产精品99久久久久久久久| 看免费成人av毛片| kizo精华| 午夜精品一区二区三区免费看| 伊人久久国产一区二区| 晚上一个人看的免费电影| 国产69精品久久久久777片| 成年免费大片在线观看| 小蜜桃在线观看免费完整版高清| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 男人狂女人下面高潮的视频| 国产精品1区2区在线观看.| 国产成年人精品一区二区| 久久久久九九精品影院| 国产淫语在线视频| 国产不卡一卡二| 久久6这里有精品| 国产精品久久久久久久久免| 国产精品99久久久久久久久| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 国产三级在线视频| 在线观看免费高清a一片| av在线老鸭窝| 永久网站在线| 丰满乱子伦码专区| 国产在线一区二区三区精| 三级男女做爰猛烈吃奶摸视频| 久久久久久伊人网av| 最近中文字幕高清免费大全6| 美女cb高潮喷水在线观看| 能在线免费看毛片的网站| 一个人免费在线观看电影| 亚洲内射少妇av| 麻豆国产97在线/欧美| 一级毛片久久久久久久久女| 69av精品久久久久久| 国产一级毛片在线| 免费大片黄手机在线观看| 成年女人看的毛片在线观看| 人妻夜夜爽99麻豆av| 天堂中文最新版在线下载 | 九九爱精品视频在线观看| 九草在线视频观看| 我的女老师完整版在线观看| 18禁在线无遮挡免费观看视频| a级毛色黄片| 亚洲av中文字字幕乱码综合| 亚洲怡红院男人天堂| 国模一区二区三区四区视频| 中文字幕免费在线视频6| 久久久久网色| 不卡视频在线观看欧美| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 国产免费福利视频在线观看| 中国国产av一级| 韩国高清视频一区二区三区| 久久久久国产网址| 97人妻精品一区二区三区麻豆| 欧美日韩视频高清一区二区三区二| 色视频www国产| av天堂中文字幕网| 黑人高潮一二区| 人妻少妇偷人精品九色| 91精品一卡2卡3卡4卡| 国产真实伦视频高清在线观看| 嫩草影院新地址| 亚洲精品乱码久久久v下载方式| 亚洲欧美一区二区三区黑人 | 国产视频内射| 网址你懂的国产日韩在线| 最新中文字幕久久久久| 麻豆乱淫一区二区| 精品少妇黑人巨大在线播放| 亚洲欧美精品自产自拍| 99久久精品热视频| a级毛片免费高清观看在线播放| 日韩成人av中文字幕在线观看| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 国产免费又黄又爽又色| 男的添女的下面高潮视频| 一区二区三区四区激情视频| 成人鲁丝片一二三区免费| 人妻一区二区av| 身体一侧抽搐| 少妇猛男粗大的猛烈进出视频 | 夜夜爽夜夜爽视频| 国产永久视频网站| 国产亚洲最大av| 午夜福利视频精品| 亚洲欧美一区二区三区国产| 国产成人精品一,二区| 久久久色成人| 亚洲精品,欧美精品| 国产精品一区www在线观看| 午夜老司机福利剧场| 日本黄色片子视频| 久久久久久久国产电影| 久久久久久国产a免费观看| 亚洲av免费高清在线观看| 亚洲国产精品成人综合色| 国产有黄有色有爽视频| 可以在线观看毛片的网站| 日韩在线高清观看一区二区三区| 国产伦在线观看视频一区| 欧美+日韩+精品| 老司机影院毛片| 哪个播放器可以免费观看大片| 七月丁香在线播放| 一区二区三区免费毛片| 国产视频内射| 别揉我奶头 嗯啊视频| 国产 一区 欧美 日韩| 国产午夜精品一二区理论片| 内射极品少妇av片p| 欧美激情久久久久久爽电影| 特级一级黄色大片| 国内精品美女久久久久久| 日韩中字成人| 欧美激情在线99| 欧美3d第一页| av在线亚洲专区| 久久这里只有精品中国| 一本一本综合久久| 特级一级黄色大片| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 内地一区二区视频在线| 日韩电影二区| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 国产高清国产精品国产三级 | 白带黄色成豆腐渣| 成人漫画全彩无遮挡| 久久精品久久久久久久性| .国产精品久久| 亚洲一级一片aⅴ在线观看| 熟女人妻精品中文字幕| 三级经典国产精品| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 国产成人91sexporn| 嫩草影院入口| 中文字幕av在线有码专区| 久久99蜜桃精品久久| 六月丁香七月| 成人午夜精彩视频在线观看| 九色成人免费人妻av| 干丝袜人妻中文字幕| 欧美成人午夜免费资源| 国产乱人视频| 激情五月婷婷亚洲| 午夜精品国产一区二区电影 | 国产精品久久久久久久久免| 中文天堂在线官网| 最近手机中文字幕大全| 高清视频免费观看一区二区 | 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站 | 老司机影院成人| 国产伦理片在线播放av一区| 亚洲熟妇中文字幕五十中出| 一级爰片在线观看| av在线观看视频网站免费| 国产成人a∨麻豆精品| 国产 一区 欧美 日韩| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 美女高潮的动态| 亚洲国产高清在线一区二区三| or卡值多少钱| 成人欧美大片| 男女下面进入的视频免费午夜| 舔av片在线| 丝瓜视频免费看黄片| 日韩电影二区| 搞女人的毛片| 中文字幕久久专区| 在线免费十八禁| 能在线免费观看的黄片| 少妇的逼水好多| 国产乱人视频| 深爱激情五月婷婷| 国模一区二区三区四区视频| 亚洲精品国产av蜜桃| 色5月婷婷丁香| 免费看a级黄色片| a级一级毛片免费在线观看| 中文字幕亚洲精品专区| 国产成人a∨麻豆精品| 男女国产视频网站| 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 免费观看av网站的网址| 18禁在线无遮挡免费观看视频| 97超碰精品成人国产| 狠狠精品人妻久久久久久综合| 日本-黄色视频高清免费观看| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 一个人看的www免费观看视频| 欧美另类一区| 亚洲久久久久久中文字幕| 亚洲精品日韩在线中文字幕| 观看美女的网站| 成人av在线播放网站| 成人亚洲精品一区在线观看 | 六月丁香七月| 国产精品不卡视频一区二区| 一级毛片 在线播放| 国产一级毛片在线| 精品一区二区三区人妻视频| 卡戴珊不雅视频在线播放| 成人欧美大片| 激情五月婷婷亚洲| 伊人久久国产一区二区| 只有这里有精品99| 97热精品久久久久久| 免费av观看视频| 久久久久精品久久久久真实原创| 能在线免费观看的黄片| 天堂中文最新版在线下载 | 国产成人一区二区在线| 九九在线视频观看精品| 青青草视频在线视频观看| 成人欧美大片| 精品久久久久久电影网| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 国产一级毛片七仙女欲春2| 久久午夜福利片| 久久精品国产鲁丝片午夜精品| 国产精品福利在线免费观看| 午夜激情福利司机影院| 亚洲av国产av综合av卡| 成人性生交大片免费视频hd| 22中文网久久字幕| 青青草视频在线视频观看| 麻豆成人av视频| 一边亲一边摸免费视频| 亚洲久久久久久中文字幕| 男人舔女人下体高潮全视频| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 美女主播在线视频| 亚洲成人一二三区av| 免费观看精品视频网站| av一本久久久久| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 日本熟妇午夜| 黄色日韩在线| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 久久久久精品久久久久真实原创| 51国产日韩欧美| 高清午夜精品一区二区三区| 国产亚洲最大av| kizo精华| 在线免费观看的www视频| 国产日韩欧美在线精品| 国产精品福利在线免费观看| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 国产精品一二三区在线看| 国产成人精品久久久久久| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频 | eeuss影院久久| 亚洲欧美中文字幕日韩二区| 2022亚洲国产成人精品| 男人和女人高潮做爰伦理| 国产免费福利视频在线观看| 狂野欧美激情性xxxx在线观看| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄| 免费在线观看成人毛片| 国产有黄有色有爽视频| av卡一久久| 欧美高清成人免费视频www| 美女xxoo啪啪120秒动态图| av黄色大香蕉| 亚洲国产精品专区欧美| 18禁动态无遮挡网站| 日韩伦理黄色片| 老司机影院成人| 啦啦啦啦在线视频资源| 人人妻人人澡欧美一区二区| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 日韩精品有码人妻一区| 如何舔出高潮| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 免费观看在线日韩| 少妇的逼好多水| 水蜜桃什么品种好| 黄色配什么色好看| 亚洲在久久综合| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 搡女人真爽免费视频火全软件| 人妻系列 视频| 日韩人妻高清精品专区| 免费无遮挡裸体视频| 你懂的网址亚洲精品在线观看| 亚洲高清免费不卡视频| 久久精品久久精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 一级av片app| 美女脱内裤让男人舔精品视频| 国产真实伦视频高清在线观看| 插阴视频在线观看视频| 欧美97在线视频| 寂寞人妻少妇视频99o| 99久久精品热视频| 国产亚洲91精品色在线| 国产黄色视频一区二区在线观看| 欧美一区二区亚洲| 男女边吃奶边做爰视频| 免费观看的影片在线观看| 99热这里只有是精品在线观看| 亚洲,欧美,日韩| or卡值多少钱| 性色avwww在线观看| 国产免费又黄又爽又色| 亚洲成人av在线免费| 欧美日韩精品成人综合77777| 日韩欧美精品免费久久| 日本一本二区三区精品| 久久久久久九九精品二区国产| 久久国产乱子免费精品| 久久人人爽人人片av| a级一级毛片免费在线观看| 九色成人免费人妻av| 六月丁香七月| 最近中文字幕2019免费版| 久久6这里有精品| 国产精品久久久久久久电影| 男插女下体视频免费在线播放| 日韩人妻高清精品专区| 久久久久精品性色| 十八禁国产超污无遮挡网站| 亚洲精品,欧美精品| 高清av免费在线| 在线观看人妻少妇| 五月玫瑰六月丁香| 中国美白少妇内射xxxbb| 久久久国产一区二区| 亚洲国产色片| 麻豆成人av视频| 日韩中字成人| 一级av片app| 亚洲欧美一区二区三区黑人 | 亚洲av一区综合| 非洲黑人性xxxx精品又粗又长| freevideosex欧美| 天美传媒精品一区二区| 欧美97在线视频| 亚洲真实伦在线观看| 五月玫瑰六月丁香| 人妻系列 视频| 少妇高潮的动态图| a级毛片免费高清观看在线播放| 欧美激情在线99| 中文资源天堂在线| 99久久精品热视频| 午夜亚洲福利在线播放| 国产高清三级在线| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| av在线播放精品| 免费看不卡的av| 国产一区二区在线观看日韩| 少妇裸体淫交视频免费看高清| 一级爰片在线观看| 日韩精品有码人妻一区| 久久久久网色| 久久久久久久久久人人人人人人| 有码 亚洲区| 岛国毛片在线播放| 久久亚洲国产成人精品v| 国产成年人精品一区二区| 简卡轻食公司| 熟女人妻精品中文字幕| 国产乱人偷精品视频| 久久99热这里只有精品18| 99热这里只有精品一区| 日韩中字成人| 国产在视频线在精品| 亚洲最大成人av| 波多野结衣巨乳人妻| 国产高清国产精品国产三级 | 一级毛片 在线播放| 老女人水多毛片| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o| 亚洲欧洲国产日韩| 亚洲精品乱码久久久v下载方式| 婷婷六月久久综合丁香| 亚洲av不卡在线观看| 亚洲国产精品sss在线观看| 免费看av在线观看网站| 搡女人真爽免费视频火全软件| 99久国产av精品国产电影| 永久免费av网站大全| 国产综合精华液| 亚洲第一区二区三区不卡| 国产精品一及| 人人妻人人看人人澡| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看| 2022亚洲国产成人精品| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 嘟嘟电影网在线观看| 国产黄片美女视频| 精品久久久精品久久久| 日本免费在线观看一区| 少妇人妻精品综合一区二区| 欧美一级a爱片免费观看看| 激情五月婷婷亚洲| 中文资源天堂在线| 毛片一级片免费看久久久久| 看黄色毛片网站| 天美传媒精品一区二区| 国产成人精品福利久久| 最近手机中文字幕大全| 国内精品美女久久久久久| 久久久久久久大尺度免费视频| 26uuu在线亚洲综合色| 国产 一区 欧美 日韩| 精华霜和精华液先用哪个| 成人欧美大片| 久久99热这里只有精品18| av在线老鸭窝| 国产精品av视频在线免费观看| 日本一本二区三区精品| 精品午夜福利在线看| 亚洲国产精品成人综合色| 国产探花极品一区二区| 久久久色成人| 91午夜精品亚洲一区二区三区| 人妻少妇偷人精品九色| 国产高潮美女av| 听说在线观看完整版免费高清| 免费看光身美女| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 国产精品人妻久久久影院| 欧美激情久久久久久爽电影| 夫妻午夜视频| 十八禁网站网址无遮挡 | 在线a可以看的网站| 精品欧美国产一区二区三| 国产午夜福利久久久久久| 国产亚洲最大av| 国内精品一区二区在线观看| 丰满少妇做爰视频| 黄色欧美视频在线观看| 毛片一级片免费看久久久久| 欧美区成人在线视频| 精品人妻熟女av久视频| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 亚洲乱码一区二区免费版| 超碰97精品在线观看| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 国产精品国产三级专区第一集| 国产淫片久久久久久久久| 国产亚洲5aaaaa淫片| 熟女人妻精品中文字幕| 免费看a级黄色片| 人妻少妇偷人精品九色| 久久这里有精品视频免费| 日本午夜av视频| 人妻少妇偷人精品九色| 国产有黄有色有爽视频|