莫鳳嬌
【摘 要】 學(xué)生的學(xué)習(xí)錯誤是一種有價值的課程資源。但在實(shí)際教學(xué)中,一些教師把課堂上生成的錯誤或偏差視為“魔鬼”、“瘟疫”,唯恐避之不及。若能運(yùn)用有效的應(yīng)對策略,錯誤也能變廢為寶,反向激發(fā)學(xué)生的探究意識,促進(jìn)創(chuàng)新思維,塑造學(xué)生的完美人格。
【關(guān)鍵詞】 小學(xué)數(shù)學(xué);兒童;錯誤;資源
課堂上,教師精心設(shè)計的問題,總是期待學(xué)生能完美無誤地回答出來,當(dāng)學(xué)生出錯時,不少教師就會選擇忽視甚至批評來結(jié)束這次“不愉快”的對話,轉(zhuǎn)頭另尋高明。我們除了充分挖掘每個孩子的優(yōu)點(diǎn)外,還應(yīng)根據(jù)事實(shí),肯定他們的錯誤,努力以學(xué)生的視角去解析錯誤背后的學(xué)習(xí)誤區(qū),洞察錯誤的潛在價值,順學(xué)而導(dǎo)。本文主要結(jié)合本人的教學(xué)實(shí)踐,談?wù)勅绾握暫⒆拥腻e誤,讓數(shù)學(xué)課堂因錯誤而絢爛。
一、正視錯誤,追根溯源
前些天聽了一堂實(shí)踐活動課——《我們認(rèn)識的數(shù)》。書上有個題目:小明家有一個人,今年是64歲。這個人可能是誰?為了避免孩子們犯錯,回答“爸爸或媽媽”,上課的老師便特意在問號后增設(shè)了一個問題:還有一個人是35歲,這個人可能是誰?題目改動后再讓孩子們回答,沒有任何“失誤”!
這里,我們不妨相信自己的學(xué)生,直面錯誤,也是一種精彩。例如,在教學(xué)《分米和毫米》時:一本數(shù)學(xué)書的厚度是6( )?一位同學(xué)毫不猶豫地喊出6厘米!我故作不解:“那你能比劃一下6厘米有多厚嗎?”孩子知道1厘米差不多是1個指甲蓋的長度,那6厘米就大約是6個指甲蓋的長度。孩子看著自己比劃出的6厘米,邊搖頭邊笑著對我說:“數(shù)學(xué)書厚度該是6毫米才對!”其他小朋友紛紛豎起了大拇指。
追根究底,上述情況是由學(xué)生生活經(jīng)驗(yàn)不足導(dǎo)致錯誤。出現(xiàn)此類錯誤時,我們可以引導(dǎo)他們重組已有的知識經(jīng)驗(yàn)來解決未知的困惑而非忽略他的回答或者簡單粗暴地否定他,再接二連三換學(xué)生回答。長此以往,學(xué)生會產(chǎn)生一種恐懼感,害怕出錯而羞于在課堂上發(fā)言,限制了孩子的思維發(fā)展。
又如:在認(rèn)識角時,把一個角的兩條邊延長后,學(xué)生誤以為“角變大了”。這個錯誤反映了學(xué)生對相關(guān)知識點(diǎn)概念不清、法則不明。在初次學(xué)習(xí)《認(rèn)識100以內(nèi)的數(shù)》時,小朋友做多了“37里面有(3)個十和(7)個一”這類題,由此產(chǎn)生了思維定式,認(rèn)為“58里面有(5)個一和(8)個十”。所謂明白人明白的道理算法千篇一律,不明白的人卻各有各的困惑。作為教師的我們只有從“粗心”、“馬虎”等現(xiàn)象中真正明白學(xué)生的困惑,才能有效地幫助學(xué)生。
二、捕捉錯誤——正向遷移
杜威曾說過:“失敗是有教導(dǎo)性的,真正懂得思考的人,他從失敗和成功中學(xué)到的一樣多,甚至是更多?!币荒昙墝W(xué)生在解決實(shí)際問題時,總傾向于列加法算式,他們對于減法的實(shí)際意義理解比較淺顯,若在這時,同時出示一加一減兩個實(shí)際問題,學(xué)生就能區(qū)分出加法與減法的不同意義。
如:(1)同學(xué)們買來10棵樹苗,已經(jīng)栽了7棵,還要栽幾棵?(2)同學(xué)們買了一些樹苗,已經(jīng)栽了10棵,還有7棵沒有栽,同學(xué)們買了多少棵樹苗?在平時,這兩類題極易混淆,教學(xué)時將它們以對比的形式展現(xiàn)出來,引導(dǎo)學(xué)生從不同角度辨別錯誤,給學(xué)生一些研究爭論的時間和空間,從而讓學(xué)生在爭論中分析、反駁,在爭論中明理,在爭論中內(nèi)化知識。
學(xué)生看到“一共有多少”會列加法算式,也習(xí)慣于把“甲比乙少多少”的問題列成減法算式,而這一習(xí)慣恰恰是陷阱的溫床。例如:樹上有10只鳥,空中有3只鳥,空中比樹上少了多少只鳥?學(xué)生列式:10-3=7。當(dāng)題目改為:樹上原來有一些鳥,先飛走了10只,又飛走了3只,樹上現(xiàn)在比原來少了多少只鳥?學(xué)生同樣列式10-3=7,在這里,部分學(xué)生并不真正理解題意,他們忽略了最重要的條件,這里的案例便是條件性問題的負(fù)遷移。所以在教學(xué)中,我引導(dǎo)學(xué)生在最適當(dāng)?shù)那榫尺\(yùn)用對比,明確異同,真正做到“扶正抗負(fù)”。如果我們關(guān)于“錯”之所以為“錯”分析得越深,那么學(xué)生關(guān)于“對”之所以為“對”也就認(rèn)識得越透。
三、預(yù)設(shè)錯誤——拓展思維
“學(xué)起于思,思源于疑”,疑問是思維的“催化劑”。因此,在數(shù)學(xué)教學(xué)中,我們有時還要故意在知識的關(guān)鍵環(huán)節(jié)處給學(xué)生設(shè)“套兒”,誘使學(xué)生“誤入歧途”,讓學(xué)生在糾正錯誤中加深對所學(xué)知識的理解。比如:把一塊木板鋸成6段,每鋸一次需要3分鐘,多少分鐘才能鋸?fù)??”一開始學(xué)生認(rèn)為鋸成6段得鋸6次,在經(jīng)歷了畫草圖記錄次數(shù)后,才發(fā)現(xiàn)“鋸成6段只要鋸5次就好,一共需要15分鐘!
又如:在學(xué)習(xí)《認(rèn)識萬以內(nèi)的數(shù)》時,我拋出了一道經(jīng)典易錯題:3()58<3761,()最小填幾?我讓孩子們先猜猜大家可能會犯哪些錯誤?孩子們七嘴八舌地討論起來,A說:“有同學(xué)會填6!先從最高位比大小,千位上3=3,比百位,(6)<7”。我數(shù)了數(shù)有3位同學(xué)填6,趁機(jī)表揚(yáng):“你可真是料事如神哪,能想其他同學(xué)所想!”B按捺不住地插話:“有同學(xué)可能填了7,因?yàn)?758 < 3761,只是他們忽略了題目要求填最小的數(shù)!”思維角逐進(jìn)入白熱化階段。C接著說:“還有的同學(xué)會填1,但他們忽略了百位不是最高位,可以填0的!”教室四周不約而同響起了雷鳴般的掌聲,不得不說這是一場精彩的思維風(fēng)暴!學(xué)生通過預(yù)設(shè)錯誤,不僅提升了數(shù)學(xué)思維的嚴(yán)密性和邏輯性,更使之從簡單地接受知識轉(zhuǎn)向自主、積極地建構(gòu)知識,參與的過程便是他們學(xué)習(xí)、研究、發(fā)展的過程。
心理學(xué)家蓋耶曾說過:“誰不考慮嘗試錯誤,不允許學(xué)生犯錯誤,就將錯過最富有成效的學(xué)習(xí)時刻?!蔽覀儠r時都會遭遇“錯誤”的伏擊,然而彩虹總在風(fēng)雨后,我們自身首先要善待隨機(jī)生成的錯誤,把握機(jī)會挖掘、利用錯誤,牢固樹立起“錯誤是資源”的意識,用“錯誤”的營養(yǎng)土滋潤著那具有無限可能性的孩子們。
【參考文獻(xiàn)】
[1]《小學(xué)數(shù)學(xué)課堂中錯誤資源的有效利用》小專題研究報告張?jiān)路肌缎W(xué)數(shù)學(xué)學(xué)科》,2010年4月2日
[2]李任,陶行知.教育思想與育才辦學(xué)經(jīng)驗(yàn)[J].重慶教育學(xué)院學(xué)報,2001.
[3]翁飛萍,鄔麗俐,俞紅,曹沼濱,鄭芬艷.《小學(xué)數(shù)學(xué)課堂教學(xué)中錯誤資源有效利用的研究》《普陀教育》,2011年1月
[4]張衛(wèi)國,盧江.小學(xué)數(shù)學(xué)教材教法(第二冊)[M].人民教育出版社,2001.12:146~171.