• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recovery rates of combination antibiotic therapy using in vitro microdialysis simulating in vivo conditions

    2018-12-10 12:02:46JyshDhnniSuznnPrkrJryLipmnStvnWllisJrmyCohnJohnFrsrArinBrnttMichllChwJsonRobrts
    Journal of Pharmaceutical Analysis 2018年6期

    Jysh A.Dhnni,Suznn L.Prkr,Jry Lipmn,b,c,Stvn C.Wllis,Jrmy Cohn,b,John Frsr,Arin Brntt,Michll Chw,Json A.Robrts,b,g,h

    aBurns,Trauma and Critical Care Research Centre,The University of Queensland,UQ Centre for Clinical Research,Herston,Brisbane,QLD 4029,Australia

    bDepartment of Intensive Care Medicine,Royal Brisbane&Women's Hospital,Brisbane,Australia

    cFaculty of Health,Queensland University of Technology,Brisbane,Australia

    dCritical Care Research Group,The University of Queensland,Brisbane,Australia

    eInstitute of Health and Biomedical Innovation&School of Public Health and Social Work,Queensland University of Technology,Kelvin Grove,Brisbane,Australia

    fDepartment of Anaesthesiology and Intensive Care,and Department of Medical and Health Sciences,Link?ping University,Link?ping,Sweden

    gSchool of Pharmacy,The University of Queensland,Brisbane,Australia

    hDepartment of Pharmacy,Royal Brisbane&Women's Hospital,Brisbane,Australia

    Keywords:Microdialysis Combination antibiotic therapy Relative recovery rate Pharmacokinetics Anti-infectives Protein binding

    A B S T R A C T Microdialysis is a technique used to measure the unbound antibiotic concentration in the interstitial spaces,the target site of action.In vitro recovery studies are essential to calibrating the microdialysis system for in vivo studies.The effect of a combination of antibiotics on recovery into microdialysate requires investigation.In vitro microdialysis recovery studies were conducted on a combination of vancomycin and tobramycin,in a simulated in vivo model.Comparison was made between recoveries for three different concentrations and three different perfusate flow rates.The overall relative recovery for vancomycin was lower than that of tobramycin.For tobramycin,a concentration of 20μg/mL and flow rate of 1.0μL/min had the best recovery.A concentration of 5.0μg/mL and flow rate of 1.0μL/min yielded maximal recovery for vancomycin.Large molecular size and higher protein binding resulted in lower relative recoveries for vancomycin.Perfusate flow rates and drug concentrations affected the relative recovery when a combination of vancomycin and tobramycin was tested.Low perfusate flow rates were associated with higher recovery rates.For combination antibiotic measurement which includes agents that are highly protein bound,in vitro studies performed prior to in vivo studies may ensure the reliable measurement of unbound concentrations.

    1.Introduction

    Combination antibiotic therapy is commonly used in clinical practice due to an increase in multidrug resistant bacterial infections[1,2].Consequently,antibiotic pharmacokinetic data is essential to developing accurate dosing regimens which can achieve effective antibiotic concentrations at the site of infection which is mostly the interstitial fluid of tissue[3,4].This principle is fundamental for not only optimal microbiological and clinical outcome,but also for minimizing the risk of microbial resistance[5–9].Moreover,it is the free(unbound)drug concentrations at the site of infection that are relevant with dosing challenges prominent because tissue interstitial space fluid penetration can differ substantially for some drugs[10].

    Microdialysis is a minimally invasive sampling technique used to measure unbound drug concentrations in the interstitial space fluid of different tissues[11,12],both in animals and humans[13].The pharmacokinetic data from in vivo microdialysis studies can be used to design antibiotic dosing guidelines[14].The details of the microdialysis technique have been described else where[15–18].Brie fly,the probe has a semipermeable membrane tip,which is perfused with a physiological solution(perfusate)at a slow flow rate.According to the concentration gradient,molecules with a size less than that of the membrane pore size will diffuse from the tissue interstitial space fluid(Ctissue)into the perfusate and collect as the microdialysate(Cdialysate).

    For most substances,the full equilibrium cannot be achieved i.e.Ctissue>Cdialysate.The term ‘recovery’is used to describe the relationship between Ctissueand Cdialysate.The ratio of Cdialysateto Ctissueis termed ‘relative recovery’.This factor is then used to calculate the actual drug concentration in the tissue interstitial space fluid.Knowing the drug concentration in the solution,in vitro recovery studies could be used to investigate the effect of parameters such as perfusate flow rate,membrane characteristics,membrane length and drug characteristics on recovery[19].Furthermore,data from these studies could inform subsequent in vivo studies.

    With combination antibiotic therapy,a number of issues can affect drug recovery with in vivo studies[15].In vitro microdialysis recovery studies using combination drugs can provide preliminary data on drug recovery and likely in vivo calibration[15].Despite this there are very few microdialysis studies investigating relative recovery of antibiotics,let alone a combination of antibiotics,despite how commonly they are used clinically[20].Furthermore,for combination antibiotics therapy,previous in vitro microdialysis recovery studies have not fully accounted for in vivo conditions[20].

    Microdialysis catheters may have individual variation in membrane permeability. Diffusion through the microdialysis membrane follows Fick's law.Hence,factors such as partition coefficient,particle size and surface area of the substance will affect the drug permeability through the membrane[21].This necessitates individual probe calibration[22].

    The feasibility of using microdialysis for different drugs depends on the physico-chemical characteristics of the substance,e.g.lipophilic and high molecular weight compounds are less likely to diffuse through the microdialysis catheter membrane and may be less feasible for microdialysis[23].High molecular weight is associated with lower diffusion coefficients through the microdialysis membrane,thus resulting in decreased recovery[23].

    Vancomycin has protein binding of approximately 55%[24]and a molecular weight of~1.5 Da.The molecular weight of tobramycin is 467Da with low serum protein binding(<30%)[25].Both drugs are also hydrophilic and suitable for microdialysis studies.

    Therefore,the aim of this study was to assess the relative recovery of concomitant vancomycin and tobramycin in an in vitro model simulating in vivo conditions.The study assessed the effect of different perfusate flow rates and the concentrations of the antibiotic solutions on the relative recoveries.

    2.Materials and methods

    2.1.Chemicals and standards

    Vancomycin hydrochloride was obtained from Aspen Pharmacare(St Leonards,Australia),tobramycin sulphate was obtained from P fizer(Perth,Australia),and compound sodium lactate IV solution was obtained from Baxter(Old Toongabbie,Australia).The chemical structures for vancomycin and tobramycin are shown in Fig.1.

    Acetonitrile was of HPLC-gradient grade(Merck,Darmstadt,Germany),while dichloromethane(Merck,Darmstadt,Germany),formic acid(Ajax,Taren Point,Australia),hepta fluorobutyric acid(HFBA,Fluka,Castle Hill,Australia)and trichloroacetic acid(Sigma-Aldrich,Castle Hill,Australia)were of analytical grade.Ultrapure water was obtained using a Permutit system(resistivity at 25°C at least 18 ΩM.cm).Drug-free human plasma was obtained from the Royal Brisbane and Women's Hospital blood bank(Brisbane,Australia).

    Fig.1.Structures of vancomycin(A)and tobramycin(B).

    2.2.Microdialysis in vitro model

    Commercially available microdialysis probes CMA 63(CMA Microdialysis AB,Stockholm,Sweden)with a molecular weight cut-off of 20 kDa,an outer diameter of 0.6 mm and a membrane length of 30 mm were used.Probes were perfused with lactated Ringer's solution at flow rates of 1 and 2μL/min by using a precision microinfusion pump CMA 107(CMA Microdialysis AB,Stockholm,Sweden).To enable perfusion at 1.5 μL/min,a Cole-Parmer two-syringe infusion pump 230 VAC CE(John Morris Group,Chatswood,Australia),was used.

    2.3.Stock and standard solution preparation

    A stock solution was freshly prepared by dissolving tobramycin in compound sodium lactate IV solution at 2 mg/mL and stored at-80°C.A stock solution was freshly prepared by dissolving vancomycin in compound sodium lactate IV solution at 2 mg/mL and stored at-80°C.These stock solutions were serially diluted with compound sodium lactate IV solution to produce a standard solution containing 200 μg/mL of both vancomycin and tobramycin,and a standard solution containing 20 μg/mL of both vancomycin and tobramycin.

    2.4.Plasma sample solutions

    The study plasma solutions were prepared using the stock solutions containing both vancomycin and tobramycin and drug-free plasma,to yield plasma sample solutions containing vancomycin and tobramycin of 0.5,5.0 and 20 μg/mL.

    2.5.Recovery experiments

    Microdialysis probes were fully immersed in four separate 100 mL beakers.The beakers contained either 0.5,5 or 20 μg/mL of vancomycin and tobramycin plasma sample solution,or drug-free plasma.A magnetic stirrer was used to simulate in vivo conditions as previously described[26].Temperature and pH of each of the study solutions were recorded to ensure consistency of these variables.

    The microdialysis probe was connected to the precision pump and perfused at 5 μL/min with compound sodium lactate IV solution for 10min to flush the air out of the system.Following this,the probe was perfused at 1 μL/min for 1h to enable equilibration.At the end of the equilibration period the following perfusate flow rates were used for 100 min each,with sampling occurring at 20-min intervals(n=5 sampling points):1.0,1.5 and 2μL/min.Samples were then stored at-80°C for analysis.

    The percent relative recovery was calculated using the recovery-by-gain formula as follows:

    Relative recovery(%)=(Cdialysate/Csolution)×100

    Where Cdialysateis the mean concentration in the microdialysate(n=5);Csolutionis the mean concentration in the study solution(n=5).

    2.6.Instrument and analytical method

    Vancomycin and tobramycin in plasma and microdialysate matrices were measured using validated liquid chromatographytandem massspectrometry(LC-MS/MS)methods.Drug-free compound sodium lactate IV solution and drug-free plasma solution were used to prepare calibration standards used in the assay.

    The LC-MS/MS used two Perkin Elmer LC-200 micro-pumps and a CTC PAL autosampler equipped with an Applied Biosystems API2000 mass spectrometer detector.An electro-spray ionization(ESI)source interface operating in positive-ion mode was used for the multiple reaction monitoring(MRM)LC-MS/MS analysis.The interface settings consisted of the nebulizing gas flow of 40 L/min,turbo gas of 50 L/min,curtain gas of 30 L/min,ion-spray voltage of 4500 V,a turbo-gas temperature of 400°C,and the interface heater on.Two MRMs were monitored and summed for vancomycin,m/z of 725–144 and 725–99,whilst tobramycin was monitored at m/z of 468–163.

    Chromatographic separation of vancomycin,tobramycin and the internal standard(teicoplanin)was achieved using a Waters Xterra C18column(2.1mm × 150 mm,5 μm)using a gradient of mobile phases consisting of(a)0.1%formic acid with 10 mM HFBA and(b)80%methanol in 0.1%formic acid with 10mM HFBA.The mobile phase was operated using a concentration gradient for methanol,ranging from 5%to 80%.The analytical method for tobramycin was similar to that used in other studies[27–29].

    Vancomycin and tobramycin in plasma were assayed separately.For the extraction of vancomycin from plasma,100 μL of plasma was treated with 400 μL of acetonitrile to precipitate proteins,with 600 μL of dichloromethane subsequently added to remove both the acetonitrile and lipids.For the extraction of tobramycin from plasma,200μL of plasma was treated with the addition of 50 μL of 30%trichloroacetic acid.Both vancomycin and tobramycin were assayed simultaneously in microdiaysate,with 10 μL of sample being diluted with 40 μL of internal standard(teicoplanin,100 μg/mL)for direct injection onto the instrumental analysis.

    Calibration standards were prepared using sequential dilution to obtain concentrations of 0.1,0.2,0.5,1,2,5,10,20 and 50 μg/mL.The chromatographic calibration was linear for vancomycin from 0.1 to 50 μg/mL in plasma(LLOQ 0.0917±0.011(mean±SD))and 0.2–50 μg/mL in microdialysate(LLOQ 0.196±0.010,)and for tobramycin from 0.2 to 50 μg/mL in plasma(LLOQ 0.205±0.012),and 0.1–20 μg/mL in microdialysate(LLOQ 0.111±0.004).Quality control samples were prepared at three concentrations 0.6,2 and 16 μg/mL with precision and accuracy within 15%for all analyses.All analyses passed the batch acceptance criteria.The assay was validated according to an international FDA guideline[30]in terms of stability,specificity,linearity,precision and accuracy.

    2.7.Statistical analysis

    A linear regression model was used,with recovery as the dependent variable and flow rate and concentration as independent variables.This allowed us to examine if the recovery changed when the flow rate or concentration was altered.To estimate the variation in recovery we fitted the linear regression model using a Bayesian paradigm and modelled the result of a new test,using the 95%credible interval to estimate the likely range in percent recovery for a new test.As we assume a constant variance across dose, flow rate,and sample number,this credible interval will apply to any mean.We used 10,000 Markov chain Monte Carlo iterations with a burn-in of 10,000 thinned by 3.All analyses were made using R version 3.0.2(www.r-project.org)with the Bayesian analysis in WinBUGS version 3.1.4[31].

    3.Results

    The temperature of all the study solutions was constant at room temperature(24.0°C±0.5).The pH of all the study solutions was 7.40±0.04.The mean(±SD)concentrations of vancomycin and tobramycin are summarized in Table 1.Table 2 presents the mean(±SD)relative recoveries of vancomycin and tobramycin,respectively.

    3.1.Stability of relative recovery during in vitro microdialysis

    There was no significant inter-experiment variation in relative recovery.Relative recovery appeared stable for each microdialysis probe over the 100-min sampling period.The variations were±11%for tobramycin and±14%for vancomycin(using the Bayesian 95%credible intervals(CI)).

    Table 1 Mean(±SD)vancomycin and tobramycin concentrations(μg/mL)in microdialysate at different microdialysis flow rates(1,1.5,and 2 μL/min).

    Table 2 Mean(±SD)vancomycin and tobramycin relative recovery(%)at different microdialysis flow rates(1,1.5,and 2 μL/min).

    Table 3 Multiple regression analysis for relative recovery rates(mean(%)and 95%confidence interval(CI))of vancomycin and tobramycin for different concentrations and perfusate flow rates(For vancomycin,reference level is 1.0 μL/min flow rate and concentration 5.0 mg/mL.For tobramycin,reference level is 1.0μL/min flow rate and concentration 0.5μg/mL).

    3.2.Flow rate dependence on relative recovery

    As shown in Table 2,the relative recoveries for vancomycin were higher at the 1.0 μL/min and 1.5 μL/min flow rates(mean 29.7%and 26.4%,respectively),compared with the 2.0 μL/min flow rate group(mean 21.4%).The regression model in Table 3 shows that a flow rate of 2.0 μL/min had a significantly lower relative recovery than the reference flow rate of 1.0 μL/min.The relative recoveries remained stable for the duration of sampling,i.e.100 min.

    In Table 2,relative recoveries for tobramycin were seen to be comparable at the 1.0 μL/min and 1.5 μL/min flow rates(means 72.0%and 68.5%,respectively),but decreased at 2.0μL/min(61.4%).There were no significant variations in the results over the duration of the study.Table 3 shows the regression model demonstrating the differences in the effect of flow rate on the relative recoveries,with a significantly lower relative recovery for flow rates of 1.5 and 2.0 μL/min compared with 1.0 μL/min.

    3.3.Concentration dependence relative recovery

    As shown in Table 2,the relative recoveries for vancomycin were higher for the 5.0μg/mL concentration(range 20.664%–32.69%)compared with the 20 μg/mL concentration(range 21.7%–27.3%).Importantly,the microdialysate in the 0.5 μg/mL group did not yield any results,as the concentrations were less than the lower limit of quantification of the assay(0.2 μg/mL).For tobramycin,the range of relative recoveries is shown in Table 2 and was the highest for concentration of 0.5μg/mL(range 63.3%–81.66%).

    3.4.Combined effect of drug concentration and flow rate

    For vancomycin(Table 3)there was no statistical difference between the concentrations,but there was a lower relative recovery for flow rate of 2.0 μL/min compared with flow rate of 1.0 μL/min(mean difference-11.6%,95%CI:-18.9 to-4.3%,P value=0.003).The highest relative recovery was for the concentration of 5.0 μg/mL and flow rate of 1.0 μL/min(mean recovery 32.6%,95%CI:24.8%–35.7%).

    For tobramycin(Table 3),there was a higher relative recovery for the concentration of 20μg/mL compared with 0.5μg/mL,with a mean increase of 5.7%(95%CI 1.6%–9.9%,P value=0.008).Flow rates of 1.5μL/min and 2.0μL/min had lower relative recoveries than the flow rate of 1.0μL/min,with P value 0.009 and<0.001,respectively.The highest relative recovery was for a concentration of 0.5μg/mL and flow rate 1.0μL/min(mean 78.53%,95%CI:73.0%–80.6%).

    4.Discussion

    Though in vitro microdialysis studies have been performed previously to examine probe recovery,to the best of our knowledge,this is the first study simulating in vivo conditions and examining the relative recoveries for a combination of antibiotics in plasma.Knowledge of potential drug effects on microdialysis recovery is essential as combination antibiotic therapy is commonly used clinically and if not accounted for in relative recovery,may have the risk of under-or over-estimating drug concentrations in interstitial space fluid in in vivo studies.In vitro studies provide an ideal platform to study this effect and thus allow useful calibration for in vivo studies.Although there were inter-experiment differences in the relative recovery,its practical relevance is negligible.In general,for a drug,inter-experiment relative recovery variations of 20%are acceptable under in vivo conditions[12].

    Nosocomial infections due to methicillin-resistant Staphylococcus aureus(MRSA)and Pseudomonas spp are prevalent[32]and hence most therapies,both empirical and specific,would include vancomycin and tobramycin as part of the regimen[33].Hence,for our study,we chose these two antibiotics.Interstitial space fluid concentrations of antibiotics could be affected by a number of factors during in vivo microdialysis.For vancomycin,the reported values in the microdialysis samples have been variable with a wide range[34–36].For tobramycin,there is dearth of data in the microdialysis samples but Bernardi et al.[37]report a lung microdialysis study using tobramycin and Rodvold et al.[38]report a range of lung penetration ratio for tobramycin.Hence,the three concentrations chosen for the study would encompass a wide range of possible values.

    In comparison to a previous study[20],our study showed that relative recoveries for vancomycin were lower(26%vs.50%)across all flow rates and concentrations.Considering that MacVane et al.[20]performed their study in a non-protein medium,our results could be explained by the protein binding of vancomycin.However,perfusate composition,membrane characteristics and other factors may also play a role in this phenomenon.

    For both drugs and all concentrations,we found improved relative recovery at lower flow rates.Hence,where possible,lower microdialysis flow rates should be preferred for optimal recovery.However,decreasing the flow rate could reduce the ability to sample frequently,due to the increased time required to collect the sample volume required for the assay.Less frequent sampling may adversely affect the temporal resolution of the data.Studies using drugs with narrow therapeutic index or in conditions with temporal fluctuations of drug concentration are likely to produce significant differences.Therefore,choosing a flow rate appropriate for the desired sampling frequency is an important consideration of all studies.In future and with improved analytic techniques,where measurement in a low volume is possible,this may not be an issue.

    Careful consideration of the expected interstitial space fluid concentration should be taken into account when performing studies.Here,the lower recovery rates caused the microdialysate concentration to fall below the lower limit of the assay,as we encountered in the group of low vancomycin concentrations.Therefore,in vitro calibration can help prevent loss of clinical samples from the same issue.

    5.Limitations

    The exact composition of the interstitial space fluid is likely to be different between individual tissues and could be different in illness[39].Moreover,in critical illness the increased inflammation could lead to changes in the interstitial space fluid protein content[39].We were unable to obtain interstitial fluid,hence plasma was used for the study as the surrogate medium.Plasma offers a reasonable surrogate for this experiment,while the protein concentrations are higher at around 60–80g/L in a healthy adult,compared to interstitial fluid with protein content 24–32g/L(interstitial fluid to serum protein ratio~0.4)[40],this offers an insight into the conditions of a patient during critical illness where capillary leak syndrome may elevate the protein content in the interstitial fluid.Although we have attempted to mimic in vivo conditions,our study focussed on only two factors,drug concentration and perfusate flow rate,which affects relative recovery.There is currently no data on the effect of different concentrations of one antibiotic on the recovery rate of another antibiotic during combined antibiotic therapy.Our study did not investigate this effect,but it remains a worthy subject for better characterisation of relative recoveries in this context.Processes such as pressure gradients,extracellular–microvascular exchange,metabolism,and tissue diffusion of the drug can affect the relative recovery of the drugs.In vivo recovery may be affected by experimental and/or disease conditions[19].Besides these,microdialysis probe related factors such as membrane length,material and surface area,perfusate composition and temperature;tissue factors such as blood flow and temperature;the tissue-drugprobe material interactions could affect the drug concentrations,resulting in even lower concentrations of the drug in the microdialysate[19].With this study,we have attempted to establish a minimum set of conditions to be fulfilled for microdialysis-based studies.When possible,future studies should include in vivo calibration for recovery calculations.

    6.Conclusion

    In this simulated in vivo model,the in vitro relative recoveries for vancomycin and tobramycin varied with the perfusate flow rate and drug concentration.We suggest that a low perfusate flow rate≤ 1 μL/min should be used to achieve optimal relative recovery.

    Furthermore,we recommend performing in vitro recovery studies simulating in vivo conditions to accurately calibrate the microdialysis system prior to in vivo studies,to establish the most accurate combination of flow rate and drug concentration.Performing studies in plasma for moderate-to-highly protein bound drugs may better replicate in vivo conditions.Based on our study results,vancomycin and potentially other molecules of larger size and/or high protein binding need additional consideration for improving the relative recovery.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This study was funded by the TPCH foundation grant(MS2011-40)and the RBWH foundation grant 2012.We wish to recognize funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence(APP1099452).JAR is funded in part by a Practitioner Fellowship(APP1117065)from the National Health and Medical Research Council of Australia.

    亚洲精品成人av观看孕妇| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品国产欧美久久久| 在线观看免费午夜福利视频| 国产av又大| 国产熟女午夜一区二区三区| 欧美精品一区二区免费开放| 美女主播在线视频| 欧美成狂野欧美在线观看| 99国产综合亚洲精品| 午夜日韩欧美国产| 9色porny在线观看| 国产日韩一区二区三区精品不卡| 欧美久久黑人一区二区| 91精品国产国语对白视频| 一本综合久久免费| 国产亚洲精品第一综合不卡| 日本精品一区二区三区蜜桃| 亚洲国产欧美网| 飞空精品影院首页| 国产精品久久久人人做人人爽| 宅男免费午夜| 欧美在线一区亚洲| 欧美中文综合在线视频| 成人永久免费在线观看视频 | 亚洲精品国产精品久久久不卡| 国产av精品麻豆| 99riav亚洲国产免费| √禁漫天堂资源中文www| 欧美性长视频在线观看| 亚洲美女黄片视频| 叶爱在线成人免费视频播放| 日韩中文字幕视频在线看片| www日本在线高清视频| 97在线人人人人妻| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 午夜91福利影院| 伊人久久大香线蕉亚洲五| 天堂动漫精品| 女警被强在线播放| 久久国产亚洲av麻豆专区| 婷婷成人精品国产| 日本精品一区二区三区蜜桃| 欧美日韩一级在线毛片| 成人影院久久| 妹子高潮喷水视频| 久久久水蜜桃国产精品网| 国产精品成人在线| 精品国产乱子伦一区二区三区| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 日本a在线网址| 成人亚洲精品一区在线观看| 麻豆乱淫一区二区| 手机成人av网站| 久久 成人 亚洲| 久久久久久久久免费视频了| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区久久| 岛国在线观看网站| 少妇 在线观看| 18禁观看日本| 国产又爽黄色视频| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 精品少妇内射三级| 在线观看人妻少妇| 我要搜黄色片| 91麻豆av在线| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| a级毛片在线看网站| 国产精品久久电影中文字幕| 熟女电影av网| 88av欧美| 操出白浆在线播放| 在线观看舔阴道视频| 国产精品影院久久| 亚洲欧美一区二区三区黑人| 亚洲av电影不卡..在线观看| 国产视频一区二区在线看| 1024香蕉在线观看| 最近在线观看免费完整版| 欧美一级a爱片免费观看看| 日本黄大片高清| АⅤ资源中文在线天堂| 久久久久性生活片| 一个人看视频在线观看www免费 | 床上黄色一级片| 国产成人aa在线观看| 国产1区2区3区精品| 日韩人妻高清精品专区| 亚洲无线在线观看| xxxwww97欧美| 岛国在线观看网站| 免费av毛片视频| 成人无遮挡网站| xxx96com| 91字幕亚洲| 琪琪午夜伦伦电影理论片6080| 99久久国产精品久久久| 欧美精品啪啪一区二区三区| 亚洲,欧美精品.| 男人和女人高潮做爰伦理| 一级毛片女人18水好多| 神马国产精品三级电影在线观看| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 五月伊人婷婷丁香| 黄片大片在线免费观看| 小蜜桃在线观看免费完整版高清| 丁香欧美五月| 又大又爽又粗| 国产伦精品一区二区三区四那| 日韩欧美 国产精品| 激情在线观看视频在线高清| 最新在线观看一区二区三区| 精品一区二区三区视频在线 | 免费在线观看亚洲国产| 久久久精品大字幕| av福利片在线观看| 久久国产乱子伦精品免费另类| 久久久精品欧美日韩精品| 三级毛片av免费| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 国产精品爽爽va在线观看网站| 久久久色成人| 成人鲁丝片一二三区免费| 亚洲国产欧美网| 国产极品精品免费视频能看的| 精品国产美女av久久久久小说| 制服丝袜大香蕉在线| 国产日本99.免费观看| 99精品在免费线老司机午夜| 国产精品国产高清国产av| 2021天堂中文幕一二区在线观| 国产精品av视频在线免费观看| 成人特级av手机在线观看| 一个人免费在线观看的高清视频| av视频在线观看入口| 中出人妻视频一区二区| 搞女人的毛片| av国产免费在线观看| 亚洲七黄色美女视频| 99久国产av精品| 成人永久免费在线观看视频| 久久精品人妻少妇| 亚洲无线在线观看| 女警被强在线播放| 9191精品国产免费久久| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 成人av在线播放网站| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩卡通动漫| 午夜福利成人在线免费观看| avwww免费| 一a级毛片在线观看| 麻豆国产97在线/欧美| 免费看美女性在线毛片视频| 亚洲五月婷婷丁香| 级片在线观看| 国语自产精品视频在线第100页| 日本五十路高清| 久久久久久大精品| 99riav亚洲国产免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区字幕在线| 大型黄色视频在线免费观看| 成人三级黄色视频| 亚洲av电影在线进入| 国产亚洲精品久久久com| 国产av一区在线观看免费| 成人永久免费在线观看视频| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 亚洲国产色片| 亚洲人成网站高清观看| 中文亚洲av片在线观看爽| 天天躁狠狠躁夜夜躁狠狠躁| 听说在线观看完整版免费高清| 欧美色视频一区免费| 天天躁日日操中文字幕| 国产欧美日韩一区二区精品| 观看免费一级毛片| 成年版毛片免费区| 国产真人三级小视频在线观看| 久久久国产精品麻豆| 亚洲色图 男人天堂 中文字幕| 免费看日本二区| 真实男女啪啪啪动态图| 激情在线观看视频在线高清| 色噜噜av男人的天堂激情| 最近最新中文字幕大全免费视频| 欧美3d第一页| 看片在线看免费视频| 1000部很黄的大片| 国产蜜桃级精品一区二区三区| 一个人免费在线观看电影 | 欧美一级a爱片免费观看看| 精品国产亚洲在线| 免费av毛片视频| 又大又爽又粗| 国产日本99.免费观看| 淫妇啪啪啪对白视频| 网址你懂的国产日韩在线| www日本黄色视频网| 听说在线观看完整版免费高清| 99riav亚洲国产免费| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 午夜福利欧美成人| 国产黄色小视频在线观看| 国产97色在线日韩免费| www日本在线高清视频| 日本 av在线| 国产精品久久久久久人妻精品电影| 在线免费观看不下载黄p国产 | 国产精品一区二区免费欧美| 久久精品亚洲精品国产色婷小说| 1000部很黄的大片| 88av欧美| 俺也久久电影网| 中文字幕最新亚洲高清| 国产精品1区2区在线观看.| 国产精品久久久久久精品电影| 欧美黑人巨大hd| 午夜精品一区二区三区免费看| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 欧美精品啪啪一区二区三区| 中文字幕熟女人妻在线| 中文字幕久久专区| 免费电影在线观看免费观看| 国产成人啪精品午夜网站| 又粗又爽又猛毛片免费看| 天天躁日日操中文字幕| 免费看光身美女| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 熟女人妻精品中文字幕| 小说图片视频综合网站| 国产精品久久久久久人妻精品电影| 麻豆一二三区av精品| 国产欧美日韩一区二区三| 欧美色欧美亚洲另类二区| 亚洲精品在线美女| 日本 欧美在线| 91九色精品人成在线观看| 美女黄网站色视频| 日本三级黄在线观看| www.自偷自拍.com| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 性色av乱码一区二区三区2| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱| av片东京热男人的天堂| 日本免费一区二区三区高清不卡| 亚洲国产欧美一区二区综合| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 在线国产一区二区在线| 成年女人永久免费观看视频| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片| 精品免费久久久久久久清纯| 亚洲成av人片在线播放无| 91麻豆精品激情在线观看国产| 免费看日本二区| 18禁观看日本| 午夜精品久久久久久毛片777| 亚洲专区国产一区二区| 久久久久久久精品吃奶| 搞女人的毛片| 国内毛片毛片毛片毛片毛片| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 校园春色视频在线观看| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www| 精华霜和精华液先用哪个| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 免费大片18禁| 午夜精品一区二区三区免费看| 国语自产精品视频在线第100页| 精品人妻1区二区| 国产精品 欧美亚洲| 淫妇啪啪啪对白视频| av中文乱码字幕在线| 国产精品久久视频播放| 国产成人精品久久二区二区免费| 丁香欧美五月| 国产成人影院久久av| 国产人伦9x9x在线观看| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| a级毛片a级免费在线| 黄色片一级片一级黄色片| 国产亚洲精品av在线| 午夜a级毛片| 精品一区二区三区视频在线 | 精品日产1卡2卡| 久久精品亚洲精品国产色婷小说| 午夜免费成人在线视频| 两个人视频免费观看高清| 99久久精品国产亚洲精品| 国产免费男女视频| 亚洲av免费在线观看| 精品一区二区三区四区五区乱码| 在线十欧美十亚洲十日本专区| 在线永久观看黄色视频| 啪啪无遮挡十八禁网站| 亚洲在线观看片| 男女午夜视频在线观看| 夜夜爽天天搞| 天堂网av新在线| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁人妻一区二区| 亚洲中文日韩欧美视频| 美女免费视频网站| 亚洲国产欧美人成| 国产成人欧美在线观看| 国产激情偷乱视频一区二区| 精品国产美女av久久久久小说| 精品一区二区三区视频在线 | 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清无吗| 亚洲18禁久久av| 国产成人aa在线观看| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 琪琪午夜伦伦电影理论片6080| 三级毛片av免费| 香蕉久久夜色| 国产精品1区2区在线观看.| 丰满人妻一区二区三区视频av | 日韩欧美三级三区| 操出白浆在线播放| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 亚洲熟妇中文字幕五十中出| 欧美中文日本在线观看视频| 精品不卡国产一区二区三区| 久久精品综合一区二区三区| 亚洲成a人片在线一区二区| 久久精品国产99精品国产亚洲性色| 露出奶头的视频| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 九九久久精品国产亚洲av麻豆 | 亚洲人与动物交配视频| 超碰成人久久| 他把我摸到了高潮在线观看| 精品日产1卡2卡| 18禁观看日本| 久久性视频一级片| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久| 高清在线国产一区| 国产野战对白在线观看| 在线观看免费午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 国产精品,欧美在线| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 99精品欧美一区二区三区四区| 身体一侧抽搐| 亚洲成人中文字幕在线播放| 亚洲人与动物交配视频| 搞女人的毛片| 久久精品国产清高在天天线| 午夜精品久久久久久毛片777| 欧美日韩国产亚洲二区| 亚洲国产精品sss在线观看| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 在线十欧美十亚洲十日本专区| 亚洲18禁久久av| 成人亚洲精品av一区二区| 成人精品一区二区免费| 婷婷六月久久综合丁香| 亚洲五月婷婷丁香| 又黄又爽又免费观看的视频| 久久久久久久久久黄片| 精品熟女少妇八av免费久了| 欧洲精品卡2卡3卡4卡5卡区| 90打野战视频偷拍视频| bbb黄色大片| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 观看美女的网站| 中文字幕久久专区| 久久中文看片网| 成年女人毛片免费观看观看9| 18禁观看日本| 日本一二三区视频观看| 日韩国内少妇激情av| 久久香蕉国产精品| 色视频www国产| 日韩精品中文字幕看吧| 亚洲成人精品中文字幕电影| 国产成人aa在线观看| 成人特级黄色片久久久久久久| 91久久精品国产一区二区成人 | 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 蜜桃久久精品国产亚洲av| 亚洲乱码一区二区免费版| 一本久久中文字幕| 婷婷亚洲欧美| 国产一区二区激情短视频| 级片在线观看| 国产一区二区在线观看日韩 | 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 欧美一区二区精品小视频在线| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸| 这个男人来自地球电影免费观看| 国产精品一区二区三区四区免费观看 | 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 69av精品久久久久久| 国产伦在线观看视频一区| 黄片小视频在线播放| 很黄的视频免费| 熟女电影av网| 亚洲av第一区精品v没综合| 最新美女视频免费是黄的| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色| 久久久久亚洲av毛片大全| 两性夫妻黄色片| 欧美日韩综合久久久久久 | 国产三级黄色录像| 欧美大码av| 免费av毛片视频| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 精品一区二区三区四区五区乱码| 国产探花在线观看一区二区| 欧美av亚洲av综合av国产av| 丰满人妻熟妇乱又伦精品不卡| 国产精品乱码一区二三区的特点| 久久久久久人人人人人| 女生性感内裤真人,穿戴方法视频| 色视频www国产| av福利片在线观看| 亚洲中文av在线| 亚洲avbb在线观看| 久久久久久九九精品二区国产| 亚洲欧美日韩卡通动漫| 国产在线精品亚洲第一网站| 国产三级中文精品| a级毛片在线看网站| 一个人看视频在线观看www免费 | 亚洲国产精品成人综合色| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 99久久精品一区二区三区| 免费av毛片视频| 午夜成年电影在线免费观看| 午夜福利欧美成人| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 18禁黄网站禁片午夜丰满| 精品国产亚洲在线| 高清毛片免费观看视频网站| 亚洲午夜精品一区,二区,三区| 丰满人妻一区二区三区视频av | 变态另类成人亚洲欧美熟女| 亚洲av熟女| 成人一区二区视频在线观看| 美女黄网站色视频| 欧洲精品卡2卡3卡4卡5卡区| 在线永久观看黄色视频| 精品日产1卡2卡| 无遮挡黄片免费观看| www国产在线视频色| 欧美又色又爽又黄视频| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片| 69av精品久久久久久| 国产亚洲精品综合一区在线观看| 国产高清视频在线观看网站| av黄色大香蕉| 久久这里只有精品中国| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品久久国产高清桃花| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频| 欧美日韩综合久久久久久 | 精品国产美女av久久久久小说| 色视频www国产| 啦啦啦免费观看视频1| 美女扒开内裤让男人捅视频| 精品国产三级普通话版| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 婷婷丁香在线五月| 久久精品夜夜夜夜夜久久蜜豆| 国产成人啪精品午夜网站| 国产精品久久久久久精品电影| 天堂影院成人在线观看| 18禁黄网站禁片免费观看直播| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 国产成人欧美在线观看| 日韩欧美精品v在线| 成人鲁丝片一二三区免费| 一进一出抽搐gif免费好疼| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| a级毛片在线看网站| 一个人看的www免费观看视频| 成人无遮挡网站| 亚洲成人久久性| 女警被强在线播放| 村上凉子中文字幕在线| 国产97色在线日韩免费| 免费看a级黄色片| xxxwww97欧美| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 91麻豆精品激情在线观看国产| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 欧美日韩精品网址| 18美女黄网站色大片免费观看| 亚洲熟女毛片儿| 欧美色视频一区免费| 悠悠久久av| 国产成人aa在线观看| 精品人妻1区二区| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| xxxwww97欧美| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 国产三级中文精品| 午夜激情福利司机影院| 国产高清视频在线播放一区| 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看 | 久久久久国产精品人妻aⅴ院| 91在线精品国自产拍蜜月 | 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| 国产精品99久久99久久久不卡| 亚洲五月天丁香| 不卡一级毛片| 午夜激情福利司机影院| 久久久国产欧美日韩av| 少妇的丰满在线观看| 美女高潮喷水抽搐中文字幕| 亚洲最大成人中文| 在线观看日韩欧美| 国产真人三级小视频在线观看| 看免费av毛片| 母亲3免费完整高清在线观看| 91字幕亚洲| 国产高清videossex| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕一区二区三区有码在线看 | 中文亚洲av片在线观看爽| 夜夜夜夜夜久久久久| 老汉色av国产亚洲站长工具| 欧美绝顶高潮抽搐喷水| 一级作爱视频免费观看| 久久精品国产亚洲av香蕉五月| 香蕉久久夜色| av女优亚洲男人天堂 | 国产av麻豆久久久久久久| 色精品久久人妻99蜜桃| 久久人人精品亚洲av| 精品一区二区三区av网在线观看| 亚洲av第一区精品v没综合| 91字幕亚洲| xxx96com| 91在线精品国自产拍蜜月 | 免费大片18禁| 色哟哟哟哟哟哟| 日韩欧美在线二视频| 香蕉丝袜av| 99久久久亚洲精品蜜臀av| 欧美国产日韩亚洲一区| 观看美女的网站| 91字幕亚洲| 亚洲在线自拍视频| 亚洲av熟女| 人人妻人人澡欧美一区二区| 亚洲欧美日韩高清在线视频| 国产精品久久久久久人妻精品电影| 亚洲真实伦在线观看|