○張麗琴
由于瑪麗娜對中國文化情有獨(dú)鐘,她創(chuàng)作的魔法娃娃中除了“三寸金蓮”,還有“東方的慈禧太后”等精美的作品。左圖就是其中的一款——年輕的慈禧太后。
慈禧太后是晚清重要政治人物,清朝晚期的實(shí)際統(tǒng)治者。關(guān)于慈禧太后,有很多故事和民間傳說。傳說慈禧太后非常迷信,也有很多忌諱。下面這個故事就是有力的證明。
某次科舉一個考生名叫王國軍,他一路過關(guān)斬將來到了殿試,只差慈禧當(dāng)庭宣布他為頭名狀元了。不料慈禧看過姓名之后勃然大怒,大罵主考官們是一堆糊涂蟲,王國軍不就是“亡國之軍”嗎,結(jié)果狀元是沒戲了,保住腦袋已屬萬幸了??吹竭@里,可能很多同學(xué)會嘲笑慈禧太后愚昧無知。其實(shí)即使現(xiàn)在,也有不少人會求簽拜佛呢!我們不妨看看下面的故事:
在一個寺廟里,一些人從口袋里掏出大把的錢,求簽祈福。簽筒里共有72根簽。和尚們在旁邊竭力鼓吹“72可真是一個大吉大利的數(shù)呀,孫悟空七十二變,宋江的結(jié)拜兄弟里頭有72位地煞星”。一時間,大家七嘴八舌,幫腔者不少。
有一個年輕人說:“我們來做一個游戲吧。把你們求過的簽給我,我可不管它們是什么上上、中中、下下簽,也不管簽上究竟寫了些什么字,我只考慮簽上的號數(shù)。”
大家一聽來勁了,許多雙眼睛盯著年輕人聽他說下去:“你們隨便拿11根簽給我,我一定有辦法從中挑出4根簽,使它們和72有關(guān)。假設(shè)這4根簽是甲、乙、丙、丁,我把甲、乙兩數(shù)之差與丙、丁兩數(shù)之差(求差數(shù)時是用較大的數(shù)減去較小的數(shù))相乘,我保證這個乘積一定能被72除盡?!?/p>
“真的嗎?”人們紛紛叫喊起來。一位老奶奶遞給他11根簽(當(dāng)然是她與別人已經(jīng)求過的),號碼是:6、11、13、17、23、29、31、35、49、53、71。簽號亂七八糟,毫無規(guī)律。
年輕人接過來,頃刻之間就從中挑出了13、29、31、49這4根簽,告訴她這就是甲、乙、丙、丁4個數(shù)。算一下:甲、乙兩數(shù)之差為16,丙、丁兩數(shù)之差為18,它們的乘積是16×18=288,而288÷72=4,它正好能被72除盡。
隨后又換了別的簽,接二連三地試了好幾次,沒有一次不靈驗(yàn)的。圍觀的人要求年輕人講一講道理,甚至連和尚們也站過來聽了。
請問同學(xué)們,你們知道其中的奧妙嗎?
任意一個數(shù)除以9所得的結(jié)果有兩種情況:一是正好除盡,另一種情況是除不盡??傊鄶?shù)只能是 0、1、2、3、4、5、6、7、8(這里將 0也作為一個余數(shù))。如果把每種余數(shù)看做一只抽屜,則一共有9只抽屜?,F(xiàn)在有11個數(shù)分別到這些抽屜里去,很明顯,必然有一只抽屜里至少有兩個數(shù)落入其中。由于落入其中的兩數(shù)被9除后的余數(shù)相同,故這兩數(shù)之差肯定能被9除盡。
根據(jù)同樣道理,11根簽抽出2根后,還剩9根,其中一定可以抽出2根簽,使它們的差是8的倍數(shù)。這樣一來,這兩個差的乘積就一定能被72(8×9=72)除盡了。
因此,在做這個游戲時,只要找到4根簽,其中兩根簽上的數(shù)字被9除后的余數(shù)相同,另兩根簽上的數(shù)字被8除后的余數(shù)也相同即可。當(dāng)然,找這4根簽時,必須先心算一下。
你看,數(shù)學(xué)中的抽屜原理用在了求簽上,看來,學(xué)會用所學(xué)知識解釋生活中的現(xiàn)象,還真考驗(yàn)?zāi)愕哪X力呢!瑪麗娜創(chuàng)作的魔法娃娃中,除了文化元素,還蘊(yùn)藏著數(shù)學(xué)、藝術(shù)等多方面的知識呢!我們在以后會慢慢揭曉!