• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of the HadISST1 and NSIDC 1850 onward sea ice datasets with a focus on the Barents-Kara seas

    2018-12-07 09:28:04RuiBoWANGShuanglinLIandZheHAN

    Rui-Bo WANG,Shuanglin LIand Zhe HAN

    aCollege of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu,China;bClimate Change Research Center and Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;cCAS Key Laboratory of Regional Climate-Environment for Temperate East Asia,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;dCollege of Earth Science,The University of Chinese Academy of Sciences,Beijing,China

    ABSTRACT In recent years,long-term continuous sea-ice datasets have been developed,and they cover the periods before and after the satellite era.How these datasets differ from one another before the satellite era,and whether one is more reliable than the other,is important but unclear because the sea-ice record before 1979 is sparse and not continuous.In this letter,two sets of sea-ice datasets are evaluated:one is the HadISST1 dataset from the Hadley Centre,and the other is the SIBT1850(Gridded Monthly Sea Ice Extent and Concentration,from 1850 Onward)dataset from the National Snow and Ice Data Center(NSIDC).In view of its substantial importance for climate,the winter sea ice in the Barents and Kara seas(BKS)is of particular focus.A reconstructed BKS sea-ice extent(SIE)is developed using linear regression from the mean of observed surface air temperature at two adjacent islands,Novaya Zemlya and Franz Josef Land(proxy).One validation illustrates that the proxy is substantially coherent with the BKS sea-ice anomaly in the observations and the CMIP5(phase 5 of the Coupled Model Intercomparison Project)historical experiments.This result indicates that the proxy is reasonable.Therefore,the establishment of the reconstructed BKS SIE is also reasonable.The evaluation results based on the proxy suggest that the sea-ice concentration prior to the satellite era in the NSIDC dataset is more realistic and reliable than that in the Hadley Centre dataset,and thus is more appropriate for use.

    KEYWORDS Evaluation;sea-ice dataset;NSIDC;Hadley Centre;proxy

    1.Introduction

    Sea-ice data are of primary importance for understanding climate variability and change.During the past several decades,Arctic warming has been at least twice the global average(Blunden and Arndt 2012).One crucial factor for this amplified Arctic warming is the positive feedback between sea-ice reduction and warming.Physically,sea ice not only blocks solar radiation into the upper ocean but also affects the energy and vapor exchange between the atmospheric and oceanic surfaces(He et al.2018;Li et al.2018).Furthermore,sea ice plays an important role in midlatitude weather and climate(Yang,Xie,and Huang 1994;Huang and Gao 1999;Wu,Su,and Zhang 2011;Li and Wang 2013;Guo et al.2014;Gao et al.2015;Zuo et al.2016;Wu,Yang,and Francis 2016).However,there are still uncertainties regarding the effect of sea ice on climate,because the strong internal variability of the atmosphere at the mid–high latitudes may obscure the effects of sea ice(Walsh 2014;Overland et al.2015).To understand the impact of sea ice more thoroughly and reduce the uncertainty,a longer sea-ice dataset is necessary.

    However,reliable sea-ice data were unavailable until 1979,when satellite observations began.Thus,various sea-ice datasets were extended back to the 19th century and continued to the 21st century.One of the most often used is the sea-ice concentration dataset from the UK Met Office’s Hadley Centre(HadISST1;Rayner et al.(2003);hereafter, ‘Hadley dataset’).It has a horizontal resolution of 1.0°× 1.0°and a time span from 1870 to the present day.HadISST2 is an updated version of HadISST1,constructed by Titchner and Rayner(2014).Another sea-ice dataset is the Gridded Monthly Sea Ice Extent and Concentration dataset(SIBT1850).This dataset is from the National Snow and Ice Data Center(NSIDC)(Walsh,Chapman,and Fetterer2015).Although the NSIDC provides a great number of different datasets,in this letter,‘the NSIDC dataset’refers to the SIBT1850 dataset.In comparison with the Hadley dataset,the NSIDC dataset has a finer horizontal resolution of 0.25°× 0.25°and spans from 1850 to the end of 2013.Additionally,the dataset has more sources(14 in total),such as whaling ship reports.Every source is represented by a specific number.The method used to merge the data sources is based on a ranking hierarchy,where higher numbers outrank lower ones.Each of the potential sources for a sea-ice concentration value at a particular location is given a rank with a specific number.How these datasets differ from one another,and whether one is more reliable than the other,is important but unclear,because the sea-ice record prior to 1979 is sparse and not continuous.Evaluating the quality of these two datasets constitutes the primary aim of this study.

    Evaluation will be conducted only for the period after 1958.This is because,prior to 1958(the first international geophysical year),atmospheric variables upon which the reconstructed sea-ice extent(SIE)is based had a lack of systematic in-situ observations in the polar regions.Particular attention is given to the two sub-periods before and after the satellite era:1958–78 and 1979–2013,respectively.Winter sea ice in the Barents and Kara seas(BKS)is studied,because the sea ice in this region is more active and more closely related to climate anomalies(Wu,Huang,and Gao 1999;Sorokina et al.2016;Wu et al.2016).

    2.Preliminary comparison of sea-ice variability

    Before evaluating the two datasets,we conduct a preliminary comparison of their sea-ice variability.Using a bilinear interpolation method,the data obtained from the NSIDC dataset is interpolated from 0.25°× 0.25°into 1°× 1°,which is the same resolution as the Hadley dataset.The SIE is defined as the sum of the area where the sea-ice concentration is above 15%for a separated grid point.Winterrefersto December through February;for example,the winter of 1979 refers to December 1978 through February 1979.

    Figure 1 displays the historical evolution of the winter mean BKS SIE.Here,the BKS region refers to the domain shown as the green polygon in Figure 2(e)(70.5°–81.5°N,15.5°–90.5°E).For the period of 1958–2013,the two datasets are overall consistent(Figure 1),with a high correlation coefficient of 0.91(Table 1).This consistency is also observed in their standard deviation(not shown).However,when the period is separated into two sub-periods,before and after 1979,there are obvious differences between the two datasets.

    For the satellite era after 1979,the consistency between the two datasets is most evident.From the interannual evolution of BKS SIE(Figure 1),the two datasets share the same years with more(less)sea ice in 2006 and 2010(2007 and 2012).This high consistency is emphasized by the high correlation coefficient(0.95,Table 1).The standard deviation(Figure 2(a,b))displays similar maxima in sea-ice interannual variability in the BKS,Greenland Sea,Labrador Sea,Bering Sea and Okhotsk Sea.

    For the period 1958–78,the consistency reduces substantially.First,the correlation coefficient in BKS SIE between the two datasets reduces to 0.64 from 0.95(Table 1).Second,the standard deviation of the winter monthly sea ice in the Northern Hemisphere exhibits a visually distinct difference over the Okhotsk Sea.This observation suggests a difference and uncertainty between the two datasets for the period prior to 1979.To exclude the potential contribution from the linear trend,we recalculated the correlation of BKS SIE for the detrended data and found the same result.Thus,the difference between the two datasets during the period prior to 1979 is not a result of the different trends in the datasets.

    Figure 1.Time series of winter BKS SIE.The maroon curve is for the NSIDC dataset and the blue curve is for the Hadley dataset.The first year of the satellite era,1979,is marked with the vertical black line.

    Figure 2.(a)Standard deviation of the winter sea-ice concentration calculated for the period 1979–2013 with the Hadley data.(b)As in(a)but for the NSIDC data.(c)Difference between(a)and(b).(d–f)As in(a–c)but for the period 1958–1978.We defined the green polygon in(e)as the BKS area;the yellow polygon is the area we used to calculate the domain-averaged SAT over Novaya Zemlya and Franz Josef Land.

    Table 1.Correlation coefficients of winter BKS SIE between the Hadley and NSIDC datasets for three periods.Bracketed is the result after detrending.

    3.Proxy for BKS sea ice

    In the above section we illustrate the inconsistency in BKS sea-ice variability prior to 1979 between the two datasets.Which dataset is more reliable is an important issue.Here,we develop a reconstructed SIE based on the idea that the sea-ice variation in BKS is not isolated but closely related to surface air temperature(SAT)at adjacent islands.Also,the SAT record over land has a much longer time span and greater reliability.

    First,sea ice is impacted by atmospheric circulation.It also has feedbacks on the atmosphere inducing the SAT anomaly over the adjacent regions(Sorteberg and Kvingedal 2006;Deser and Teng 2008;Zhang et al.2008;Overland,Wood,and Wang 2011;Wu,Overland,and D’Arrigo 2012;Luo et al.2016).In other words,a correlation exists between sea ice and the SAT anomaly in the ice–atmospheric interaction regions.Second,oceanic flow processes can also cause a correlation between the sea ice and the overlying atmosphere.For example,the sea-ice anomaly can act on the overlying atmosphere in a larger domain because of its larger heat content and longer persistence relative to the atmosphere(Wu et al.2013),and the oceanic heat transport influencing sea-ice variation usually leads to warmer SAT over adjacent lands(Schlichtholz 2011;Pavlova,Pavlov,and Gerland 2014).The correlation of sea ice with SAT in adjacent lands provides a physical basis for using adjacent land SAT as a proxy of sea ice.

    Figure 3.Correlation of the winter BKS SIE with(a)near-surface air temperature from the CRU data,(b)SLP and surface horizontal wind(black arrows),and(c)Z500 from JRA-55.The period used to calculate the correlation is 1979–2013.Italics indicate significance at the 0.01 level for a two-sided Student’s t-test.For comparison,the climatological winter mean surface wind is also displayed in(d).Units:m s-1.

    In Figure 3,simultaneous correlations between the winter BKS SIE and some atmospheric variables after 1979 are shown.Here,the BKS SIE is derived from the NSIDC data.Also,the SAT is from the version 3.24.01 timeseriesoftheClimaticResearch Unit(CRU),University of East Anglia,UK(University of East Anglia Climatic Research Unit,I.C.Harris,P.D.Jones 2017),which has a horizontal resolution of 0.5°× 0.5°and a time span of 1900 through 2015.The 10-m above ground wind,sea level pressure(SLP)and 500-hPa geopotential height(Z500)at 1.25°horizontal resolution are from the JRA-55 dataset(Kobayashi et al.2015).Figure 3(a)indicates that BKS SIE is substantially negatively correlated with the SAT at the adjacent islands—namely,Novaya Zemlya and Franz Josef Land(yellow polygon in Figure 2(e)).Two factors may explain this negative correlation.First,the SLP anomalies corresponding to increased BKS seaiceare negative(Figure 3(b)),and the anomalous northerly wind in the northwestern region of the anomalous low-pressure zone transports cold polar air southward and induces colder SAT over the islands.The negative Z500 anomaly overlaps with the anomalous low,suggesting a barotropic atmospheric circulation anomaly(Figure 3(c)).A similar connection between BKS sea ice and the Z500 has been observed in previous studies(Luo et al.2016;Sorokina et al.2016).Second,the anomalous northerly tends to reduce the climatological surface southerly and causes colder SAT(Figure 3(d)).Therefore,the coherence of BKS sea ice with SAT at the islands of Novaya Zemlya and Franz Josef Land may be physically reasonable.

    Table 2 shows the high correlation coefficients between BKS SIE and SAT over the Novaya Zemlya and Franz Josef Land after 1979.The coherence of BKS sea ice with SAT over adjacent lands and the physical basis for this coherence is also seen in the historical runs from 21 coupled models(Table 3)involved in phase5ofthe Coupled Model Intercomparison Project(CMIP5).Here,these models are used for analysis because of their availability.Additionally,for a convenient comparison with the observations in the satellite era,27 years spanning 1979–2005 are used.The multi-model ensemble correlation is calculated based on the extended BKS SIEseries by linking the individual model results into one single long series.From Figure S1(a),BKS SIE is negatively correlated with the SAT over the Arctic and Eurasian high latitudes,similar to the observations(Figure 3(a)).The correlation of SLP also bears some similarity to the observations(cf.Figures S1(b)and 3(b)).There is an east–west dipole in the highlatitude region,with negative correlation in Eurasia but positive correlation in North America,although the negative center over the Eurasian high latitudes shifts somewhat southward.The islands mentioned above are governed by the anomalous northerly windontheeastsideoftheanomaloushigh extending from eastern North America to Greenland and causing a southward transport of cold polar air that results in a colder SAT.The Z500 anomalies at high latitudes(Figure S1(c))also appear similar to the observations,although less significant over Eurasia.

    Table 2.Correlation coefficients of BKS SIE in the Hadley and NSIDC datasets with the domain-averaged SAT over Novaya Zemlya and Franz Josef Land for three periods.Bracketed is the result after detrending.

    Table 3.Correlation coefficients between the BKS SIE and the domain-averaged SAT over Novaya Zemlya and Franz Josef Land in CMIP5 models for 1979–2005 and 1960–1978.

    The above analysis again suggests that the correlation between BKS sea ice and the SAT over Novaya Zemlya and Franz Josef Land is physically reasonable.Thus,the domain-averaged SAT over Novaya Zemlya and Franz Josef Land(70°–82°N,44°–70°E)can be used as a proxy to reconstruct the BKS SIE.Below,we further verify this point by comparing the proxy with the SIE in the observed dataset and the CMIP5 historical runs.

    The winter mean SAT over Novaya Zemlya and Franz Josef Land is calculated from the CRU’s observational global land SAT dataset or the CMIP5 models.Similarly,the BKS SIE can easily be derived.A substantially negative correlation between the BKS SIE and the domainaveraged SAT is seen in the two ice datasets(Table 2)and nearly all of the models(Table 3).The correlation coefficients of the domain-averaged SAT with the BKS SIE in the two observational datasets are-0.74 and-0.78 during the satellite era(1979–2013).Additionally,the correlation coefficients in more than two-thirds of the CMIP5 models(16 of 21 models)is less than-0.6.For 19 models(all models except FGOALS-g2 and IPSL-CM5ALR),the correlation coefficients are smaller than-0.32,meaning that the models are above the 90%confidence level.When the analysis period for the models is extended backward to 1960,the significant negative correlation in most of the models remains.

    Thus,we used the proxy to establish a reconstructed BKS SIE by using linear regression as follows:

    Here,y is the reconstructed BKS SIE,and x is the domain-averaged SAT(proxy).By using least-squaresfitting,the coefficients a and b are calculated based on the observed BKS SIE and the proxy during the period 1979–2013,and have the values-0.035 and 0.456,respectively.

    As a validation,the SAT-based reconstructed BKS SIE using the regression model is compared with the observed sea ice for 1979–2013.Calculation suggests that the reconstructed SIE correlates well with the SIE in the two datasets,with correlation coefficients of 0.74 and 0.78(Table 4),respectively.From Figure 4(b),the reconstructed SIE sufficiently captures the variation of the observed SIE.This agreement indicates that the SAT-based reconstructed SIE is an appropriate representation of the sea ice.Because of the greater reliability and the longer time span of the SAT data than those of the sea-ice data prior to 1979,the proxy provides a valuable approach to evaluate the sea ice prior to the satellite era.In the next section,we use the reconstructed SIE as a benchmark to evaluate the sea ice prior to 1979.

    4.Evaluation result

    Figure 4 compares the BKS SIE in the two datasets with the reconstructed BKS SIE.As seen above,it is unsurprising that the evolution of the SIE prior to 1979(i.e.,1958–78)in the two sea-ice datasets is different.TheBKS SIE in the NSIDC dataset is more strongly correlated with the proxy(-0.64)and the reconstructed SIE(0.64)than the Hadley dataset is(-0.26 and 0.26;Tables 2 and 4).This finding suggests that the quality of the sea-ice data from NSIDC is better than that of the data from Hadley.The lower correlation(0.64)of BKS SIE in the Hadley dataset than that in the NSIDC dataset(0.76)with the reconstructed SIE during the whole period from 1958 to 2013 is in agreement with this assessment.Thus,the interannual BKS sea-ice data in the NSIDC data are relatively more reliable.

    Table 4.Correlation coefficients of BKS SIE in the Hadley and NSIDC datasets with the reconstructed SIE for three periods.Bracketed is the result after detrending.

    Figure 4.Time series of winter BKS SIE(a)with the overlap of the domain-averaged SAT over Novaya Zemlya and Franz Josef Land;(b)with the reconstructed SIE overlap;(c)after detrending with the reconstructed SIE after detrending overlap.The maroon curve is for the NSIDC dataset,the blue curve is for the Hadley dataset and the black curve is for the CRU SAT.The first year of the satellite era,1979,is marked with the vertical black line.

    The greater reliability of the NSIDC sea-ice data prior to 1979 is consistent with the standard deviation distribution.As mentioned in section 2,the standard deviation for the period before 1979 in the two datasets exhibits a substantial difference,particularly in the Okhotsk Sea(Figure 2(f)).When comparing the sea-ice standard deviation before and after 1979,the NSIDC data before 1979 not only bear a greater resemblance to themselves but also to the Hadley data after 1979.To some extent,this result further verifies the greater reliability of the NSIDC data before 1979.

    5.Conclusions and discussion

    In this letter,the quality of sea ice in the BKS before 1979 in two datasets,one from the UK’s Hadley Centre and the other from NSIDC,is investigated.The sea-ice proxy is the average mean of winter(December–January–February)SAT over the islands of Novaya Zemlya and Franz Josef Land.Based on the proxy,the reconstructed sea ice is used as a benchmark.The results suggest that the winter BKS sea-ice quality in the NSIDC data is higher than that in the Hadley data for the period 1958–78,although both datasets are substantially consistent with each other and reasonable after 1979.Here,the quality means the interannual variability of the sea ice.The better quality of the dataset from NSIDC may be related to the data source used and the analog method to fill in temporal gaps.By checking the data sources used in the BKS,we found that both the Walsh and Johnson data(source No.5)and the Russian Arctic and Antarctic Research Institute(AARI)data(source No.10)had values.According to the ranking method introduced in the introduction,the AARI data are used instead of the Walsh and Johnson data,which are different from the Hadley data.The analog method is used to fill in temporal gaps in the NSIDC dataset.It is possible that the different methods used to fill temporal gaps may also lead to different results.

    TheimpactoftheseaiceinBKSontheatmosphereisstill controversial and deserves further study(Wu,Su,and D'Arrigo 2015;Walsh 2014;Kelleher and Screen 2018).There is a need for a reliable sea-ice dataset that encompasses a long time period.The present study suggests that theseaicefromNSIDCismoreappropriateforsuchstudies.

    Semenov and Latif(2015)demonstrated that winter sea-ice concentrations in BKS show an obvious positive bias from1966–1969relative to those during 1971–2000 in the Hadley dataset(Figure S2(a)).When a similar comparison for the two periods using the NSIDC dataset is conducted,no evident positive bias is seen(Figure S2(b)).This result suggests that the bias may result from the Hadley dataset itself.

    Here,we only choose the SAT at the islands of Novaya Zemlya and Franz Josef Land as the proxy.One may wonder why the SAT over Svalbard is not used,because the SAT there is similarly negatively correlated with the BKS sea ice(Figure 3(a)and S1(a)).There are two arguments for our choice.One is that the climatological southerly component around Novaya Zemlya and Franz Josef Land is stronger,and the SAT over the two islands is influenced more easily by local sea ice,even for the period prior to 1979 when the climatological sea-ice boundary is at a more southern location.The other is that there is less of the sea-ice anomaly east of Svalbard before 1979,and the SAT anomaly caused by the sea ice cannot be easily transported to Svalbard.

    Acknowledgments

    The CMIP5 historical experiments are supported by the climate modeling groups on the website http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China[grant numbers 41790473 and 41421004]and the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA19070402].

    亚洲 欧美一区二区三区| 国产男女超爽视频在线观看| av播播在线观看一区| √禁漫天堂资源中文www| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 日韩不卡一区二区三区视频在线| 毛片一级片免费看久久久久| 热re99久久精品国产66热6| 亚洲国产看品久久| 亚洲av日韩在线播放| 久久久久久伊人网av| 色视频在线一区二区三区| 欧美成人午夜精品| 欧美激情国产日韩精品一区| 亚洲色图 男人天堂 中文字幕 | 成人无遮挡网站| 国产欧美日韩一区二区三区在线| 91精品三级在线观看| 婷婷色麻豆天堂久久| 国产精品三级大全| 精品卡一卡二卡四卡免费| 丝袜脚勾引网站| 99久久精品国产国产毛片| 最近手机中文字幕大全| 午夜老司机福利剧场| 日韩免费高清中文字幕av| 亚洲国产精品成人久久小说| 一边摸一边做爽爽视频免费| 亚洲精品456在线播放app| 日韩制服丝袜自拍偷拍| 国产色爽女视频免费观看| 亚洲三级黄色毛片| 亚洲精品一二三| 熟女电影av网| 美女国产视频在线观看| 99久国产av精品国产电影| 精品亚洲成a人片在线观看| 久久久国产精品麻豆| 99热国产这里只有精品6| av国产精品久久久久影院| 999精品在线视频| 欧美+日韩+精品| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 久久av网站| 日本与韩国留学比较| 久久影院123| 人妻系列 视频| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 色哟哟·www| 午夜激情av网站| 久久久精品免费免费高清| 日本黄大片高清| 777米奇影视久久| 亚洲四区av| 丝袜喷水一区| 亚洲欧美精品自产自拍| 男女国产视频网站| 如何舔出高潮| 九草在线视频观看| 女人精品久久久久毛片| 大香蕉97超碰在线| 国产成人午夜福利电影在线观看| 国产熟女午夜一区二区三区| 久久 成人 亚洲| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 久久这里只有精品19| 男男h啪啪无遮挡| av线在线观看网站| 亚洲欧美精品自产自拍| 激情五月婷婷亚洲| 中文字幕亚洲精品专区| 免费女性裸体啪啪无遮挡网站| 最近最新中文字幕免费大全7| 亚洲欧美清纯卡通| 又黄又爽又刺激的免费视频.| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| 宅男免费午夜| 日韩精品有码人妻一区| 18禁在线无遮挡免费观看视频| 伊人久久国产一区二区| 亚洲一码二码三码区别大吗| 成人18禁高潮啪啪吃奶动态图| 波多野结衣一区麻豆| av天堂久久9| 99热这里只有是精品在线观看| 深夜精品福利| 精品一区二区免费观看| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| 热re99久久国产66热| 97在线人人人人妻| 日韩av不卡免费在线播放| 亚洲av电影在线观看一区二区三区| 欧美人与性动交α欧美精品济南到 | 人妻一区二区av| 成人午夜精彩视频在线观看| 女人久久www免费人成看片| 高清毛片免费看| av国产精品久久久久影院| 日本爱情动作片www.在线观看| 欧美人与性动交α欧美软件 | 最后的刺客免费高清国语| 校园人妻丝袜中文字幕| 大片免费播放器 马上看| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 欧美变态另类bdsm刘玥| 亚洲成av片中文字幕在线观看 | 国产爽快片一区二区三区| 少妇人妻精品综合一区二区| 亚洲人与动物交配视频| 亚洲欧美日韩另类电影网站| 99热6这里只有精品| 麻豆乱淫一区二区| 国产成人欧美| 久久人人97超碰香蕉20202| 18禁动态无遮挡网站| 91在线精品国自产拍蜜月| 中文字幕人妻熟女乱码| 亚洲精品av麻豆狂野| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 国产精品偷伦视频观看了| 欧美国产精品一级二级三级| 一二三四在线观看免费中文在 | 亚洲欧洲国产日韩| 久久国产亚洲av麻豆专区| 国产成人欧美| 在线天堂中文资源库| 国产一区二区三区av在线| 97在线视频观看| 亚洲欧美中文字幕日韩二区| 精品人妻在线不人妻| 成人毛片60女人毛片免费| 国产男人的电影天堂91| a级毛片黄视频| 国产色婷婷99| 中文天堂在线官网| www.熟女人妻精品国产 | 一区在线观看完整版| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 国产精品蜜桃在线观看| 国产精品.久久久| 精品一区二区三区四区五区乱码 | 国产又色又爽无遮挡免| 成人手机av| 人人澡人人妻人| 在线观看www视频免费| 亚洲性久久影院| 国产精品成人在线| 亚洲,一卡二卡三卡| 狠狠精品人妻久久久久久综合| 九草在线视频观看| 少妇人妻久久综合中文| 久久国内精品自在自线图片| 成年动漫av网址| 午夜福利网站1000一区二区三区| 国国产精品蜜臀av免费| 青春草国产在线视频| 日韩成人伦理影院| 99香蕉大伊视频| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| 全区人妻精品视频| 欧美另类一区| 婷婷色av中文字幕| 日韩熟女老妇一区二区性免费视频| 街头女战士在线观看网站| 久久ye,这里只有精品| 久久99热6这里只有精品| 亚洲,欧美,日韩| 中文字幕人妻熟女乱码| 中文字幕精品免费在线观看视频 | 中国国产av一级| 亚洲精品456在线播放app| 亚洲国产日韩一区二区| 中国三级夫妇交换| 黄色视频在线播放观看不卡| 熟女av电影| 国产一区二区三区av在线| 黄色毛片三级朝国网站| 久久久国产欧美日韩av| 国产精品 国内视频| 成人影院久久| 久久久久久人妻| 不卡视频在线观看欧美| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美精品济南到 | 激情五月婷婷亚洲| 午夜老司机福利剧场| 一边摸一边做爽爽视频免费| 国产日韩欧美亚洲二区| 亚洲精品美女久久av网站| 大话2 男鬼变身卡| 草草在线视频免费看| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 韩国av在线不卡| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 男女免费视频国产| 国产成人91sexporn| 成人18禁高潮啪啪吃奶动态图| 美国免费a级毛片| 亚洲精品中文字幕在线视频| 欧美激情极品国产一区二区三区 | 精品人妻在线不人妻| 久久精品久久久久久噜噜老黄| 99久国产av精品国产电影| 宅男免费午夜| xxx大片免费视频| 啦啦啦啦在线视频资源| 国产免费一级a男人的天堂| 最近中文字幕高清免费大全6| 国产亚洲av片在线观看秒播厂| 国产精品国产三级专区第一集| 欧美日韩国产mv在线观看视频| 97超碰精品成人国产| 精品一区二区三区四区五区乱码 | 高清黄色对白视频在线免费看| 久久青草综合色| 午夜影院在线不卡| 久久精品久久久久久噜噜老黄| 人妻少妇偷人精品九色| 夫妻性生交免费视频一级片| 日韩成人av中文字幕在线观看| 日本欧美视频一区| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在 | 黄色怎么调成土黄色| 夜夜爽夜夜爽视频| 亚洲国产av新网站| 免费看av在线观看网站| 一级片免费观看大全| 最近中文字幕高清免费大全6| 男人添女人高潮全过程视频| 女人精品久久久久毛片| 欧美 日韩 精品 国产| 日本黄大片高清| 看免费av毛片| 精品国产露脸久久av麻豆| 欧美性感艳星| h视频一区二区三区| 日韩不卡一区二区三区视频在线| 在线观看www视频免费| 寂寞人妻少妇视频99o| 免费大片18禁| 日韩精品免费视频一区二区三区 | 97精品久久久久久久久久精品| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 五月伊人婷婷丁香| 亚洲精品第二区| 99国产综合亚洲精品| 在线观看国产h片| 巨乳人妻的诱惑在线观看| 日本午夜av视频| 亚洲国产最新在线播放| 国产欧美亚洲国产| 色视频在线一区二区三区| 国产xxxxx性猛交| 最黄视频免费看| 国产精品一区www在线观看| 伦理电影大哥的女人| av天堂久久9| 高清在线视频一区二区三区| 日本色播在线视频| 久久久精品区二区三区| 国产精品 国内视频| 性色avwww在线观看| 宅男免费午夜| av一本久久久久| 国产成人精品一,二区| 久久精品国产自在天天线| 狂野欧美激情性bbbbbb| 寂寞人妻少妇视频99o| 精品少妇内射三级| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡| 亚洲丝袜综合中文字幕| 中文精品一卡2卡3卡4更新| 精品99又大又爽又粗少妇毛片| 精品人妻偷拍中文字幕| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 制服人妻中文乱码| 两个人免费观看高清视频| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 久久这里只有精品19| 免费黄色在线免费观看| 男女啪啪激烈高潮av片| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 一级毛片我不卡| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 少妇的逼水好多| 日韩三级伦理在线观看| 国产亚洲精品第一综合不卡 | 国产精品久久久av美女十八| 久久久久久伊人网av| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 丰满饥渴人妻一区二区三| a级毛片在线看网站| 欧美国产精品va在线观看不卡| videosex国产| 日日爽夜夜爽网站| 在线天堂中文资源库| 亚洲情色 制服丝袜| 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区蜜桃 | 老女人水多毛片| av福利片在线| 香蕉精品网在线| 在线观看免费日韩欧美大片| 一级黄片播放器| 成人毛片60女人毛片免费| 又黄又粗又硬又大视频| 国产av码专区亚洲av| 嫩草影院入口| 看十八女毛片水多多多| 日本爱情动作片www.在线观看| 欧美激情 高清一区二区三区| 啦啦啦在线观看免费高清www| 国产在线一区二区三区精| 69精品国产乱码久久久| 国产一级毛片在线| 国产精品一国产av| 免费看av在线观看网站| av免费观看日本| 天堂俺去俺来也www色官网| 99精国产麻豆久久婷婷| 婷婷色综合www| 国产精品一区二区在线观看99| 久久青草综合色| 深夜精品福利| 综合色丁香网| 99国产精品免费福利视频| 国产亚洲午夜精品一区二区久久| 久久婷婷青草| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 国产激情久久老熟女| 在线观看一区二区三区激情| 色吧在线观看| 国产免费又黄又爽又色| 色哟哟·www| 天天影视国产精品| 亚洲av福利一区| 日本91视频免费播放| 久久这里只有精品19| 韩国精品一区二区三区 | 国产日韩欧美在线精品| xxx大片免费视频| 日本欧美视频一区| 亚洲欧洲日产国产| 午夜视频国产福利| 伦理电影免费视频| 18禁国产床啪视频网站| 精品一区在线观看国产| 免费看不卡的av| 97在线视频观看| 赤兔流量卡办理| av一本久久久久| 国产精品人妻久久久久久| 搡老乐熟女国产| 国产成人午夜福利电影在线观看| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频 | 丰满饥渴人妻一区二区三| 中文欧美无线码| 激情视频va一区二区三区| 国产精品无大码| 妹子高潮喷水视频| 美女主播在线视频| 亚洲美女搞黄在线观看| 亚洲成国产人片在线观看| 一个人免费看片子| 国产成人精品婷婷| 人妻 亚洲 视频| 欧美少妇被猛烈插入视频| 国产av一区二区精品久久| √禁漫天堂资源中文www| 国产精品国产av在线观看| 激情五月婷婷亚洲| 亚洲在久久综合| 免费观看性生交大片5| 亚洲精品美女久久av网站| 少妇猛男粗大的猛烈进出视频| 亚洲性久久影院| 最近中文字幕高清免费大全6| av有码第一页| 一级毛片我不卡| 国产免费福利视频在线观看| 51国产日韩欧美| 午夜日本视频在线| 欧美丝袜亚洲另类| 99热国产这里只有精品6| 熟妇人妻不卡中文字幕| 久久久久视频综合| 亚洲丝袜综合中文字幕| 久久人人爽av亚洲精品天堂| 国产欧美亚洲国产| 日韩免费高清中文字幕av| 肉色欧美久久久久久久蜜桃| av女优亚洲男人天堂| 婷婷色麻豆天堂久久| 久久人人爽人人片av| 视频在线观看一区二区三区| 久久精品久久久久久久性| 国产 一区精品| 三上悠亚av全集在线观看| 又大又黄又爽视频免费| 乱人伦中国视频| 国产欧美另类精品又又久久亚洲欧美| 欧美变态另类bdsm刘玥| 91在线精品国自产拍蜜月| 亚洲av电影在线进入| av不卡在线播放| 寂寞人妻少妇视频99o| 久久精品夜色国产| 边亲边吃奶的免费视频| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久| 国产在线一区二区三区精| 国产精品人妻久久久影院| h视频一区二区三区| 亚洲av电影在线观看一区二区三区| 伦精品一区二区三区| 久久国产亚洲av麻豆专区| 全区人妻精品视频| 久久精品夜色国产| 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品| 中国三级夫妇交换| 免费看不卡的av| 国产av国产精品国产| 国产av精品麻豆| 免费日韩欧美在线观看| 2022亚洲国产成人精品| 国产精品久久久久久久久免| 中国三级夫妇交换| 热99久久久久精品小说推荐| 观看美女的网站| 久久久久久久久久人人人人人人| 国产精品一区www在线观看| 街头女战士在线观看网站| 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 日韩视频在线欧美| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费无遮挡视频| 亚洲成人av在线免费| 在现免费观看毛片| 香蕉国产在线看| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 国产色婷婷99| 日韩成人av中文字幕在线观看| 欧美最新免费一区二区三区| 欧美日韩av久久| 国产 一区精品| 涩涩av久久男人的天堂| 91久久精品国产一区二区三区| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 亚洲国产精品国产精品| 一级片'在线观看视频| 亚洲精华国产精华液的使用体验| 日日爽夜夜爽网站| 高清黄色对白视频在线免费看| 韩国高清视频一区二区三区| 美女国产视频在线观看| 18+在线观看网站| 久久国产亚洲av麻豆专区| 亚洲国产精品一区二区三区在线| 国产精品国产三级国产专区5o| 少妇人妻 视频| 国产成人精品一,二区| 亚洲av电影在线观看一区二区三区| 国产白丝娇喘喷水9色精品| 99久久精品国产国产毛片| 国产极品天堂在线| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 国产欧美亚洲国产| 久久久久网色| 日本av免费视频播放| 国产乱人偷精品视频| 国产精品免费大片| 免费看光身美女| av电影中文网址| 男女啪啪激烈高潮av片| 欧美成人午夜免费资源| 国国产精品蜜臀av免费| 国产精品.久久久| 国产精品久久久久久精品电影小说| 男人操女人黄网站| 丝袜喷水一区| 中国国产av一级| 欧美日韩综合久久久久久| 亚洲精品成人av观看孕妇| 久久这里只有精品19| 考比视频在线观看| 亚洲婷婷狠狠爱综合网| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 国产在线免费精品| 丝袜脚勾引网站| 免费观看a级毛片全部| 午夜福利视频在线观看免费| 成人影院久久| 插逼视频在线观看| 国产成人aa在线观看| 69精品国产乱码久久久| 免费人成在线观看视频色| 观看美女的网站| 欧美xxⅹ黑人| 亚洲国产欧美日韩在线播放| 国产亚洲欧美精品永久| 国产一区二区激情短视频 | 考比视频在线观看| 18禁在线无遮挡免费观看视频| a级毛片在线看网站| 欧美成人午夜免费资源| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 免费黄色在线免费观看| 亚洲av男天堂| a级片在线免费高清观看视频| 王馨瑶露胸无遮挡在线观看| 男女边摸边吃奶| 九九爱精品视频在线观看| 在线观看三级黄色| 十八禁网站网址无遮挡| 曰老女人黄片| 观看av在线不卡| 夜夜爽夜夜爽视频| 久久 成人 亚洲| 欧美精品一区二区大全| 三上悠亚av全集在线观看| 男女边吃奶边做爰视频| 老司机影院毛片| 亚洲精品成人av观看孕妇| 我的女老师完整版在线观看| 久久久久久久久久成人| av电影中文网址| 午夜av观看不卡| 精品亚洲成国产av| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人 | videosex国产| 人妻系列 视频| 日韩三级伦理在线观看| 黄色配什么色好看| 国产精品一区www在线观看| 国产麻豆69| 午夜免费男女啪啪视频观看| 一本久久精品| 国产熟女午夜一区二区三区| 男女无遮挡免费网站观看| 黄色毛片三级朝国网站| 亚洲av国产av综合av卡| av在线老鸭窝| 免费观看无遮挡的男女| 国产黄色免费在线视频| 久久久久久久亚洲中文字幕| 亚洲精品av麻豆狂野| 亚洲一区二区三区欧美精品| 高清在线视频一区二区三区| 天堂8中文在线网| 欧美精品一区二区大全| 高清在线视频一区二区三区| 综合色丁香网| 国产永久视频网站| 久久精品国产鲁丝片午夜精品| 国产精品女同一区二区软件| 国产免费一级a男人的天堂| 日韩制服丝袜自拍偷拍| 久久人人爽人人片av| 久久久久视频综合| 亚洲中文av在线| 三级国产精品片| 黑人高潮一二区| 国产欧美亚洲国产| 99热全是精品| 日韩三级伦理在线观看| 国产精品.久久久| 丰满饥渴人妻一区二区三| 高清av免费在线| 国产成人精品在线电影| a级毛色黄片| 九色成人免费人妻av| 99视频精品全部免费 在线| 国产无遮挡羞羞视频在线观看| 亚洲综合色网址| 国产欧美亚洲国产|