• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Classification of wintertime large-scale tilted ridges over the Eurasian continent and their influences on surface air temperature

    2018-12-07 09:28:06WeiLINCholwBUEHndZuoWeiXIE

    D-Wei LIN,Cholw BUEHnd Zuo-Wei XIE

    aInternational Center for climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;

    bCollege of Earth Science,University of Chinese Academy of Sciences,Beijing,China

    ABSTRACT This study investigates the major patterns of large-scale tilted ridges(LSTRS)over the Eurasian continent and their connections with large-scale surface air temperature during boreal winter.A total number of 134 LSTR events with zonal extent exceeding 90°of longitude on the peak day are identified.Using self-organizing map(SOM),the LSTRs are classified into five clusters that are characterized by different spatial distributions and orientations.The leading two clusters are closely associated with extensive and persistent cold events over different places.Considering the first cluster,LSTRs extend from the Ural Mountains to Northeast Asia and are favorable for the amplification and southeastward extension of the Siberian high.Therefore,this cluster is closely associated with the occurrence of extensive and persistent cold events in china.In comparison with the first cluster,the LSTRs of second group are situated to the west,with starting points from the Kola Peninsula,and cause extensive and persistent cold events over Eastern Europe,central Asia,and central Siberia.The results suggest that the vertical coupling between LSTRs and the corresponding anomalous sea level pressure is crucial for the persistent cold temperature events associated with the leading two SOM clusters.

    KEYWORDS Large-scale tilted ridges;self-organizing map;extensive and persistent cold event;Siberian high

    1.Introduction

    Wintertime extensive and persistent extreme cold events(EPECEs)in China have become more recurrent in the early 21st century,during the so-called‘global warming hiatus’period(Chen and Zhang 2016).An unprecedented EPECE hit China with rainy,snowy,and icy weather in South China during January 2008,posing a substantial threat to human lives,traffic,societies,and economies(Tao and Wei 2008;Ji et al.2008;Zhou et al.2009).Given their importance,EPECEs have received increasing attention from the public and scientists alike(Ding et al.2009;Wang,Yang,and Zhou 2017;Song and Wu 2017).

    Unlike ordinary cold waves,EPECEs are characterized by broader areal coverage and longer duration of cold surface air temperature(SAT)(Peng and Bueh 2011,2012;Xie and Bueh 2015;Song and Wu 2017;Bueh et al.2018).In the troposphere,large-scale tilted ridges(LSTRs)overthemid-and high-latitude Eurasian continent are the key circulation system for EPECEs in China(Fu and Bueh 2013;Bueh,Fu,and Xie 2011;Bueh,Shi,and Xie 2011).Xie and Bueh(2015)showed that an LSTR consists of an ordinary ridge,an isolated high and an anticyclonic wave breaking,and thus exhibits a planetary-scale feature.However,knowledge regarding LSTRs is still lacking.

    LSTRs over the Eurasian continent exhibit a variety of types in terms of their location and wave-breaking feature,thus having different influences on weather(Bueh and Xie 2015).Although it has been recognized that the key circulation for EPECEs is the LSTR,not all LSTRs are conducive to the occurrence of large-extent cold-air activities in China.For example,even though an LSTR system maintained stably during 15–22 February 2016,the SAT was above normal in China.From the dynamic perspective,the impacts of different types of LSTRs on the surface Siberian high(SH)vary considerably(Bueh et al.2018).Therefore,it is necessary to classify LSTRs over the Eurasian continent and clarify the association of large-extent cold air activities with different LSTR groups.

    This paper seeks to answer the following two questions:(1)How many LSTR patterns are there over the Eurasian continent?(2)Whatisthe relationship between the LSTR patterns and SAT over the Eurasian continent?The answers to these two questions could provide a basis for the medium-and extended-range forecasting of wintertime large-scale cold air activities(ordinary cold waves and EPECEs)in China.

    2.Data and methods

    The data used in this study are daily mean reanalys data from the National Centers for Environmental Prediction and National Center for Atmospheric Research(Kalnay et al.1996)for the winters(1 November to 31 March)of 1948–2017.The meteorological fields include geopotential height,horizontal wind,sea level pressure(SLP),and 2-m air temperature.Here,we chose the 2-m air temperature to represent SAT.

    We adopt the objective detection method of LSTRs developed by Bueh and Xie(2015)to identify all wintertime LSTRs over the Eurasian continent(10°–80°N,0°–180°E).This detection isolates each contour and identifies each ridge point of the contour.The ridge axes are identified by successively connecting the nearest ridge points of the neighboring contours under a minimum distance constraint.Therefore,each LSTR is represented by a set of grid points with longitudes and latitudes.

    In the present study,an LSTR event is identified at 500 hPa if the following three criteria are satisfied simultaneously:(1)the ridge slope is positive(i.e.,the ridge is tilted in a southwest–northeast orientation);(2)the zonal extent of the ridge is larger than 90°of longitude;(3)the ridge lasts for at least five consecutive days.A total number of 134 LSTR events are identified during the 69 winters.The average duration of an LSTR event is 9.8 days.For each LSTR event,we define the peak day as the day when the zonal extent is largest.

    We use the self-organizing map(SOM)technique(Kohonen 1990,1997)to categorize the LSTR events based on the ridge axes on their peak days.SOM is a neural network analysis tool characterized by an unsupervised training process with its networks learning to self-classify clusters from training data without external help.For more detailed descriptions,refer to Kohonen(1990,1997)and Liu,Weisberg,and Mooers(2006).The SOM procedure in the present study is analogous to the one that Kim and Seo(2016)designed for tropical cyclone tracks.In this clustering method,all input ridge axes are interpolated into those with the same number of segments.Here,we chose 30 equal segments for each LSTR.The input data for the SOM are vectors of longitudes and latitudes,which correspond to all LSTRs on the peak days.At the same time,we provide the number of nodes as an input parameter.For each LSTR,the best matching SOM pattern can be identified in terms of the smallest distance between itself and a specific SOM pattern(Lee et al.2017).Obviously,the SOM patterns would capture the patterns of the LSTR cases more accurately with a higher number of SOM patterns.However,in practice the number of SOM patterns is expected to be sufficiently small.To determine the appropriate number of SOM patterns,we repeat the SOM procedure with the number of nodes ranging from 2 to 20,and calculate the average correlations between LSTRs and their best matching SOM pattern as well as the Ward’s distances between different SOM patterns,as in Lee et al.(2017).

    Composite analysis is applied to derive the SAT and circulation anomaly fields.An ‘a(chǎn)nomaly’is defined by removing its annual cycle(1948–2017).The Student’s t-test(Wilks 1995)is employed to assess the statistical significance of the results in the composite analysis.

    3.Results

    3.1.SOM patterns

    Figure 1 displays the mean correlations between the LSTRs and their best matching SOM pattern and the Ward’s distances between SOM patterns as a function of the number(N)of SOM clusters.The correlation increases(Figure1(a))and the Ward’s distance decreases(Figure1(b))with the increase ofN.Specifically,the average correlation increases markedly as N increases from three to five,and increases slightly after five.Simultaneously,the distance decreases notably as N increases from two to five,and thereafter decreases slightly.Thus,the appropriate number of SOM clusters would be five.With five clusters,SOM patterns are accurate enough to represent the LSTR patterns,and differences among SOM patterns are big enough to distinguish themselves from one another.Figure 2 shows five SOM patterns of LSTRs and their corresponding500-hPageopotentialheight(Z500)fields.The leading three patterns have close numbers of LSTR cases(21,24,and 24).Their LSTRs locate along the sub-Arctic coast(Figure 2(a–c)),and they are less tilted than those of the fourth and fifth SOM patterns(Figure 2(d,e)).It is shown that the average starting points of LSTRs in the leading three clusters are situated over the Ural Mountains,the Kola Peninsula,and the Norwegian coast,respectively,being arranged longitudinally from east to west.A significant negative Z500 anomaly band is seen to the southeastern side of the LSTRs for the leading three patterns(Figure 2(f–h)),while such a negative anomaly band is absent for the fourth patterns and weak for the fifth patterns(Figure 2(i,j)).On the one hand,the LSTR and trough pairing is conducive to a more meridional distribution for the leading three patterns.On the other hand,the LSTR and trough pairing favors more pronounced vertical coupling between the LSTR and the corresponding anomalous SLP,which is discussed below.The starting points of LSTRs in the fourth and fifth patterns distribute around Lake Balkhash and in southern Europe,respectively(Figure 2(d,e)).

    Figure 1.(a)Mean pattern correlations between the LSTRs and their corresponding SOM pattern.(b)Mean Ward’s distances between each SOM pattern with other SOM patterns as a function of the number of SOM clusters.

    The average onset day,ending day,and duration of LSTR events have been calculated for each SOM pattern.For brevity,day 0 denotes the peak day and day m(-m)refers to the day that is m days after(before)the peak day.The average onset days of the first and second clusters are day-4.2 and-2.7,respectively.On average,they persist for 9.2 days and 10.7 days,both showing a long-lived feature.

    To identify the influence of LSTRs on SAT anomalies over China,we define LSTR indices based on the composite results and calculate their correlation with SAT anomalies over eastern China.First,an LSTR index is constructed by projecting each daily Z500 pattern(Z’)upon the composite Z500 anomaly of each SOM pattern(ZSOM)over the domain(10°–90°N,0°–180°E)according to

    Second,linear regression maps of Z500 anomaly patterns based upon the five daily LSTR indices(not shown)areconsistentwith thecomposite result shown in Figure 2.Third,the correlation coefficients are calculated between the LSTR indices and the SAT anomaly averaged over days 0 to 4 and over eastern China(20°–50°N,100°–130°E).The correlation coeffi-cients for clusters 1–5 are-0.43,0.31,0.18,-0.29,and 0.14,respectively.Therefore,the leading two clusters are more closely associated with the SAT anomalies over China.Moreover,42.9%of the first cluster is associated with EPECEs in China.Given the primary concern of the linkage between LSTR events and SAT in China,we focus on the leading two SOM patterns to analyze their individual impacts.

    3.2.First SOM cluster

    Figure 3 displays composite daily evolutions of Z500(Figure 3(a–e)),SAT(Figure 3(f–j)),and SLP(Figure 3(k–o))fields for the first group of LSTR events.The composite analyses are performed according to the peak day(day 0)of each LSTR event.On day-4,a ridge locates over the Ural Mountains,with the corresponding amplitude of the Z500 anomaly center reaching 120 gpm(Figure 3(a)).On day 0,the ridge becomes a southwest–northeast-oriented LSTR and extends from the UralMountains to the East Siberian Sea.To the south of the LSTR,there is a zonally elongated trough over Mongolia,which yields the meridional configuration(Figure 3(b)).After the peak day,the ridge and trough move slowly southeastward and gradually weaken(Figure 3(c–e)).After day 4,the zonal extent of the ridge decreases considerably,and thus the LSTR is replaced by an ordinary ridge(Figure 3(d)).

    Figure 2.SOM clusters of LSTR events:(a–e)ridges on the peak day of LSTR events(black lines)and their average position(red line);(f–j)500-hPa geopotential height(contours;drawn every 100 gpm)and its anomaly(color-shaded).The thick black line is the same as the red line in(a–e)((a,f)Cluster 1;(b,g)cluster 2;(c,h)cluster 3;(d,i)cluster 4;(e,j)cluster 5).

    In line with the evolution of Z500,the SH also experiences a process of gradual amplification and decay(Figure 3(k–o)).The SH amplifies remarkably from day-4 to 4,and then weakens and displaces southward afterwards.Consequently,the whole of China is dominated by positive SLP anomalies from day 4 to 12.As shown in Figure 3(f,g),the cold air mass is accumulated and expanded around Lake Baikal from day-4 to 0.After becoming strong enough,the accumulated cold air spills out southwards anddominates China(Figure 3(h–j)).With the control of the SH,China experiences a persistent cold SAT event from day 0 to 12(Figure 3(g–j)).

    Figure 3.Composite meteorological fields for the first SOM pattern:(a–e)500-hPa geopotential height(contours;drawn every 100 gpm)and its anomaly(color-shaded;units:gpm);(f–j)925-hPa horizontal wind anomaly(vectors;units:m s-1)and the 2-m temperature anomaly(color-shaded;units:°C);(k–o)SLP(contours;drawn every 5 hPa)and its anomaly(color-shaded;units:hPa).Areas above 90%confidence level are dotted;green lines in(k–o)represent 1025 hPa;(a,f,k)day-4;(b,g,l)day 0;(c,h,m)day 4;(d,i,n)day 8;(e,j,o)day 12.

    A natural question that immediately arises is how the LSTR is associated with the amplified SH and thus the persistent cold SAT over China.Takaya and Nakamura(2005)investigated the amplification process of the SH using the potential vorticity(PV)inversion technique.They pointed out that an upper-tropospheric blocking ridge over western and central Siberia acts to reinforce the SH via the cold air advection by the upper-tropospheric blocking ridge.It suggests that the LSTR,an even larger-scale system of the upper troposphere,could possibly cause an extensive amplification of the SH.In fact,this hypothesis is further supported by observational evidence(Bueh and Xie 2015).On the other hand,Bueh et al.(2018)verified that an amplified and expanded SH also maintains the LSTR,making it even more long-lived.Next,we look at how the SH anomaly in turn intensifies the LSTRs of the first SOM cluster from the PV perspective(Hoskins,Mcintyre,and Robertson 1985).As shown in Figure 3(g,h),with the amplification and expansion of the SH,the intensified anomalous southerly in the western portion of the SH at 925 hPa can extend upward to theuppertroposphere,advectingalow PVfromsouthto the LSTR at 500 hPa(Hoskins,Mcintyre,and Robertson 1985).As a result,the low PV advection serves to replenish thesouthwestern portion of the LSTRs and also keeps the anisotropic disturbance feature of the LSTR(Bueh et al.2018).This dynamical process is crucial for the barotropic development of LSTRs,because once the disturbance becomes isotropic,the LSTR starts to decay(Black and Dole 2000;Bueh et al.2018).Therefore,the amplified and westward-expanded SH is essential for a long-livedLSTRevent.Inshort,LSTRsextendingfromthe Ural Mountains provide a key mid-tropospheric circulation system for the development and southward invasion of the SH,facilitating the occurrence of persistent cold air activity in China.In turn,the amplified and westward-expanded SH helps to maintain the LSTRs.Such a vertical coupling process is closely associated with EPECEs in China.

    3.3.Second SOM cluster

    Figure 4.Composite meteorological fields for the second SOM pattern:(a–e)500-hPa geopotential height(contours;drawn every 100 gpm)and its anomaly(color-shaded;units:gpm);(f–j)925-hPa horizontal wind anomaly(vectors;units:m s-1)and the 2-m temperature anomaly(color-shaded;units:°C);(k–o)SLP(contours;drawn every 5 hPa)and its anomaly(color-shaded;units:hPa).Areas above 90%confidence level are dotted;green lines in(k–o)represent 1025 hPa;(a,f,k)day-3;(b,g,l)day 0;(c,h,m)day 3;(d,i,n)day 6;(e,j,o)day 9.

    Figure 4 displays composite daily evolutions of Z500(Figure 3(a–e)),SAT(Figure 4(f–j))and SLP(Figure 4(k–o))fields for the second cluster of LSTR events.Since the average onset day in this cluster is day-2.7,the time interval in this figure is three days,instead of four days inFigure3.Fromday-3to6,asignificantLSTRdominates over the northwestern Eurasia and sub-Arctic region(Figure 4(a–d)).To the southeast of LSTRs,a pronounced negative Z500 anomaly band extends from the Caspian Sea to Northeast Asia(Figure 4(b–d)).In response,negative SAT and northerly wind anomalies prevail over the northern Eurasian continent(Figure 4(g–i)).The life cycle of LSTR events in the second SOM cluster is relatively similar to that of the first SOM cluster,except that the starting points of LSTRs are over the Kola Peninsula.In other words,the LSTRs are located too far west with respect to the LSTRs of the first SOM cluster.In contrast with the first SOM cluster(Figure 3(b,c)),a moderate positive Z500 anomaly can be observed over the Sea of Japan(Figure4(b,c),bringingsoutherlywindanomaliesto North China(Figure 4(g,h)).In accordance with the westward distribution of LSTRs,the SH center and the corresponding positive SLP anomaly center exhibit westward positions,compared to those of the first SOM groups(Figure 4(k–m)).The southeastward extension of the SH to China is substantially weak,and the SAT in China is abnormally warm,from day 0 to 3(Figure 4(g,h)).Instead,an extensive and persistent cold SAT anomaly can be found over a broad region extending from eastern Europe,via central Asia,to central Siberia(Figure 4(f–i)).In this situation,the vertically coupled dynamical process between the LSTRs and the corresponding anomalous SLP,which has been presented in Section 3.2,is also true for the extensive cold SAT anomalies over eastern Europe–central Asia–central Siberia(Figure 4(f–i)).

    It is interesting to compare the first and second SOM clusters and their SAT influences.They share many common features,such as the LSTR pattern,related persistent SATanomaly,andverticalcouplingbetweentheLSTRsand the anomalous SLP.In these two clusters,the mid-tropospheric circulation patterns,which primarily consist of the LSTRsand the accompanying large-scaletilted troughs,are phase shifted.Therefore,their influences on SAT differ in differentregions.Forexample,the first clusterisassociated with persistent cold SAT in China,whereas the second cluster with above-normal SAT in China.

    4.Conclusions and discussion

    Thisstudysystematicallyinvestigatesthe wintertime LSTR patterns over the Eurasian continent and their individual SAT influences over the period 1948–2017.We identify 134 LSTR events withthe zonal extent exceeding than 90°of longitude.By applying the SOM method to the LSTRs on the peak day of each event,the LSTRs are categorized into five SOM clusters.The LSTRs of the leading three clusters exhibit a less tilted structure compared with the fourth and fifth groups.Moreover,an evident negative Z500 height anomaly band is seen in the leading three clusters,whereas the negative Z500 anomaly is absent in the fourth group and relatively weak in the fifth group.The configuration of the LSTR and trough on the one hand yields the circulation having a more meridional distribution;whilston the otherhand,such a configurationfavorsamore pronounced verticalcoupling between LSTRs and the corresponding anomalous SLP.For the first cluster,the LSTRs extend from the Ural Mountains to Northeast Asia.During the amplification of these LSTRs,the cold SAT anomalies are accumulated over Siberia,which intensifies the SH.Afterwards,the SH extendssoutheastwardtoChinawithacoldSAToutbreak.As a result,this cluster is closely associated with the occurrence of EPECEs in China.Compared with the first cluster,theLSTRs ofthe second SOM cluster are displaced westward,with starting points from the Kola Peninsula,and are thus closely associated with persistent cold temperature events over eastern Europe,central Asia,and central Siberia.The LSTRs of this cluster are concurrent with an abnormally warm SAT condition in China.For both clusters,the vertical coupling between the LSTRs and the corresponding anomalous SLP is crucial.

    Although the LSTR is considered to be the key circulation system for EPECEs in China(Bueh,Fu,and Xie 2011;Bueh et al.2018),the results of this study suggest their occurrence does not always guarantee the appearance of an EPECE in China.We speculate that the close link between the wintertime midtroposphericLSTR system and EPECEsin China depends on at least two prerequisite conditions:(1)LSTRs must be positioned appropriately,being not too far west or too far north from mainland China;(2)the prior cold-air accumulation over the key region must be sufficiently strong and large enough in extent to cover central Asia and central Siberia.These two conditions are necessary for an effective vertical coupling between the LSTR and the corresponding anomalous SH.However,the detail of the corresponding physical mechanisms needs to be elucidated in future work.

    This study has mainly focused on LSTR patterns and their SAT influence on the intraseasonal time scale.The related dynamics,including internal atmospheric processes and remote forcing,responsible for LSTRs,remain unexplored.Our follow-up research in the future will explore these aspects.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the National Natural Science Foundation of China[grant number 41375064 and 41675086]and the National Key Technology Research and DevelopmentProgram oftheMinistryofScienceand Technology of China[grant number 2015BAC03B03].

    亚洲男人天堂网一区| 水蜜桃什么品种好| 搡老熟女国产l中国老女人| 大片免费播放器 马上看| 男男h啪啪无遮挡| 老司机在亚洲福利影院| 国产精品国产高清国产av | av天堂久久9| 无人区码免费观看不卡 | 亚洲国产成人一精品久久久| 三上悠亚av全集在线观看| 国产在线一区二区三区精| 日韩欧美国产一区二区入口| 少妇 在线观看| 国产伦人伦偷精品视频| 国产一区二区激情短视频| 99久久人妻综合| 成人18禁高潮啪啪吃奶动态图| 美女扒开内裤让男人捅视频| 首页视频小说图片口味搜索| 久久久久视频综合| 91大片在线观看| 淫妇啪啪啪对白视频| 精品午夜福利视频在线观看一区 | 成年女人毛片免费观看观看9 | 母亲3免费完整高清在线观看| 99国产综合亚洲精品| 欧美精品人与动牲交sv欧美| 十八禁人妻一区二区| 夜夜爽天天搞| 久久精品国产亚洲av高清一级| 亚洲av第一区精品v没综合| 在线看a的网站| 中国美女看黄片| 视频在线观看一区二区三区| 国产极品粉嫩免费观看在线| 国产麻豆69| 午夜激情久久久久久久| 亚洲久久久国产精品| 大型av网站在线播放| 欧美亚洲 丝袜 人妻 在线| 久9热在线精品视频| 十八禁人妻一区二区| 精品久久久久久电影网| av网站在线播放免费| 欧美国产精品一级二级三级| 精品卡一卡二卡四卡免费| 国产成+人综合+亚洲专区| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 精品国产一区二区三区四区第35| 日本黄色日本黄色录像| 精品国产一区二区三区久久久樱花| 捣出白浆h1v1| 久久中文字幕一级| 国产精品 国内视频| 久久精品亚洲av国产电影网| 日本a在线网址| 久久人妻福利社区极品人妻图片| 精品国产一区二区三区久久久樱花| 超色免费av| 午夜老司机福利片| 日韩中文字幕视频在线看片| 精品欧美一区二区三区在线| 看免费av毛片| 欧美精品啪啪一区二区三区| 亚洲欧美日韩另类电影网站| 少妇粗大呻吟视频| 免费黄频网站在线观看国产| 欧美老熟妇乱子伦牲交| 国产亚洲欧美在线一区二区| 亚洲九九香蕉| 这个男人来自地球电影免费观看| 亚洲人成电影免费在线| 午夜激情久久久久久久| 精品高清国产在线一区| 中文字幕高清在线视频| 免费日韩欧美在线观看| 午夜视频精品福利| 国产在线观看jvid| 国产伦理片在线播放av一区| 色94色欧美一区二区| 国产成人精品久久二区二区91| 国产精品偷伦视频观看了| 成年人黄色毛片网站| 中文字幕人妻熟女乱码| 可以免费在线观看a视频的电影网站| 国产99久久九九免费精品| 激情视频va一区二区三区| 国产精品国产av在线观看| av超薄肉色丝袜交足视频| 日本一区二区免费在线视频| 国产亚洲欧美精品永久| 啦啦啦在线免费观看视频4| 欧美日韩精品网址| 丁香六月天网| 久久久水蜜桃国产精品网| 69av精品久久久久久 | 欧美日韩黄片免| 国产av一区二区精品久久| 国产欧美亚洲国产| 狠狠狠狠99中文字幕| 狠狠狠狠99中文字幕| 99精品久久久久人妻精品| 一本—道久久a久久精品蜜桃钙片| 丰满迷人的少妇在线观看| 在线十欧美十亚洲十日本专区| 一级黄色大片毛片| 乱人伦中国视频| 在线观看免费视频网站a站| 欧美日本中文国产一区发布| 黄色视频,在线免费观看| 最近最新免费中文字幕在线| 大香蕉久久成人网| 日韩大片免费观看网站| 国产男女内射视频| 啦啦啦在线免费观看视频4| 一区二区三区国产精品乱码| 国产精品一区二区精品视频观看| 少妇精品久久久久久久| 国产欧美日韩精品亚洲av| 交换朋友夫妻互换小说| 女人精品久久久久毛片| 午夜久久久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 一本大道久久a久久精品| 每晚都被弄得嗷嗷叫到高潮| 80岁老熟妇乱子伦牲交| 五月开心婷婷网| 日韩大码丰满熟妇| 91麻豆av在线| 国产精品电影一区二区三区 | 纯流量卡能插随身wifi吗| 精品少妇黑人巨大在线播放| 久久国产精品大桥未久av| 久久天躁狠狠躁夜夜2o2o| 国产单亲对白刺激| 黄色怎么调成土黄色| 国产精品 欧美亚洲| 亚洲欧美一区二区三区久久| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 国产亚洲精品第一综合不卡| 无遮挡黄片免费观看| 久久久久精品人妻al黑| 天堂俺去俺来也www色官网| 三上悠亚av全集在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲精品美女久久久久99蜜臀| 人成视频在线观看免费观看| 日韩有码中文字幕| svipshipincom国产片| 香蕉久久夜色| 成人av一区二区三区在线看| 黄片小视频在线播放| cao死你这个sao货| 精品国产一区二区久久| 成人三级做爰电影| 丁香六月欧美| 亚洲欧美精品综合一区二区三区| www.自偷自拍.com| 亚洲av美国av| 久久午夜亚洲精品久久| 国产片内射在线| 日韩免费高清中文字幕av| 精品国产亚洲在线| 国产不卡一卡二| 欧美激情高清一区二区三区| 操美女的视频在线观看| 亚洲中文日韩欧美视频| 国产一区二区三区视频了| 国产高清激情床上av| 国产一区二区三区在线臀色熟女 | 韩国精品一区二区三区| 国产精品免费一区二区三区在线 | 80岁老熟妇乱子伦牲交| 男女免费视频国产| 亚洲成国产人片在线观看| 午夜福利视频精品| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 久久久水蜜桃国产精品网| 成人手机av| 精品国产乱子伦一区二区三区| 757午夜福利合集在线观看| 国产一区二区三区视频了| 十八禁网站网址无遮挡| 亚洲人成电影免费在线| 亚洲精品久久午夜乱码| 亚洲色图av天堂| 午夜福利一区二区在线看| 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 99国产精品一区二区三区| 91成人精品电影| 老司机影院毛片| 成人黄色视频免费在线看| 午夜成年电影在线免费观看| av国产精品久久久久影院| 夜夜骑夜夜射夜夜干| 久久久久久久国产电影| 国产在线视频一区二区| 在线观看免费日韩欧美大片| 最新在线观看一区二区三区| 久久国产亚洲av麻豆专区| 飞空精品影院首页| 女性生殖器流出的白浆| 最新在线观看一区二区三区| 一区二区三区乱码不卡18| 三上悠亚av全集在线观看| av有码第一页| 人人妻人人澡人人看| 亚洲精品av麻豆狂野| 日韩制服丝袜自拍偷拍| 国内毛片毛片毛片毛片毛片| bbb黄色大片| 久久热在线av| 妹子高潮喷水视频| 99在线人妻在线中文字幕 | 免费观看a级毛片全部| 国产亚洲午夜精品一区二区久久| 又黄又粗又硬又大视频| 老熟女久久久| av有码第一页| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 国产日韩欧美在线精品| 国产三级黄色录像| 欧美乱妇无乱码| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 国产主播在线观看一区二区| 亚洲黑人精品在线| 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| 91国产中文字幕| 人人澡人人妻人| 嫩草影视91久久| 男女之事视频高清在线观看| 十分钟在线观看高清视频www| 久久精品亚洲熟妇少妇任你| 啦啦啦免费观看视频1| 免费高清在线观看日韩| 高清毛片免费观看视频网站 | 国产欧美日韩一区二区三区在线| 亚洲精品国产精品久久久不卡| 久9热在线精品视频| 一本久久精品| 乱人伦中国视频| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 亚洲天堂av无毛| 国产单亲对白刺激| 黄色成人免费大全| h视频一区二区三区| 视频在线观看一区二区三区| 国产男女内射视频| 悠悠久久av| 99国产综合亚洲精品| 9热在线视频观看99| 成人国产一区最新在线观看| 国产男女超爽视频在线观看| 国产一区二区在线观看av| av电影中文网址| 国产日韩欧美亚洲二区| 99re6热这里在线精品视频| 一区在线观看完整版| 久久99热这里只频精品6学生| 好男人电影高清在线观看| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 亚洲精品在线美女| videosex国产| av福利片在线| 日日摸夜夜添夜夜添小说| 免费黄频网站在线观看国产| 18禁美女被吸乳视频| 搡老乐熟女国产| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲 | 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 99re6热这里在线精品视频| 精品熟女少妇八av免费久了| 淫妇啪啪啪对白视频| www.自偷自拍.com| 男女下面插进去视频免费观看| 成人影院久久| 国产一区二区三区视频了| 日韩三级视频一区二区三区| 99热网站在线观看| 老司机在亚洲福利影院| 国产一区二区激情短视频| 高清毛片免费观看视频网站 | 精品人妻在线不人妻| 男女边摸边吃奶| 精品第一国产精品| 动漫黄色视频在线观看| 黄色视频不卡| 老司机午夜十八禁免费视频| 欧美人与性动交α欧美软件| av在线播放免费不卡| 午夜福利免费观看在线| 免费不卡黄色视频| 久久人妻av系列| 女人被躁到高潮嗷嗷叫费观| 99精国产麻豆久久婷婷| e午夜精品久久久久久久| 久久精品亚洲精品国产色婷小说| 免费少妇av软件| 色精品久久人妻99蜜桃| 一级毛片电影观看| 亚洲午夜精品一区,二区,三区| 80岁老熟妇乱子伦牲交| 母亲3免费完整高清在线观看| 搡老熟女国产l中国老女人| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 欧美中文综合在线视频| 欧美精品一区二区免费开放| 制服人妻中文乱码| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 欧美一级毛片孕妇| 激情视频va一区二区三区| 国产有黄有色有爽视频| 亚洲综合色网址| 少妇 在线观看| 久久久国产精品麻豆| 亚洲精品国产一区二区精华液| 悠悠久久av| 久久99一区二区三区| xxxhd国产人妻xxx| 在线观看免费视频网站a站| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产黄频视频在线观看| 色视频在线一区二区三区| 成人国产一区最新在线观看| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 日韩免费av在线播放| 亚洲黑人精品在线| av免费在线观看网站| 亚洲av日韩在线播放| 香蕉久久夜色| 久久人妻熟女aⅴ| 一本综合久久免费| 亚洲精品中文字幕一二三四区 | 啦啦啦 在线观看视频| 亚洲欧美日韩高清在线视频 | 王馨瑶露胸无遮挡在线观看| 一个人免费在线观看的高清视频| 精品高清国产在线一区| 99国产综合亚洲精品| 亚洲午夜理论影院| videosex国产| 久久 成人 亚洲| 国产欧美亚洲国产| 国精品久久久久久国模美| 老汉色av国产亚洲站长工具| 国产精品一区二区免费欧美| 国产在线视频一区二区| 午夜福利视频精品| 一个人免费在线观看的高清视频| 国产在视频线精品| 天堂中文最新版在线下载| 一本综合久久免费| 国产成人精品久久二区二区91| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 91九色精品人成在线观看| 国产精品av久久久久免费| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 国产精品熟女久久久久浪| 最近最新中文字幕大全免费视频| 国产精品98久久久久久宅男小说| 国产黄色免费在线视频| 亚洲中文字幕日韩| 99精品久久久久人妻精品| 午夜精品国产一区二区电影| 午夜精品久久久久久毛片777| 悠悠久久av| 免费在线观看黄色视频的| 自线自在国产av| 日韩一卡2卡3卡4卡2021年| 亚洲少妇的诱惑av| 777米奇影视久久| 午夜福利欧美成人| 欧美国产精品一级二级三级| 1024香蕉在线观看| 91老司机精品| 另类亚洲欧美激情| 色视频在线一区二区三区| 久久久水蜜桃国产精品网| 国产免费视频播放在线视频| 国产欧美日韩一区二区三| 十分钟在线观看高清视频www| 99国产精品99久久久久| 久久这里只有精品19| 无限看片的www在线观看| 在线观看66精品国产| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 国产一区二区 视频在线| 国产日韩欧美在线精品| av片东京热男人的天堂| 婷婷成人精品国产| 老司机影院毛片| 国产av国产精品国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 我的亚洲天堂| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 91字幕亚洲| 女警被强在线播放| 蜜桃国产av成人99| 国产成人精品久久二区二区91| 精品久久久精品久久久| 精品久久久久久久毛片微露脸| 人人妻人人添人人爽欧美一区卜| avwww免费| 日韩中文字幕视频在线看片| 激情视频va一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产单亲对白刺激| 999久久久国产精品视频| 国产精品亚洲一级av第二区| 久久久久久久国产电影| 欧美av亚洲av综合av国产av| 夜夜夜夜夜久久久久| 999精品在线视频| 久久天堂一区二区三区四区| 搡老乐熟女国产| 久久毛片免费看一区二区三区| 黄色片一级片一级黄色片| av线在线观看网站| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影 | www.自偷自拍.com| 精品久久久久久电影网| 免费少妇av软件| 高清av免费在线| 亚洲视频免费观看视频| 精品第一国产精品| 国产一区二区激情短视频| 午夜福利视频精品| 免费观看av网站的网址| 亚洲午夜精品一区,二区,三区| 男女免费视频国产| 欧美成人午夜精品| 两性夫妻黄色片| 悠悠久久av| 色婷婷av一区二区三区视频| 午夜福利欧美成人| 欧美大码av| 国产欧美亚洲国产| 久久精品国产综合久久久| 亚洲九九香蕉| 亚洲精品一卡2卡三卡4卡5卡| 中文欧美无线码| 自线自在国产av| 色婷婷av一区二区三区视频| 精品人妻在线不人妻| 久久人妻av系列| 啦啦啦 在线观看视频| 大片免费播放器 马上看| 91av网站免费观看| 久久精品亚洲熟妇少妇任你| 丝袜人妻中文字幕| 美女视频免费永久观看网站| 夜夜夜夜夜久久久久| 日韩欧美一区视频在线观看| 精品少妇久久久久久888优播| 岛国毛片在线播放| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 热re99久久精品国产66热6| 女警被强在线播放| 免费少妇av软件| 久久热在线av| 91成年电影在线观看| 欧美 亚洲 国产 日韩一| 一边摸一边抽搐一进一小说 | 亚洲男人天堂网一区| 免费一级毛片在线播放高清视频 | 水蜜桃什么品种好| a在线观看视频网站| 三上悠亚av全集在线观看| 亚洲精品乱久久久久久| 一进一出好大好爽视频| 大片免费播放器 马上看| 啪啪无遮挡十八禁网站| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人澡人人爽人人夜夜| 国产精品熟女久久久久浪| 国产精品成人在线| 色在线成人网| 制服人妻中文乱码| 国产免费现黄频在线看| 欧美人与性动交α欧美软件| 黄片大片在线免费观看| 亚洲少妇的诱惑av| 婷婷丁香在线五月| 国产伦理片在线播放av一区| 亚洲av成人一区二区三| 欧美精品人与动牲交sv欧美| 久久久精品区二区三区| 在线av久久热| a级片在线免费高清观看视频| 少妇猛男粗大的猛烈进出视频| 国产免费福利视频在线观看| 成人特级黄色片久久久久久久 | 另类精品久久| 桃花免费在线播放| 欧美午夜高清在线| 热re99久久国产66热| av网站免费在线观看视频| 老汉色∧v一级毛片| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 一本久久精品| 超色免费av| 99久久人妻综合| 国产精品久久电影中文字幕 | 日本a在线网址| 日韩中文字幕欧美一区二区| 午夜老司机福利片| 久久精品国产亚洲av香蕉五月 | 久久精品国产a三级三级三级| 美女扒开内裤让男人捅视频| 久久久水蜜桃国产精品网| 在线十欧美十亚洲十日本专区| 欧美乱妇无乱码| 丁香六月天网| 9色porny在线观看| 日本a在线网址| 老司机靠b影院| 色综合欧美亚洲国产小说| 亚洲精品美女久久久久99蜜臀| 在线十欧美十亚洲十日本专区| 国产熟女午夜一区二区三区| 久久国产精品男人的天堂亚洲| 天堂8中文在线网| 精品国产乱码久久久久久男人| 日韩一区二区三区影片| 国产97色在线日韩免费| 亚洲精品一二三| 亚洲欧美一区二区三区久久| 在线观看免费日韩欧美大片| 少妇精品久久久久久久| 国产99久久九九免费精品| 狠狠狠狠99中文字幕| 老汉色∧v一级毛片| 老司机福利观看| 亚洲精品粉嫩美女一区| 手机成人av网站| 精品国产乱码久久久久久小说| 精品视频人人做人人爽| 免费一级毛片在线播放高清视频 | 日韩制服丝袜自拍偷拍| 一级毛片电影观看| 国产一区二区三区在线臀色熟女 | 一边摸一边抽搐一进一出视频| 午夜精品久久久久久毛片777| 美女午夜性视频免费| 啦啦啦中文免费视频观看日本| 精品福利永久在线观看| 韩国精品一区二区三区| 国产高清videossex| 国产男女超爽视频在线观看| 国产精品亚洲一级av第二区| 少妇的丰满在线观看| 一二三四社区在线视频社区8| 手机成人av网站| 国产一区二区在线观看av| kizo精华| 久久精品国产综合久久久| 久久午夜亚洲精品久久| 在线观看人妻少妇| 淫妇啪啪啪对白视频| 亚洲av日韩在线播放| 国产欧美日韩一区二区三区在线| 法律面前人人平等表现在哪些方面| 视频区欧美日本亚洲| 国产精品免费视频内射| 欧美黄色淫秽网站| 国产欧美亚洲国产| 黑人巨大精品欧美一区二区mp4| 久久久精品国产亚洲av高清涩受| 精品乱码久久久久久99久播| 王馨瑶露胸无遮挡在线观看| 如日韩欧美国产精品一区二区三区| 国产不卡一卡二| 男男h啪啪无遮挡| 男女边摸边吃奶| 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 亚洲一区二区三区欧美精品| 韩国精品一区二区三区| 黄片播放在线免费| 国产伦人伦偷精品视频| 国产高清视频在线播放一区| 亚洲欧洲日产国产| 亚洲av日韩精品久久久久久密|