• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulated and projected relationship between the East Asian winter monsoon and winter Arctic Oscillation in CMIP5 models

    2018-12-07 09:28:08LIShuoHEShngPingLIFiandWANGHuiJun

    LI Shuo,HE Shng-Ping,LI Fiand WANG Hui-Jun

    aNansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;bClimate Change Research Center,Chinese Academy of Sciences,Beijing,China;cCollege of Earth Science,University of Chinese Academy of Sciences,Beijing,China;dGeophysical Institute,University of Bergen and Bjerknes Centre for Climate Research,Bergen,Norway;eNILU–Norwegian Institute for Air Research,Kjeller,Norway;fCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster,Ministry of Education,Nanjing University for Information Science and Technology,Nanjing,China

    ABSTRACT Interdecadal change in the relationship between the East Asian winter monsoon(EAWM)and the Arctic Oscillation(AO)has been documented by many studies.This study,utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project(CMIP5),evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s,and further projects the evolution of the EAWM–AO relationship during the 21st century.It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models(e.g.,GFDL-ESM2M,GISS-E2-H,and MPI-ESM-MR).The coupled models’simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s.Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO.Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s,and insignificant during the 2060s,but uncertain from the 2030s to the 2050s.

    KEYWORDS East Asian winter monsoon(EAWM);winter Arctic Oscillation(AO);CMIP5;interdecadal change

    1.Introduction

    The East Asian winter monsoon(EAWM)is one of the most active large-scale atmospheric circulation systems over the Northern Hemisphere and shows intraseasonal,interannual,and decadal variations(Ding et al.2014;Wang and Lu 2017).Concurrent with a strongerthan-normal EAWM,the Siberian high and Aleutian low are strikingly reinforced,which could lead to intensely northerly wind along the coast of East Asia.Meanwhile,the East Asian trough and the meridional shear of the East Asian jet stream(EAJS)are strengthened as well(He and Wang 2012).

    Previous investigations have indicated that the intensity of the EAWM is related to many factors,such as the Arctic Oscillation(AO),ElNi?o–Southern Oscillation,Hadley circulation,Eurasian snow cover,and Arctic sea ice(Webster and Yang 1992;Zhang,Sumi,and Kimoto 1996;Watanabe and Nitta 1999;Chen,Graf,and Huang 2000;Zhou and Wang 2008;Li and Wang 2013;Wang and Liu 2016;He et al.2017).Among these factors,the AO,as the dominant mode of the extratropicalatmosphericcirculation overthe Northern Hemisphere,has been found to exert great effects on the East Asian climate and the EAWM(Thompson and Wallace 1998;Zhou 2017).According to Gong,Wang,and Zhu(2001),the winter AO may affect the EAWM by modulating the Siberian high.In contrast,Wu and Wang(2002)emphasized the direct impact of winter AO on the EAWM-related atmospheric circulation.

    Recently,it has been found that the EAWM–AO relationship is unstable.Since the 1980s,the EAWM–AO relationship is noticeably enhanced(Li,Wang,and Gao 2014).Such strengthening may be caused by the diminished autumn Arctic sea-ice cover,which could trigger the westward intrusion of the EAJS from the Northwest Pacific toward East Asia.Lu,Zhou,and Ding(2016)also found that,after 2000,the stratospheric polar vortex disturbances increase and the Northern Hemisphere Annular Mode is mainly in negative phase.Therefore,the Urals blocking high and East Asian trough are more active after 2000,which lead to enhanced cold air activities in eastern and northern China.

    Given the important influence of AO on the EAWM and the unstable relationship between the EAWM and AO,it is necessary to gain more insights into the future changes of the EAWM,AO,and EAWM–AO relationship.There have been numerous projections concerning the future evolution of the EAWM(Hu,Bengtsson,and Arpe 2000;Jiang and Tian 2013)and AO(Miller,Schmidt,and Shindell 2006;Gillett and Fyfe 2013;Sun and Ahn 2015;Zhu and Wang 2016).However,few studies have discussed the future change of the EAWM–AO relationship.To what extent can state-of-the-art coupled modelssimulatetheinterdecadalchangeofthe EAWM–AO relationship?How will the EAWM–AO relationship evolve during the 21st century?These issues are analyzed in this article using historical simulations and future projections under different Representative Concentration Pathway(RCP)scenarios in phase 5 of the Coupled Model Intercomparison Project(CMIP5).

    2.Data and methods

    The historical simulations and future projections under the RCP4.5 and RCP8.5 scenarios from 33 CMIP5 models(Taylor,Stouffer,and Meehl 2012)are offered by the PCMDI(Program for Climate Model Diagnosis and Intercomparison).Here,we only analyze the first realization(r1i1p1)of each individual model.The reanalysis datasets from the National Centers for Environmental Prediction–National Center for Atmospheric Research(NCEP–NCAR)(Kalnay et al.1996)are used to compare with historical simulations.

    There are many indices to measure the EAWM.Wang and Chen(2010b)classified these indices into four categories.They also found that some EAWM indices are not suitable for describing the EAWM–AO relationship.Since Li,Wang,and Gao(2014)identified the strengthened EAWM–AOrelationship aroundthe 1980sinobservations,we define the EAWM index as in their study.We calculate the EAWM index as the average of three different EAWM indices.The first index is defined as the area-averaged(25°–50°N,115°–145°E)wind speed at 850 hPa(Wang and Jiang 2004).The second index is defined as the areaaveraged(25°–45°N,110°–145°E)geopotential height at 500hPa(WangandHe2012).Thethirdindexisdefinedas thezonal windshear at 200hPa(LiandYang 2010),which is calculated as area-averaged(30°–35°N,90°–160°E)200-hPa zonal wind minus half of the area-averaged(50°–60°N,70°–170°E)200-hPa zonal wind and half of the areaaveraged(5°S–10°N,90°–160°E)200-hPa zonal wind.Before computing the average of these three indices,all three indices are linearly detrended and normalized.The AO index is defined as the time series of the leading empirical orthogonal function mode of sea level pressure(SLP)anomalies northward of 20°N.The EAJS index is calculated as the area-averaged(30°–35°N,130°–160°E)zonal wind at 200 hPa(Yang,Lau,and Kim 2002).

    We use Eliassen–Palm(EP)flux to diagnose the interaction between waves and mean flow(Andrews,Holton,and Leovy 1987).The following is the meridional and vertical constituents of the EP flux:

    Here,r0is the radius of Earth,φ is the latitude,u and v are the zonal and meridional wind,f is the Coriolis parameter,θ is the potential temperature,p is the pressure,and θp=dθ/dp.The primes and overbars represent zonal deviations and averages,respectively.In this study,the vectors are multiplied byand the vertical constituent times 125.

    The selected periods for historical simulations and future projections are the winters of 1950–2003 and 2006–99,respectively.Here,as an example,the winter of 1950 stands for the December of 1950 and the January and February of 1951.All data and indices are linearly detrended prior to examination.

    3.Results

    3.1.The EAWM–AO relationship in the historical simulations

    Figure 1(a)shows the 21-yr sliding correlation coeffi-cients between the EAWM index and the negative AO(-AO)index in the NCEP–NCAR reanalysis datasets.Apparently,the EAWM–AO relationship is strikingly strengthened since the 1980s,which is consistent with the results of Li,Wang,and Gao(2014).Then,the entire period(1950–2003)is divided into two sub-periods:1950–1970 and 1980–2003.As displayed in Table 1,for the entire period,the correlation coefficient of the observed EAWM–AO relationship is 0.416(above the 90%confidence level).Meanwhile,the insignificant correlation of 0.341 during 1950–70 increases to a strong stage of 0.495 during 1980–2003.

    Figure 1.The 21-yr sliding correlation coefficients between the EAWM index and the-AO index during the winters of 1950–2003 for the(a)NCEP–NCAR reanalysis data and(b)MME.The 21-yr sliding correlation coefficients between the EAJS index and the-AO index during the winters of 1950–2003 for the(c)NCEP–NCAR reanalysis data and(d)MME.The horizontal long(short)dashed line indicates the 90%(95%)confidence level according to the student’s t-test.The shading indicates one intermodel standard deviation departure from the MME mean.

    But can the latest CMIP5 models reproduce the interdecadal change of the EAWM–AO relationship?To answer this question,we calculate the EAWM–AO correlation coefficients in each individual model.As shown in Table 1,almost all the CMIP5 models can replicate the statistically significant EAWM–AO relationship during 1950–2003,except for CMCC-CMS,HadGEM2-ES,IPSL-CM5B-LR,andMIROC5.Meanwhile,thereare three models—GFDL-ESM2M,GISS-E2-H,and MPIESM-MR–that can capture well the interdecadal shift of the EAWM–AO relationship around the 1980s.Clearly,most of the CMIP5 models fail to reproduce the intensified EAWM–AO relationship,which may be attributable to the biases of CMIP5 models in simulating the basic features of the EAWM and AO.As indicated in previous studies,most of the CMIP5 models overestimate the intensity of the Pacific center in the wintertime AO pattern(Gong et al.2017)and have lower capability in simulating the interannual variability of the EAWM system(Gong et al.2014).With these biases,the skill of CMIP5 models in reproducing the interdecadal shift of the EAWM–AO relationship may be limited.Considering the good ability of these three models to capture the variation in the EAWM–AO relationship,we calculate the21-yrsliding correlation coefficients between the EAWM index and the-AO index using the multi-model ensemble(MME)mean results of these three models.Results of the MME(Figure 1(b))show that the EAWM–AO relationship is generally strengthened since the 1980s.Although the temporal evolution of the EAWM–AO relationship in the MME shows biases to the individual models(Figure 1(b):shading),the results of both individual models and the MME exhibit continuous intensification of the EAWM–AO relationship.It should be noted that,if we use the 95%confidence level for the model selection,six models—BCC-CSM1.1,CNRM-CM5,FGOALS-s2,FGOALS-g2,GFDL-CM3,and GFDL-ESM2M—will be identified,the ensemble mean of which can also reproduce the observed intensified EAWM–AO relationship(figures not shown).Given that the results of the MME match better with the observation,we mainly examine the simulations of the MME for the following analysis.

    Corresponding to the interdecadal shift of the EAWM–AO relationship in the MME,there are notable changes in the simulated EAWM/AO-related atmospheric circulation from 1950–70 to 1980–2003.Firstly,we regress the SLP upon the EAWM index.During 1950–70(Figure 2(a)),significantly negative SLP anomalies are primarily located over East Asia and theNorthwest Pacific,while the positive SLP anomalies over the Arctic are weak and barely significant.During 1980–2003(Figure 2(b)),the positive center over the Arctic is markedly reinforced,rendering an AO-like seesaw pattern over the mid and high latitudes.These features suggest that the EAWM shows a stronger linkage with the winter AO during the latter period.Further investigations of the AO-related atmospheric circulation also support this conclusion.Since the 1980s,the AO-related southerly wind anomalies near the coast of East Asia strikingly intensify(Figure 2(d)versus Figure 2(c):vectors),accompanied by more southeastward invasion of warm anomalies(Figure 2(d)versus Figure 2(c):shading).

    Table 1.Correlation coefficients between the EAWM index and the-AO index during the winters of 1950–70,1980–2003,and 1950–2003 for the NCEP–NCAR reanalysis data and each CMIP5 model.The boldvaluesaresignificantatthe90%confidencelevel according to the student’s t-test.The models reproducing the strengthened EAWM–AO relationship since the 1980s are in bold.

    According to Li,Wang,and Gao(2014),the EAJS plays a crucial role in linking the EAWM and winter AO since the 1980s,which is reflected by the strikingly enhanced EAJS–AO relationship in reanalysis datasets(Figure 1(c))and the MME(Figure 1(d)).To further examine such a role of the EAJS in the MME,we inspect the regression maps of the SLP upon the EAJS index.During 1950–70(Figure 3(a)),two significant negative centersare located overthe North Pacific and Northwest Atlantic,with tenuous signals over the Arctic.During 1980–2003(Figure 3(b)),the positive center over the Arctic strengthens and becomes statistically significant,inducing a notable Arctic–Pacific dipole.These characteristics imply an enhanced EAJS–AO relationship in the latter period.

    To verify the changes in the AO-related atmospheric circulation in the MME,the zonally averaged zonal wind is regressed.During 1950–70(Figure 3(c)),the negative anomalies at the midlatitudes are weak and mainly confined to the lower troposphere.During 1980–2003(Figure 3(d)),the negative anomalies at the midlatitudes are strikingly intensified,with more significant anomalies extending upward to the stratosphere.The vertical structure resembles the classical structure of the AO.It implies that the winter AO shows a stronger connection with the EAJS in the latter period,which could bond the linkage between the EAWM and winter AO(Li,Wang,and Gao 2014).

    Given that stationary planetary waves play an important role in the connection between the EAWM and AO(Chen,Yang,and Huang 2005;Wang and Chen 2010a),we further investigate the changes of stationary planetary waves associated with the winter AO by analyzing the EP flux in the MME,the aim being to explain the possible mechanism underlying the intensified EAWM–AO relationship atthe interdecadalscale.During 1980–2003,apparent anomalous EP flux divergence appears in the troposphere and stratosphere near 60°N(Figure 3(f):red contours),which implies that the westerly zonal-mean flow accelerates there(Andrews,Holton,and Leovy 1987).Subsequently,the polar night jet strengthens significantly(Figure 3(f):blue contours around 60°N).Another notable feature is the apparent low-level waveguide propagating from the high latitudes equatorward to the subtropics,leading to significant anomalies of the subtropical jet stream(Figure 3(f):blue contours around 30°N).Thus,the propagation of stationary planetary waves favors the close connection between the winter AO and the EAJS/EAWM during1980–2003.During1950–70(Figure 3(e)),although the anomalous EP flux divergence remains in the troposphere near 60°N,the equatorward propagating EPflux is relatively weak.Therefore,the linkage between the winter AO and the EAJS/EAWM during 1950–70 is weaker than that during 1980–2003.

    Figure 2.Regression maps of SLP anomalies(units:hPa)upon the EAWM index during(a)1950–70 and(b)1980–2003.Light(dark)shading indicates the 90%(95%)confidence level according to the student’s t-test.Correlation coefficients(shading)of surface air temperature anomalies(units:°C)and regression coefficients(vectors)of 700-hPa wind anomalies(units:m s-1)upon the winter AO index during(c)1950–70 and(d)1980–2003.

    3.2.Projected EAWM–AO relationship under the RCP4.5 and RCP8.5 scenarios

    In view of the reasonable reproducibility in the MME,another question we want to address is how the EAWM–AO relationship may evolve during the 21st century.Using thefutureprojectionsoftheMME,theprojectedEAWM–AO relationship under the RCP4.5 and RCP8.5 scenarios tends toremainunstable(Figure4).Beforethe2030s,theEAWM–AO relationship is statistically significant under the RCP4.5 and RCP8.5 scenarios,and the EAWM–AO correlation coefficients are around 0.6.During the 2030s,the EAWM–AO correlation coefficients reduce to 0.3(below the 90%confidence level)under the RCP4.5 scenario.By contrast,the EAWMisstill closelyrelatedtothesimultaneous AO during the 2030s under the RCP8.5 scenario,and the EAWM–AO correlation coefficients remain around 0.6.During the 2040s and 2050s,the EAWM–AO correlation coefficients are projected to gradually recover to 0.6 under the RCP4.5 scenario.However,the EAWM–AO relationship under the RCP8.5scenarioexperiencesarapidweakening inthe early 2040s,and remains around the 90%confidence level during the 2040s and 2050s.During the 2060s,the EAWM–AO relationship becomes insignificant again under the RCP4.5 scenario,while the relationship remains relatively weak under the RCP8.5 scenario.Finally,the EAWM–AO correlation coefficients return back to 0.7 after the early 2070s underbothRCP4.5andRCP8.5scenarios.Therefore,projectionsunderboththeRCP4.5andRCP8.5scenariossuggesta significant EAWM–AO relationship before the 2030s and after the early 2070s,and an insignificant relationship during the 2060s.However,from the 2030s to the 2050s,the projected EAWM–AO relationship under the RCP4.5 scenario is contrary to that projected under the RCP8.5 scenario,whichimpliesuncertaintyintheEAWM–AO relationship during the mid-term of the 21st century.

    4.Summary and discussion

    This study investigates how the latest CMIP5 models simulate the interdecadal change of the EAWM–AO relationship and how this relationship may evolve during the 21st century.

    Figure 3.Regression maps of SLP anomalies(units:hPa)upon the EAJS index during the winters of(a)1950–70 and(b)1980–2003.Light(dark)shading indicates the 90%(95%)confidence level according to the student’s t test.Regression maps of zonally averaged zonal wind anomalies(units:m s-1)upon the winter AO index during(c)1950–70 and(d)1980–2003.Light(dark)shading indicates the 90%(95%)confidence level according to the Student’s t-test.Differences of zonally averaged zonal wind(blue contours;units:m s-1),EP flux cross sections(vectors;units:108m2s-2),and its divergence(red contours;units:m s-1d-1)between high(≥0.5 standard deviation)and low(≤ -0.5 standard deviation)winter AO index during(e)1950–70 and(f)1980–2003.The shading indicates zonally averaged zonal wind significant at the 90%confidence level according to the student’s t-test.

    Figure 4.The 21-yr sliding correlation coefficients between the EAWM index and the-AO index during the winters of 2006–99 for the MME under the(a)RCP4.5 scenario and(b)RCP8.5 scenario.The horizontal long(short)dashed line indicates the 90%(95%)confidence level according to the student’s t-test.The shading indicates one intermodel standard deviation departure from the MME mean.

    Comparisons between 1950–70 and 1980–2003 indicate that there are three models—GFDL-ESM2M,GISSE2-H,and MPI-ESM-MR—that can capture well the interdecadal shift of the EAWM–AO relationship around the 1980s.The simulated atmospheric circulation of the MME also supports such interdecadal change.Compared with the former period,the EAWM-associated SLP anomalies in the latter period are characterized by an AO-like pattern.Concurrent with a positive phase of winter AO,the anomalous southerly wind near the coastofEastAsia clearly reinforcesduring 1980–2003,accompanied by more southeastward invasion of warm anomalies.These characteristics suggest an enhanced EAWM–AO relationship since the 1980s.

    The historical simulations of the MME also demonstrate the crucial role of the EAJS in linking the EAWM and winter AO since the 1980s.During 1950–70,the AO-related zonally averaged zonal wind anomalies at the midlatitudes are weak and mainly confined to the lower troposphere.During 1980–2003,the anomalies at the midlatitudes are strikingly intensified,rendering a classical structure of the AO.Therefore,the winter AO shows a stronger connection with the EAJS/EAWM in the latter period.To explain the possible mechanism underlying the strengthened EAWM–AO relationship,we further gain an insight into the changes of stationary planetary waves associated with the winter AO in the MME.During 1980–2003,apparent low-level EP flux propagates from the high latitudes equatorward to the subtropics,leading to significant anomalies of the subtropical jet stream.This accounts for the close connection between the winter AO and the EAJS/EAWM in the latter period.During 1950–70,the equatorward propagating EP flux is relatively weak.Therefore,the linkage between the winter AO and the EAJS/EAWM during 1950–70 is weaker than that during 1980–2003.

    Finally,we discuss the projected EAWM–AO relationship in the MME.Projections under both the RCP4.5 and RCP8.5 scenarios suggest a significant EAWM–AO relationship before the 2030s and after the early 2070s,and an insignificant one during the 2060s.However,from the 2030s to the 2050s,the projected EAWM–AO relationship under the RCP4.5 scenario is contrary to that projected under the RCP8.5 scenario,which implies uncertainty in the EAWM–AO relationship during the mid-term of the 21st century.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the National Natural Science Foundation ofChina[grantsnumbers41505073and 41605059]and the Young Talent Support Program by the China Association for Science and Technology[grant number 2016QNRC001].

    在线观看免费视频网站a站| 久久影院123| 91成人精品电影| 久久影院123| 97超级碰碰碰精品色视频在线观看| 99香蕉大伊视频| 如日韩欧美国产精品一区二区三区| 18美女黄网站色大片免费观看| 亚洲色图 男人天堂 中文字幕| 精品熟女少妇八av免费久了| 国产欧美日韩综合在线一区二区| 久9热在线精品视频| 国产欧美日韩综合在线一区二区| 欧美丝袜亚洲另类 | 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩一区二区精品| 色综合欧美亚洲国产小说| 制服人妻中文乱码| 亚洲国产精品合色在线| 免费在线观看影片大全网站| 十八禁网站免费在线| 十八禁人妻一区二区| 日韩欧美在线二视频| 午夜免费激情av| 欧美中文日本在线观看视频| 亚洲avbb在线观看| 波多野结衣一区麻豆| 亚洲欧美激情在线| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| 丁香欧美五月| 国产欧美日韩精品亚洲av| 亚洲性夜色夜夜综合| 欧美成人性av电影在线观看| 久久精品国产亚洲av高清一级| 99国产精品一区二区蜜桃av| 日韩大码丰满熟妇| 久99久视频精品免费| 成人国语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 91大片在线观看| 丝袜美足系列| 美女国产高潮福利片在线看| 一级黄色大片毛片| 老司机靠b影院| 男人舔女人下体高潮全视频| 一二三四社区在线视频社区8| 亚洲精品粉嫩美女一区| 久久国产亚洲av麻豆专区| 久久久久精品国产欧美久久久| 日本在线视频免费播放| 精品国产乱子伦一区二区三区| 亚洲国产日韩欧美精品在线观看 | 人人妻人人澡人人看| 亚洲第一欧美日韩一区二区三区| 久久国产精品人妻蜜桃| 亚洲中文日韩欧美视频| 亚洲一区中文字幕在线| 日韩免费av在线播放| 日韩 欧美 亚洲 中文字幕| 午夜福利一区二区在线看| 免费人成视频x8x8入口观看| 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 亚洲av美国av| 热99re8久久精品国产| 看片在线看免费视频| 男人舔女人的私密视频| 免费高清在线观看日韩| 色av中文字幕| 亚洲三区欧美一区| 亚洲中文av在线| 99久久国产精品久久久| 精品卡一卡二卡四卡免费| 国产精品影院久久| 69av精品久久久久久| 亚洲欧美精品综合久久99| 欧美国产精品va在线观看不卡| 日本欧美视频一区| 亚洲中文av在线| 中文字幕另类日韩欧美亚洲嫩草| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 亚洲成人久久性| 日韩三级视频一区二区三区| 国产欧美日韩综合在线一区二区| 成人永久免费在线观看视频| 在线永久观看黄色视频| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久| 后天国语完整版免费观看| svipshipincom国产片| 男女之事视频高清在线观看| 久久人妻熟女aⅴ| 免费看十八禁软件| 亚洲国产精品久久男人天堂| 国产成人精品久久二区二区免费| 亚洲成人免费电影在线观看| 久久亚洲精品不卡| 国产亚洲精品久久久久5区| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久| 老司机深夜福利视频在线观看| 亚洲成人久久性| 国产又爽黄色视频| 女性生殖器流出的白浆| 18禁裸乳无遮挡免费网站照片 | 国产精品爽爽va在线观看网站 | 中文字幕另类日韩欧美亚洲嫩草| 午夜精品在线福利| 99久久综合精品五月天人人| 久久青草综合色| 国产精品一区二区精品视频观看| av中文乱码字幕在线| 色综合亚洲欧美另类图片| 女性生殖器流出的白浆| cao死你这个sao货| 一进一出抽搐动态| 亚洲天堂国产精品一区在线| 美女国产高潮福利片在线看| 神马国产精品三级电影在线观看 | 91老司机精品| 97人妻天天添夜夜摸| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类 | 亚洲精品国产精品久久久不卡| 嫩草影院精品99| 久久久久九九精品影院| 午夜久久久在线观看| 午夜福利影视在线免费观看| 亚洲av成人不卡在线观看播放网| 深夜精品福利| 又大又爽又粗| 日韩欧美在线二视频| 亚洲最大成人中文| 日本五十路高清| 视频区欧美日本亚洲| 人人妻人人澡人人看| 国内精品久久久久精免费| 久久精品91蜜桃| 午夜免费观看网址| 最近最新免费中文字幕在线| 中出人妻视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区黑人| 亚洲成a人片在线一区二区| 国产成人免费无遮挡视频| 国产成人欧美| 国产精品二区激情视频| 午夜福利视频1000在线观看 | 88av欧美| 亚洲成av人片免费观看| 久久国产精品人妻蜜桃| 国产精品亚洲一级av第二区| 国产精品久久久人人做人人爽| 日日干狠狠操夜夜爽| 十分钟在线观看高清视频www| 精品国产国语对白av| 久久人人97超碰香蕉20202| 国产精品一区二区三区四区久久 | 亚洲黑人精品在线| 99久久精品国产亚洲精品| 脱女人内裤的视频| 午夜视频精品福利| 久久久水蜜桃国产精品网| 一进一出抽搐动态| 看黄色毛片网站| av天堂在线播放| 亚洲性夜色夜夜综合| 国产成人欧美在线观看| 又黄又粗又硬又大视频| 久久久国产欧美日韩av| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到| 久久热在线av| 亚洲欧美日韩另类电影网站| 女人高潮潮喷娇喘18禁视频| 在线免费观看的www视频| 免费观看人在逋| 精品欧美国产一区二区三| 九色国产91popny在线| 亚洲最大成人中文| 91成人精品电影| 88av欧美| 嫁个100分男人电影在线观看| 午夜精品在线福利| 国产人伦9x9x在线观看| 亚洲午夜精品一区,二区,三区| 丝袜在线中文字幕| 欧美老熟妇乱子伦牲交| 狠狠狠狠99中文字幕| 久久这里只有精品19| 两个人看的免费小视频| 成人永久免费在线观看视频| 亚洲伊人色综图| 美女大奶头视频| 久久精品影院6| 亚洲熟妇中文字幕五十中出| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看亚洲国产| 91大片在线观看| 国产精品乱码一区二三区的特点 | 欧美成狂野欧美在线观看| 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 少妇被粗大的猛进出69影院| 亚洲一码二码三码区别大吗| 老司机午夜十八禁免费视频| 亚洲精品国产一区二区精华液| 9191精品国产免费久久| 国产午夜福利久久久久久| 男人舔女人下体高潮全视频| 国产精品九九99| 男人的好看免费观看在线视频 | 免费高清在线观看日韩| 日本一区二区免费在线视频| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 在线观看免费视频网站a站| 一夜夜www| 性欧美人与动物交配| 久久青草综合色| 一边摸一边抽搐一进一出视频| ponron亚洲| 久久狼人影院| 亚洲精品粉嫩美女一区| 久久中文字幕一级| 亚洲成av人片免费观看| 国产成人av教育| 最新美女视频免费是黄的| 搡老熟女国产l中国老女人| 老司机在亚洲福利影院| 中文亚洲av片在线观看爽| 老汉色∧v一级毛片| 人人妻,人人澡人人爽秒播| 一a级毛片在线观看| 精品国产乱码久久久久久男人| 一级片免费观看大全| 在线观看免费午夜福利视频| svipshipincom国产片| 可以在线观看的亚洲视频| 美女 人体艺术 gogo| 9色porny在线观看| 搡老熟女国产l中国老女人| 午夜两性在线视频| 久久狼人影院| 亚洲av电影在线进入| 午夜福利视频1000在线观看 | 天天躁夜夜躁狠狠躁躁| 欧美午夜高清在线| 两性夫妻黄色片| 窝窝影院91人妻| 午夜福利18| 最近最新中文字幕大全免费视频| 国产激情久久老熟女| 亚洲色图av天堂| 国产免费av片在线观看野外av| 午夜免费激情av| 波多野结衣巨乳人妻| 国产在线观看jvid| av超薄肉色丝袜交足视频| 九色国产91popny在线| 午夜精品国产一区二区电影| 亚洲狠狠婷婷综合久久图片| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 日韩欧美一区视频在线观看| 亚洲五月天丁香| 欧美一级a爱片免费观看看 | 午夜久久久在线观看| 九色亚洲精品在线播放| 午夜福利一区二区在线看| 日韩高清综合在线| 看片在线看免费视频| 国产精品久久久av美女十八| 亚洲国产欧美一区二区综合| xxx96com| 18禁观看日本| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 韩国av一区二区三区四区| 日本免费一区二区三区高清不卡 | 国产精品永久免费网站| 亚洲国产精品合色在线| 日本五十路高清| 亚洲精品国产精品久久久不卡| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 精品国产国语对白av| 波多野结衣高清无吗| 亚洲精品粉嫩美女一区| 麻豆国产av国片精品| 91老司机精品| 国产视频一区二区在线看| 精品国产一区二区三区四区第35| 黄色视频,在线免费观看| 欧美色欧美亚洲另类二区 | 日本 av在线| 黄频高清免费视频| 亚洲欧美激情综合另类| 一级毛片精品| 免费在线观看影片大全网站| 日韩欧美三级三区| www.熟女人妻精品国产| 国产高清激情床上av| 一本久久中文字幕| 丝袜美足系列| 国产一区在线观看成人免费| 久久久久九九精品影院| 精品国产国语对白av| 成人三级黄色视频| 国产精品久久视频播放| 久久青草综合色| 国产三级在线视频| 日韩高清综合在线| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 日日爽夜夜爽网站| 午夜福利,免费看| 午夜精品久久久久久毛片777| 国产亚洲欧美精品永久| 麻豆一二三区av精品| 手机成人av网站| 亚洲精品在线观看二区| 色综合站精品国产| 国产熟女午夜一区二区三区| 最近最新中文字幕大全电影3 | 18美女黄网站色大片免费观看| 国产成人欧美在线观看| 国产精品亚洲美女久久久| 日本五十路高清| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| 亚洲欧美精品综合久久99| 99国产精品99久久久久| 亚洲精品中文字幕在线视频| 欧美黑人欧美精品刺激| 给我免费播放毛片高清在线观看| 欧美久久黑人一区二区| 久久久久久人人人人人| 99国产综合亚洲精品| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区| 啪啪无遮挡十八禁网站| 国产激情久久老熟女| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀| 真人一进一出gif抽搐免费| 热re99久久国产66热| 精品电影一区二区在线| 国产精品精品国产色婷婷| 很黄的视频免费| 香蕉久久夜色| 中文字幕人成人乱码亚洲影| 久久久久久久精品吃奶| 伦理电影免费视频| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 在线观看日韩欧美| 可以在线观看毛片的网站| 国产精品久久久久久亚洲av鲁大| 嫩草影院精品99| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点 | 精品熟女少妇八av免费久了| 脱女人内裤的视频| 悠悠久久av| 国产三级黄色录像| 99香蕉大伊视频| 亚洲中文日韩欧美视频| 男人舔女人的私密视频| 成在线人永久免费视频| 国产精品亚洲av一区麻豆| 亚洲va日本ⅴa欧美va伊人久久| 久久国产乱子伦精品免费另类| 男女之事视频高清在线观看| 91麻豆av在线| 熟妇人妻久久中文字幕3abv| 啦啦啦免费观看视频1| 满18在线观看网站| 亚洲国产中文字幕在线视频| 久热爱精品视频在线9| 婷婷六月久久综合丁香| 欧美乱妇无乱码| 久久青草综合色| 97碰自拍视频| 性色av乱码一区二区三区2| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| 久久婷婷人人爽人人干人人爱 | www日本在线高清视频| 在线观看免费视频网站a站| 99riav亚洲国产免费| 日韩大尺度精品在线看网址 | 18美女黄网站色大片免费观看| 亚洲欧洲精品一区二区精品久久久| 久热爱精品视频在线9| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 久久久国产欧美日韩av| cao死你这个sao货| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 亚洲中文av在线| 性欧美人与动物交配| 手机成人av网站| 亚洲男人天堂网一区| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 黄色女人牲交| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 免费在线观看日本一区| 欧美+亚洲+日韩+国产| 制服丝袜大香蕉在线| 日本三级黄在线观看| 999久久久精品免费观看国产| 19禁男女啪啪无遮挡网站| 亚洲免费av在线视频| 老司机在亚洲福利影院| 欧美午夜高清在线| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 亚洲国产毛片av蜜桃av| 久久亚洲真实| 脱女人内裤的视频| 日本五十路高清| 人成视频在线观看免费观看| 国产日韩一区二区三区精品不卡| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 亚洲天堂国产精品一区在线| 午夜视频精品福利| 欧美成人性av电影在线观看| 国产aⅴ精品一区二区三区波| 激情视频va一区二区三区| 亚洲av成人av| 欧美丝袜亚洲另类 | 亚洲av日韩精品久久久久久密| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 视频在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 宅男免费午夜| 日韩欧美国产一区二区入口| 88av欧美| 日本撒尿小便嘘嘘汇集6| 黄色成人免费大全| 露出奶头的视频| 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 伊人久久大香线蕉亚洲五| 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| 国产精品久久视频播放| 亚洲国产欧美网| 欧美午夜高清在线| 非洲黑人性xxxx精品又粗又长| 曰老女人黄片| 国产一区二区三区综合在线观看| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 国产黄a三级三级三级人| www国产在线视频色| 亚洲电影在线观看av| 91精品三级在线观看| 亚洲一区高清亚洲精品| 亚洲人成网站在线播放欧美日韩| 久久香蕉国产精品| 中文字幕色久视频| 午夜激情av网站| 淫秽高清视频在线观看| 亚洲av电影不卡..在线观看| 麻豆久久精品国产亚洲av| 制服丝袜大香蕉在线| 国产在线精品亚洲第一网站| 国产精品影院久久| 免费看十八禁软件| 香蕉久久夜色| 中文字幕人妻丝袜一区二区| 大码成人一级视频| 亚洲全国av大片| 欧美在线一区亚洲| 99久久99久久久精品蜜桃| 一进一出好大好爽视频| 精品无人区乱码1区二区| 少妇 在线观看| 亚洲狠狠婷婷综合久久图片| 日韩欧美国产在线观看| 国产野战对白在线观看| 91国产中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| www.精华液| 国产三级在线视频| 久久香蕉激情| 老司机在亚洲福利影院| 91成年电影在线观看| 久久午夜综合久久蜜桃| 亚洲成人精品中文字幕电影| 日韩有码中文字幕| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 日韩大尺度精品在线看网址 | 国产麻豆成人av免费视频| 黄网站色视频无遮挡免费观看| 性色av乱码一区二区三区2| 一区二区三区国产精品乱码| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| 色在线成人网| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 亚洲中文av在线| 精品无人区乱码1区二区| 一区二区三区激情视频| 黄色视频不卡| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人久久性| 欧美成人一区二区免费高清观看 | 一本综合久久免费| 国产精品日韩av在线免费观看 | 久热这里只有精品99| 欧美色欧美亚洲另类二区 | 日韩av在线大香蕉| 亚洲专区字幕在线| 琪琪午夜伦伦电影理论片6080| 久久久久久久久免费视频了| 久久精品aⅴ一区二区三区四区| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清 | 18禁观看日本| 波多野结衣一区麻豆| 欧美成人午夜精品| 久久精品91无色码中文字幕| 日韩精品中文字幕看吧| 免费看美女性在线毛片视频| 国产亚洲精品综合一区在线观看 | 9色porny在线观看| 国产私拍福利视频在线观看| 法律面前人人平等表现在哪些方面| 国产在线观看jvid| 两人在一起打扑克的视频| 此物有八面人人有两片| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久| 免费看十八禁软件| 一级a爱视频在线免费观看| 久久久久久久久久久久大奶| 99国产精品一区二区三区| av在线天堂中文字幕| 国产亚洲精品综合一区在线观看 | 我的亚洲天堂| 欧美激情 高清一区二区三区| 正在播放国产对白刺激| 亚洲视频免费观看视频| √禁漫天堂资源中文www| 国产不卡一卡二| 在线av久久热| 最好的美女福利视频网| 精品无人区乱码1区二区| 伊人久久大香线蕉亚洲五| 中文字幕人妻熟女乱码| 国产精品综合久久久久久久免费 | 亚洲第一电影网av| 久久亚洲精品不卡| 国产精品 欧美亚洲| 亚洲第一欧美日韩一区二区三区| 午夜免费成人在线视频| 一进一出抽搐动态| 欧美一区二区精品小视频在线| 欧美日韩福利视频一区二区| 97碰自拍视频| 日本vs欧美在线观看视频| 97碰自拍视频| 极品人妻少妇av视频| 日韩精品青青久久久久久| 亚洲人成伊人成综合网2020| 亚洲伊人色综图| 国产亚洲欧美98| 午夜免费成人在线视频| 亚洲免费av在线视频| 在线视频色国产色| 午夜福利成人在线免费观看| 久久久国产欧美日韩av| 欧美丝袜亚洲另类 | 婷婷丁香在线五月| 午夜福利欧美成人| 国产精品 欧美亚洲| 欧美老熟妇乱子伦牲交| 欧美一级a爱片免费观看看 | 男男h啪啪无遮挡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图 男人天堂 中文字幕| 身体一侧抽搐| 日本一区二区免费在线视频| 嫩草影视91久久| e午夜精品久久久久久久| 国产三级在线视频| 久久草成人影院|