• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring

    2022-01-23 06:34:32ChuangyeWang王創(chuàng)業(yè)TigangNing寧提綱JingLi李晶LiPei裴麗JingjingZheng鄭晶晶andJingchuanZhang張景川
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李晶晶晶

    Chuangye Wang(王創(chuàng)業(yè)) Tigang Ning(寧提綱) Jing Li(李晶) Li Pei(裴麗)Jingjing Zheng(鄭晶晶) and Jingchuan Zhang(張景川)

    1Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC,Institute of Lightwave Technology,Beijing Jiaotong University,Beijing 100044,China

    2Beijing Institute of Spacecraft Environment Engineering,Beijing 100029,China

    Keywords: microwave photonics,instantaneous frequency measurement,optical power monitoring

    1. Introduction

    Instantaneous frequency measurement (IFM) has been a research hotspot in recent years. It has important applications in both military and civil fields, such as radar,communication systems, and electronic warfare systems.[1,2]The traditional electronics method is no longer suitable for future development due to the disadvantages of large loss,small measurement bandwidth and no immunity to electromagnetic interference, but the photonics method perfectly overcomes these shortcomings.[3-5]The researchers have proposed many IFM schemes based on photonics methods, for example,based on the frequency-space mapping method,[6-8]frequency-time mapping method,[9-14]frequency-phase mapping method,[15,16]and frequency-power mapping method.Among them,the method based on frequency-power mapping is the most common. The basic principle is to use a modulator to modulate the received RF signal, then the modulated signal is divided into two channel signals and processed in the optical domain, and the processed optical signals are directly used to measure the optical power, or converted into electrical signals by the photodetector to measure the electrical power. The ACF is constructed to establish the corresponding relationship between the frequency of the RF signal and the power ratio of two channel signals. The frequency of the RF signal can be determined by monitoring the optical power ratio or the electrical power ratio of the two channel signals. In Refs. [17-20], these schemes first used a modulator to modulate the input RF signal, then the modulated signal went through different dispersion processes to achieve different power attenuation,and finally a fixed relationship between the input RF frequency and the power ratio of two output signals was established. The frequency of the RF signal can be derived from the power ratio. In Refs.[21,22],the input RF signal first entered Mach-Zehnder modulator(MZM)for carrier suppression modulation, then the optical filter was used to process the modulated signal, and finally the power ratio of the two processed signals was used to derive the frequency of the input RF signal. In Ref.[23], a phase modulator was put into a Sagnac loop to establish a relationship between the amplitude of the direct current output and the input RF frequency. The measurement range can reach 0.01 GHz-40 GHz and the measurement error is less than 6%. In addition,IFM can also be realized by converting frequency information into power information based on stimulated Brillouin scattering,[24,25]resonators,[26,27]and four-wave mixing.[28]Although these schemes can realize IFM, they are relatively complex in structure. In Ref. [29], the author realized IFM based on a dual-polarization modulator and an electrical delay line. Compared with the previous IFM schemes,the structure is simpler and the cost is lower (there is no expensive highspeed electronic device). However, in this scheme, the polarization controller needs to be accurately kept at 45°, which increases the instability of the system(the polarization device is sensitive to the environment).

    In this paper,a simpler structure for IFM is proposed.The scheme only uses one optical source,one electrical delay line,two I/Q modulators and two optical power meters. By setting the bias point of two I/Q modulators appropriately,a fixed relationship between the input signal frequency and the power ratio of two optical signals output by two I/Q modulators is established. The input signal frequency can be derived by the power ratio. The measurement range and measurement error can be adjusted by changing the delay amount of the electrical delay line. The scheme has a better measurement error for low frequency compared with other schemes. The measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz in simulation.

    2. Model and theoretical analysis

    Figure 1 shows the schematic diagram of the proposed scheme. The optical signal generated by the CW laser is first divided into two equal power optical signals by an optical power splitter. The two equal power optical signals are injected into two I/Q modulators respectively. I/Q modulator 1 consists of two sub-modulators(MZM-1 and MZM-2),and I/Q modulator 2 consists of two sub-modulators(MZM-3 and MZM-4). The RF signal generated by the RF source is first divided into two equal power electrical signals by an electrical power splitter. One channel electrical signal first passes through an electrical delay line and then is divided by an electrical power splitter, and the generated two electrical signals are injected into the input RF ports of MZM-1 and MZM-3 respectively. The other channel electrical signal passes through an electrical power splitter and the generated two electrical signals are injected into the RF input ports of MZM-2 and MZM-4 respectively. MZM-1,MZM-2,MZM-3 and MZM-4 are biased at minimum transmission point (MITP). I/Q modulator 1 and I/Q modulator 2 are biased at maximum transmission point (MATP) and MITP respectively. Suppose the phase shift induced by DC bias of MZM-1,MZM-2,MZM-3,MZM-4,I/Q modulator 1 and I/Q modulator 2 areφ1,φ2,φ3,φ4,φ5, andφ6respectively, soφ1=φ2=φ3=φ4=φ6=πandφ5=0. The output optical signal by CW laser isEin(t)=E0exp(jω0t), whereE0andω0denote the amplitude and angular frequency respectively. The output electrical signal by the RF source isVRF(t)=VRFcos(Ωt),whereVRFandΩdenote the amplitude and angular frequency respectively. The delay amount of the electrical delay line isτ. The output optical signal of I/Q modulator 1 and I/Q modulator 2 can be expressed as

    Fig. 1. The schematic diagram of the scheme (RF source: radio frequency source; CW laser: continuous-wave laser; MZM: Mach-Zehnder modulator;DL:electrical delay line;OPM:optical power meter;φ1,φ2,φ3,φ4,φ5,and φ6: phase shifts induced by the DC bias of MZM-1, MZM-2, MZM-3,MZM-4,I/Q modulator 1,and I/Q modulator 2,respectively).

    wherefdenotes the frequency of the received RF signal.

    According to Eq. (6), whenτis a fixed value, there is a one-to-one corresponding relationship betweenfandP1/P2.Therefore,the frequency of the received RF signal can be derived by the power ratio of two optical signals generated by two I/Q modulators.

    Figure 2 is calculated ACF,P1,P2versus RF frequency diagram whenτ=20 ps. Figure 3 is the ACF curve diagram correspondingτ=20 ps, 30 ps, 40 ps, and 50 ps. As can be seen in Fig. 3, different delay amountτcorresponds to different ACF curve. Different ACF curve determines different measurement range.

    Fig. 2. Calculated ACF, calculated P1, calculated P2 versus RF frequency when τ =20 ps.

    Fig.3. Calculated ACF versus RF frequency when τ =20 ps,30 ps,40 ps,and 50 ps.

    3. Simulation and discussion

    The feasibility of the scheme is verified by simulation in the software OptiSystem. The parameters are set as follows: the power, wavelength and linewidth of the CW laser are 10 dBm, 1550.12 nm, and 10 MHz respectively. The extinction ratio,insertion loss and half-wave voltage of the MZM are 30 dB, 5 dB, and 4 V respectively. The amplitude of the RF source is 3.6 V (the modulation index of MZM is equal to 1). The electrical delay amount of the electrical delay line is 20 ps. MZM-1, MZM-2, MZM-3 and MZM-4 are biased at MITP. I/Q modulator 1 and I/Q modulator 2 are biased at MATP and MITP respectively. Figure 4 shows simulated received optical power values of the optical power meter 1 and optical power meter 2,and ACF curve when the frequency of RF changes from 0 GHz-30 GHz. As can be seen in Fig. 4,when the frequency of the input RF is from 0 GHz to 25 GHz,the ACF curve is monotonous. There is a one-to-one corresponding relationship between the frequency of the input RF and the value of ACF curve,so we can figure out the frequency of the input RF by the value of ACF in real time.

    Fig.4. Simulated ACF versus RF frequency when τ =20 ps.

    In previous theoretical calculation,the extinction ratio of the modulator is considered to be infinite, but the extinction ratio of the MZM is finite in practice. The effect of extinction ratio of the MZM on the scheme needs to be considered. The extinction ratio of the MZM is set to 20 dB,25 dB,and 30 dB respectively in the OptiSystem. The settings of other parameters remain unchanged. The relationship diagram between ACF and the input RF frequency can be obtained as shown in Fig. 5. Figure 5 shows that the higher the extinction ratio of the MZM is,the closer the obtained ACF curve is to the theoretical ACF curve. This is because the MZM cannot suppress the carrier and even-order sidebands effectively when the extinction ratio of the MZM is not high.

    The effect of the modulation index of the MZM on the scheme also needs to be considered. The modulation index of the MZM is set to 0.5,1.0,and 1.5 respectively.The extinction ratio of the MZM is set to 30 dB.Other parameter settings remain unchanged. The relationship diagram between the ACF and the input RF frequency can be obtained as shown in Fig.6.Figure 6 indicates that the larger the modulation indexmis in a certain range, the closer the ACF curve is to the theoretical curve. This is because the amplitude difference between generated first-order optical sidebands and generated higher odd-order optical sidebands by the MZM will increase when the modulation indexmincreases in a certain range, which will reduce the effect of higher odd-order sidebands on the scheme. However,the ACF curves under different modulation index are only different at the end of the monotone interval(0 GHz-25 GHz) and most regions of the monotone interval coincide with the theoretical ACF curve,which indicates that this scheme is not required for the power of the input RF.

    Fig. 5. Simulated ACF curve versus input RF frequency when εr =20 dB,25 dB,and 30 dB.

    Fig.6. Simulated ACF curve versus input RF frequency when m=0.5,1.0,and 1.5.

    When the modulation indexm= 1, the delay amountτ=20 ps and the extinction ratio of the MZM is 30 dB, the estimation error can be obtained as shown in Figs. 7(a) and 7(b). As shown in Fig. 7(a), the simulated frequency measurement results are approximately equal to the calculated frequency measurement results except around 25 GHz. The reason for the larger measurement error around 25 GHz is that the extinction ratio of the MZM is finite. As shown in Fig. 7(b),the estimation error is-0.15 GHz to +0.3 GHz in the measurement range of 0 GHz-24.5 GHz whenτ=20 ps.

    Fig.7.(a)Estimated RF frequency versus input RF frequency.(b)Estimation error versus input RF frequency.

    The estimation error is analyzed whenτ=30 ps, 40 ps,and 50 ps. The simulated results are shown in Fig. 8. Figures 8(a) and 8(b) indicate that the measurement range and the measurement error are 0 GHz-16 GHz and-0.3 GHz to+0.05 GHz whenτ=30 ps. The estimation error is larger around 16.7 GHz because the extinction ratio of MZM is finite.Similarly,it can be seen from Figs.8(c)and 8(d)that the measurement range and measurement error are 0 GHz-12.2 GHz and-0.05 GHz to +0.2 GHz whenτ=40 ps. Figures 8(e)and 8(f)indicate that the measurement range and measurement error are 0 GHz-9.6 GHz and-0.1 GHz to+0.05 GHz whenτ=50 ps.

    Fig.8.Estimated RF frequency versus input RF frequency at different τ=(a)30 ps, (c) 40 ps, (e) 50 ps. Estimation RF frequency error versus input RF frequency at different τ =(b)30 ps,(d)40 ps,(f)50 ps.

    Different measurement ranges and measurement errors are shown in Table 1. There is a trade-off balance between the measurement range and measurement error,as can be seen in Table 1. Whenτincreases, the measurement range decreases,but the measurement error becomes better. Since the ACF curve in this scheme has a high slope at low frequency,the measurement error of low frequency is better than that of other schemes.

    Table 1. Different measurement ranges and measurement errors.

    In the scheme, the four sub-modulators are set as MITP.I/Q modulator 1 and I/Q modulator 2 are set as MATP and MITP respectively. The effect of DC bias drift of the MZM on the scheme needs to be considered. Suppose that ΔV/Vπis the DC bias drift of the MZM, where ΔVdenotes the varied amount of DC bias voltage of the MZM andVπdenotes the half-wave voltage of the MZM.Takeτ=50 ps for example. The DC bias drift of MZM-1,MZM-2,MZM-3,MZM-4,I/Q modulator 1 and I/Q modulator 2 are set to±10%respectively. The corresponding parameter settings in the simulation software are shown in Table 2.

    Table 2. Parameter settings for different modulators.

    Fig.9. Estimation error diagram when DC bias drift is±10%: (a)MZM-1, (b) MZM-2, (c) I/Q modulator 1, (d) MZM-3, (e) MZM-4, (f) I/Q modulator 2.

    Figures 9(a) and 9(b) are the estimation error diagrams when the DC bias drift of MZM-1 is±10% and the DC bias drift of MZM-2 is±10% respectively. As shown in Figs.9(a)and 9(b),the estimation error becomes-0.55 GHz to +0.05 GHz. In order to reach the measurement error(-0.1 GHz to +0.05 GHz) before DC bias drift, the measurement range becomes 0 GHz-6.5 GHz. Figure 9(c) is the estimation error diagram when the DC bias drift of I/Q modulator 1 is±10%. As shown in Fig.9(c),the estimation error becomes-0.7 GHz to+0.07 GHz. In order to reach the measurement error-0.1 GHz to +0.07 GHz, the measurement range becomes 0 GHz-6.5 GHz.

    Figures 9(d) and 9(e) are the estimation error diagrams when the DC bias drift of MZM-3 is±10% and the DC bias drift of MZM-4 is±10% respectively. As shown in Figs. 9(d) and 9(e), the estimation error becomes-0.1 GHz to +0.7 GHz. In order to reach the measurement error(-0.1 GHz to +0.05 GHz) before DC bias drift, the measurement range becomes 3.9 GHz-9.6 GHz. Figure 9(f) is the estimation error diagram when the DC bias drift of I/Q modulator 2 is±10%. As shown in Fig. 9(f), the estimation error becomes-0.1 GHz to+0.9 GHz. In order to reach the measurement error(-0.1 GHz to+0.05 GHz)before DC bias drift,the measurement range becomes 3.9 GHz-9.6 GHz.

    4. Conclusion

    In this paper, a new scheme to realize IFM is proposed.The structure of the scheme is simple; it only consists of one optical source, one electrical delay line, two I/Q modulators,and two optical power meters. By setting each bias point of two I/Q modulators and the delay amount of the electrical delay line properly, a fixed relationship between the frequency of the RF signal and the optical power ratio can be obtained.Since the scheme is carried out in the optical domain, no expensive electronic devices are used. The scheme also has no polarization devices, which reduces the impact of environmental disturbances on the system. The measurement range and measurement error can be adjusted by changing the delay amount of the electrical delay line. Although there exists a trade-off balance between the measurement range and the measurement error,the measurement error of low frequency in this scheme is better than other schemes because the slope of the ACF curve is large at the low frequency. The measurement error in low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz. We believe this method will provide guidance for IFM in the future.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1801003),the National Natural Science Foundation of China (Grant Nos. 61525501 and 61827817), and the Beijing Natural Science Foundation,China(Grant No.4192022).

    猜你喜歡
    李晶晶晶
    巧算最小表面積
    Digging for the past
    甲狀腺瘤瘤切除術(shù)后的臨床護(hù)理要點(diǎn)分析
    齊 家
    照相機(jī)(2021年2期)2021-04-06 16:28:01
    The Hardest Language
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    銀億股份:于無聲處聽驚雷
    “兄妹”大隱于市
    中外文摘(2015年21期)2015-10-10 11:41:53
    免费黄频网站在线观看国产| 制服诱惑二区| 国产一区在线观看成人免费| 国产精品综合久久久久久久免费 | 天堂动漫精品| 午夜福利乱码中文字幕| 亚洲少妇的诱惑av| 欧美av亚洲av综合av国产av| 国产成人系列免费观看| 男女午夜视频在线观看| av视频免费观看在线观看| 免费在线观看完整版高清| 91麻豆精品激情在线观看国产 | 欧美精品高潮呻吟av久久| 国产精品久久久av美女十八| 一a级毛片在线观看| 深夜精品福利| 国产男女超爽视频在线观看| 日本a在线网址| 麻豆av在线久日| 99热国产这里只有精品6| 国产熟女午夜一区二区三区| 两人在一起打扑克的视频| 99热网站在线观看| 免费在线观看黄色视频的| 免费在线观看亚洲国产| 性少妇av在线| 中文字幕色久视频| 亚洲情色 制服丝袜| 啦啦啦视频在线资源免费观看| 免费在线观看视频国产中文字幕亚洲| 超碰成人久久| 国产成人欧美| 午夜免费成人在线视频| 天天躁夜夜躁狠狠躁躁| 国产无遮挡羞羞视频在线观看| 欧美成人午夜精品| 国产精品亚洲一级av第二区| 热re99久久精品国产66热6| 久久香蕉精品热| 一进一出抽搐gif免费好疼 | 好男人电影高清在线观看| 午夜视频精品福利| 婷婷成人精品国产| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲一级av第二区| 老熟女久久久| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠躁躁| 国产在线一区二区三区精| 亚洲美女黄片视频| 日韩中文字幕欧美一区二区| 超碰97精品在线观看| 老司机靠b影院| 亚洲国产欧美日韩在线播放| 自线自在国产av| 在线观看一区二区三区激情| 久久精品国产清高在天天线| 久久久久久久午夜电影 | 18禁美女被吸乳视频| 中亚洲国语对白在线视频| 黄色片一级片一级黄色片| 午夜久久久在线观看| 久久青草综合色| 久久精品亚洲熟妇少妇任你| 两性午夜刺激爽爽歪歪视频在线观看 | 999久久久国产精品视频| 韩国精品一区二区三区| 啦啦啦免费观看视频1| 亚洲av美国av| 久久国产精品大桥未久av| 日韩人妻精品一区2区三区| 久久香蕉激情| 国产亚洲欧美精品永久| 91大片在线观看| 两个人看的免费小视频| 女人爽到高潮嗷嗷叫在线视频| 在线观看66精品国产| 午夜视频精品福利| 国产一区在线观看成人免费| 深夜精品福利| 免费高清在线观看日韩| av超薄肉色丝袜交足视频| 在线观看免费午夜福利视频| 大片电影免费在线观看免费| 黄色怎么调成土黄色| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟女毛片儿| 国产精品1区2区在线观看. | 久久中文看片网| 久久亚洲真实| 一进一出抽搐动态| 免费av中文字幕在线| 国精品久久久久久国模美| 女性被躁到高潮视频| 成人av一区二区三区在线看| 国产免费av片在线观看野外av| 女人久久www免费人成看片| 免费人成视频x8x8入口观看| 欧美成狂野欧美在线观看| 国产精品亚洲av一区麻豆| 精品久久久久久久久久免费视频 | 国产单亲对白刺激| 黄色怎么调成土黄色| 757午夜福利合集在线观看| 黄色 视频免费看| 亚洲第一av免费看| 久久香蕉国产精品| 在线观看午夜福利视频| 成人国语在线视频| 精品少妇久久久久久888优播| 久久久久国产精品人妻aⅴ院 | 欧美日韩视频精品一区| 可以免费在线观看a视频的电影网站| 淫妇啪啪啪对白视频| 色老头精品视频在线观看| 999久久久国产精品视频| 18禁国产床啪视频网站| 国内毛片毛片毛片毛片毛片| 大香蕉久久成人网| 自拍欧美九色日韩亚洲蝌蚪91| 国产人伦9x9x在线观看| 美国免费a级毛片| 激情视频va一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出好大好爽视频| 91成年电影在线观看| 一级片免费观看大全| 18禁黄网站禁片午夜丰满| 制服人妻中文乱码| 午夜91福利影院| 悠悠久久av| 一进一出好大好爽视频| 91av网站免费观看| 亚洲国产精品一区二区三区在线| 日韩人妻精品一区2区三区| 国产精品 国内视频| 欧美日韩一级在线毛片| √禁漫天堂资源中文www| 亚洲午夜理论影院| 亚洲国产欧美日韩在线播放| 丰满的人妻完整版| 精品免费久久久久久久清纯 | 欧美+亚洲+日韩+国产| 欧美午夜高清在线| 日本a在线网址| 99精品久久久久人妻精品| 久久午夜综合久久蜜桃| 在线十欧美十亚洲十日本专区| 丝袜在线中文字幕| 久久精品熟女亚洲av麻豆精品| 视频区欧美日本亚洲| 嫁个100分男人电影在线观看| 久久久国产成人精品二区 | 黑人操中国人逼视频| 免费在线观看影片大全网站| 国产精品久久久人人做人人爽| 叶爱在线成人免费视频播放| 欧美日韩一级在线毛片| 人人澡人人妻人| 色老头精品视频在线观看| 新久久久久国产一级毛片| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| 亚洲成国产人片在线观看| 啦啦啦在线免费观看视频4| 欧美国产精品va在线观看不卡| 亚洲 国产 在线| 免费看a级黄色片| 国产欧美日韩精品亚洲av| 中亚洲国语对白在线视频| 亚洲第一欧美日韩一区二区三区| 99久久99久久久精品蜜桃| 成人av一区二区三区在线看| 黄片小视频在线播放| 一级片免费观看大全| www.精华液| 757午夜福利合集在线观看| 色在线成人网| 叶爱在线成人免费视频播放| 亚洲一区二区三区欧美精品| 国产精品免费大片| 咕卡用的链子| 欧美+亚洲+日韩+国产| 欧美激情极品国产一区二区三区| 成人手机av| 欧美精品av麻豆av| 水蜜桃什么品种好| 天天影视国产精品| 精品国产一区二区三区久久久樱花| 99香蕉大伊视频| 亚洲在线自拍视频| 建设人人有责人人尽责人人享有的| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 亚洲全国av大片| 老汉色av国产亚洲站长工具| 丝袜人妻中文字幕| 国产精品免费大片| 美女国产高潮福利片在线看| 老熟妇乱子伦视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产不卡av网站在线观看| 一级片免费观看大全| 熟女少妇亚洲综合色aaa.| 757午夜福利合集在线观看| 亚洲第一av免费看| 亚洲av电影在线进入| 很黄的视频免费| 99精品在免费线老司机午夜| 每晚都被弄得嗷嗷叫到高潮| 日本精品一区二区三区蜜桃| 黄片大片在线免费观看| 欧美大码av| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 99国产精品一区二区蜜桃av | 新久久久久国产一级毛片| 90打野战视频偷拍视频| 欧美日韩福利视频一区二区| 精品国内亚洲2022精品成人 | 亚洲熟妇熟女久久| 99热国产这里只有精品6| 丁香六月欧美| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| tocl精华| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 捣出白浆h1v1| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 悠悠久久av| 欧美激情极品国产一区二区三区| 国产欧美日韩综合在线一区二区| 99久久综合精品五月天人人| 老司机亚洲免费影院| 亚洲国产看品久久| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| 变态另类成人亚洲欧美熟女 | 丁香六月欧美| 欧美+亚洲+日韩+国产| 亚洲性夜色夜夜综合| 操美女的视频在线观看| 香蕉久久夜色| 在线视频色国产色| 高清黄色对白视频在线免费看| 99久久综合精品五月天人人| 老熟妇乱子伦视频在线观看| 久久天堂一区二区三区四区| 啪啪无遮挡十八禁网站| 久久久国产成人精品二区 | 精品国产国语对白av| 丝袜在线中文字幕| 亚洲男人天堂网一区| 亚洲国产欧美一区二区综合| 欧美成人免费av一区二区三区 | 十八禁高潮呻吟视频| 久久久水蜜桃国产精品网| 久久性视频一级片| av一本久久久久| 激情在线观看视频在线高清 | 精品一区二区三区四区五区乱码| 国产激情欧美一区二区| 婷婷成人精品国产| 美女高潮喷水抽搐中文字幕| 麻豆av在线久日| √禁漫天堂资源中文www| 欧美不卡视频在线免费观看 | 成人av一区二区三区在线看| 国产精品二区激情视频| 日韩大码丰满熟妇| 高清在线国产一区| 水蜜桃什么品种好| avwww免费| 满18在线观看网站| 狂野欧美激情性xxxx| 欧美日韩国产mv在线观看视频| 嫩草影视91久久| 久久久国产精品麻豆| 久久香蕉激情| av国产精品久久久久影院| 超碰97精品在线观看| 日本精品一区二区三区蜜桃| 国产精品成人在线| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 国产xxxxx性猛交| 黄频高清免费视频| 亚洲第一欧美日韩一区二区三区| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 午夜亚洲福利在线播放| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 亚洲少妇的诱惑av| 国内毛片毛片毛片毛片毛片| 亚洲成国产人片在线观看| 国产精品久久久久成人av| 国产欧美日韩一区二区三区在线| 俄罗斯特黄特色一大片| 成人18禁在线播放| 久久国产精品影院| 亚洲精品一二三| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三区在线| 国产欧美亚洲国产| 精品一区二区三区四区五区乱码| 9191精品国产免费久久| 涩涩av久久男人的天堂| 狠狠婷婷综合久久久久久88av| 久久久久久亚洲精品国产蜜桃av| 天天躁日日躁夜夜躁夜夜| 波多野结衣av一区二区av| 日本a在线网址| 国产精品久久电影中文字幕 | 国产高清激情床上av| 亚洲精品自拍成人| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 精品乱码久久久久久99久播| 一区二区三区激情视频| 国产不卡av网站在线观看| 中文欧美无线码| 国精品久久久久久国模美| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频| 男人的好看免费观看在线视频 | 国产三级黄色录像| 久久久久久亚洲精品国产蜜桃av| 老司机在亚洲福利影院| 免费在线观看完整版高清| 视频区图区小说| 国产在视频线精品| avwww免费| 麻豆国产av国片精品| 亚洲一区二区三区不卡视频| 在线观看一区二区三区激情| 一区二区三区精品91| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 香蕉国产在线看| 一边摸一边做爽爽视频免费| 亚洲人成电影观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩在线播放| 国产成+人综合+亚洲专区| av有码第一页| 看黄色毛片网站| 亚洲精品国产精品久久久不卡| 久久久久久久久免费视频了| 美女高潮喷水抽搐中文字幕| 中文字幕最新亚洲高清| 久久精品国产清高在天天线| 久久午夜综合久久蜜桃| 在线免费观看的www视频| av一本久久久久| 一区二区日韩欧美中文字幕| 成人18禁在线播放| 亚洲视频免费观看视频| 成人影院久久| a级片在线免费高清观看视频| 色尼玛亚洲综合影院| av欧美777| 久久久国产一区二区| 免费少妇av软件| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 99热网站在线观看| tube8黄色片| 首页视频小说图片口味搜索| 亚洲第一av免费看| 亚洲精品国产一区二区精华液| 国产xxxxx性猛交| 大码成人一级视频| av欧美777| 国产男女内射视频| 久久亚洲精品不卡| 国产精品欧美亚洲77777| 久久亚洲精品不卡| 欧美精品av麻豆av| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| 99在线人妻在线中文字幕 | 99国产综合亚洲精品| 韩国av一区二区三区四区| 久久国产精品大桥未久av| 9191精品国产免费久久| 国产亚洲精品久久久久5区| 一本综合久久免费| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 日韩大码丰满熟妇| 亚洲精品国产区一区二| 别揉我奶头~嗯~啊~动态视频| 欧美日韩亚洲高清精品| x7x7x7水蜜桃| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 国产男靠女视频免费网站| 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲avbb在线观看| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜| 99在线人妻在线中文字幕 | 精品免费久久久久久久清纯 | 桃红色精品国产亚洲av| 亚洲欧美激情在线| 欧美人与性动交α欧美精品济南到| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 亚洲国产毛片av蜜桃av| 午夜成年电影在线免费观看| a级片在线免费高清观看视频| 黑人欧美特级aaaaaa片| 大香蕉久久网| 色播在线永久视频| 国内毛片毛片毛片毛片毛片| a级毛片黄视频| av超薄肉色丝袜交足视频| 国产精品一区二区精品视频观看| 在线观看免费日韩欧美大片| 老熟妇仑乱视频hdxx| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 成人黄色视频免费在线看| 悠悠久久av| 黄色片一级片一级黄色片| 亚洲少妇的诱惑av| 高清av免费在线| 久热这里只有精品99| 午夜久久久在线观看| 在线永久观看黄色视频| 亚洲精品久久午夜乱码| 久久国产精品大桥未久av| 国产精品久久久久成人av| 免费人成视频x8x8入口观看| 国产成人欧美在线观看 | 欧美精品一区二区免费开放| 一进一出抽搐gif免费好疼 | 91老司机精品| 女人久久www免费人成看片| 看黄色毛片网站| 女人久久www免费人成看片| 99国产精品99久久久久| 亚洲av第一区精品v没综合| 欧美日韩精品网址| 成人手机av| 亚洲专区中文字幕在线| 少妇的丰满在线观看| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美| 黄色女人牲交| 久久草成人影院| 国产欧美日韩一区二区三区在线| 欧美精品啪啪一区二区三区| 亚洲成人国产一区在线观看| 免费在线观看亚洲国产| 九色亚洲精品在线播放| 国产欧美亚洲国产| 久久热在线av| 久久精品熟女亚洲av麻豆精品| 99热网站在线观看| 一进一出抽搐gif免费好疼 | 狠狠婷婷综合久久久久久88av| 一区二区三区国产精品乱码| 日韩欧美免费精品| 成年版毛片免费区| 欧美乱妇无乱码| 国产深夜福利视频在线观看| 一级片'在线观看视频| 国产精品国产av在线观看| 久久久久久久久免费视频了| 色94色欧美一区二区| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 国产精品国产高清国产av | 久久人人97超碰香蕉20202| 18禁裸乳无遮挡动漫免费视频| 成年动漫av网址| 淫妇啪啪啪对白视频| 久久久久久久午夜电影 | 两性夫妻黄色片| 国产99白浆流出| 三级毛片av免费| 在线观看一区二区三区激情| av一本久久久久| 久久香蕉国产精品| 国产精品久久久久成人av| 又大又爽又粗| 中文字幕制服av| 欧美黄色淫秽网站| 国产av一区二区精品久久| 亚洲 欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 脱女人内裤的视频| 99精品欧美一区二区三区四区| 精品高清国产在线一区| 亚洲av日韩在线播放| 国产亚洲av高清不卡| 亚洲熟女精品中文字幕| 欧美av亚洲av综合av国产av| 如日韩欧美国产精品一区二区三区| 欧美成人午夜精品| 99香蕉大伊视频| 国产欧美日韩一区二区三区在线| 少妇裸体淫交视频免费看高清 | 欧美精品一区二区免费开放| www日本在线高清视频| 欧美日韩中文字幕国产精品一区二区三区 | 美女扒开内裤让男人捅视频| 婷婷精品国产亚洲av在线 | 飞空精品影院首页| 青草久久国产| 亚洲欧美日韩另类电影网站| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 久久人妻熟女aⅴ| 色婷婷久久久亚洲欧美| 大香蕉久久成人网| videos熟女内射| 免费久久久久久久精品成人欧美视频| 男女床上黄色一级片免费看| 无限看片的www在线观看| 中国美女看黄片| 伊人久久大香线蕉亚洲五| 777米奇影视久久| 99re6热这里在线精品视频| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 不卡一级毛片| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 国产在视频线精品| a在线观看视频网站| 亚洲中文字幕日韩| 中国美女看黄片| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 在线观看www视频免费| 亚洲色图 男人天堂 中文字幕| 动漫黄色视频在线观看| 亚洲熟女精品中文字幕| 精品一区二区三区视频在线观看免费 | 欧美日韩av久久| 亚洲aⅴ乱码一区二区在线播放 | 女警被强在线播放| 久久久久久人人人人人| 国产av又大| 成人av一区二区三区在线看| 久9热在线精品视频| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 亚洲五月婷婷丁香| 女同久久另类99精品国产91| 久久久久国内视频| 久久国产精品影院| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 久久国产亚洲av麻豆专区| 老司机影院毛片| 无限看片的www在线观看| 满18在线观看网站| av免费在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 精品免费久久久久久久清纯 | 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 欧美日韩成人在线一区二区| 超碰97精品在线观看| 别揉我奶头~嗯~啊~动态视频| 天天躁夜夜躁狠狠躁躁| 日本wwww免费看| 免费少妇av软件| 中文字幕最新亚洲高清| 天堂动漫精品| 脱女人内裤的视频| 美女高潮到喷水免费观看| 精品国内亚洲2022精品成人 | 午夜精品在线福利| 成年版毛片免费区| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 精品乱码久久久久久99久播| 人人妻,人人澡人人爽秒播| 9热在线视频观看99| 亚洲性夜色夜夜综合| av一本久久久久| 天天影视国产精品| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 亚洲三区欧美一区| 久久99一区二区三区| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 在线观看舔阴道视频|