江蘇南京市棲霞區(qū)棲霞中心小學(xué) 蔡誠開
“畫圖”策略是一種非常重要的分析問題和解決問題的策略,它利用“圖”的直觀表征問題中的關(guān)系和結(jié)構(gòu),從而幫助我們分析問題和解決問題。課程標(biāo)準中指出:“幾何直觀主要是指利用圖形描述和分析問題。借助幾何直觀可以把復(fù)雜的數(shù)學(xué)問題變得簡明、形象,有助于探索解決問題的思路,預(yù)測結(jié)果。”因此,采用“畫圖”的策略可以使思路靈活、過程簡便,不僅能幫助學(xué)生學(xué)習(xí)抽象的數(shù)學(xué)知識,還能有效培養(yǎng)學(xué)生創(chuàng)造性的思維。
這里有兩層含義,第一是畫圖的意識需要自然生長,第二是“圖”是學(xué)生思維的真實生成。在日常教學(xué)中不難發(fā)現(xiàn)一個現(xiàn)象,很多學(xué)生遇到解決不了的問題時,很少主動選擇“畫圖”策略,只有當(dāng)教師或者題目要求畫圖后才知道去畫圖,也就是說學(xué)生缺乏畫圖的意識。因此,筆者認為培養(yǎng)學(xué)生“畫圖”的意識是首要的任務(wù),在教學(xué)中教師需要及時鼓勵,并重視學(xué)生“畫圖”的個性化表達。
教師在教學(xué)中應(yīng)該尋找教學(xué)契機,及時鼓勵學(xué)生運用圖形、表格、符號等方式對概念和規(guī)律進行重復(fù)表征,在解決問題缺乏思路時及時鼓勵學(xué)生畫圖分析,在解決問題之后鼓勵學(xué)生運用畫圖向別人介紹自己的解題思路等。當(dāng)然,畫圖只是一種分析和解決問題的策略,是否需要畫圖與問題的難度、對問題情景的熟悉程度、學(xué)生的心理特點都是有關(guān)系的,需要注意的是如果學(xué)生不用畫圖就已經(jīng)可以解決問題了,教師就不必強制他們畫圖,更不應(yīng)強制學(xué)生畫教師“統(tǒng)一”的圖,不過教師可以多鼓勵他們運用畫圖來介紹自己的思路。
學(xué)生畫圖的過程應(yīng)該是與數(shù)學(xué)思維的過程緊密結(jié)合在一起的,有的問題畫圖解決了,并不完全等于在數(shù)學(xué)形式上掌握了,對有些畫圖解決的問題,有時還需要做進一步的思考,從數(shù)學(xué)形式的角度對這個問題進行再反思。
蘇教版五年級下冊學(xué)習(xí)完《轉(zhuǎn)化》的策略之后有這樣一道習(xí)題:觀察下面每個圖形中的排列規(guī)律,并填空。1=1×1,1+3=4=2×2,1+3+5=9=3×(),1+3+5+7=()=()×()。如果按照一般的教學(xué)步驟,讓學(xué)生看圖尋找規(guī)律再填空,學(xué)生很容易“依葫蘆畫瓢”猜出答案,但是學(xué)生并沒有理解圖形和算式背后的數(shù)學(xué)道理。如何通過畫圖幫助學(xué)生厘清算式的規(guī)律,促進學(xué)生的進一步思考呢?筆者對習(xí)題進行了改編,首先出示1+3+5+7+9+…+99,很多學(xué)生表示有困難,有困難怎么辦?可以化繁為簡,從簡單的開始,于是筆者問學(xué)生:你們想從幾個數(shù)想起?不少人說是2個,也有學(xué)生說2個太簡單,不利于發(fā)現(xiàn)規(guī)律,在討論中大家一致同意從3個數(shù)1+3+5開始思考。筆者提出了一個要求:你能想到不同的方法清楚地表示出你的思考過程嗎?于是出現(xiàn)了以下幾種方法,生1:直接計算。生2:1+3+5=3×3,5均2個給1,3個數(shù)都是3,也就是移多補少。師:他給我們提供了一個思路,把這些數(shù)變成同樣多。生3:我也是這樣想的,可以畫圖表示。生4:我也是把這些數(shù)轉(zhuǎn)化成同樣多的,不過我是這樣畫的:我畫成了一個三角形,然后我聯(lián)想到了三角形的面積推導(dǎo),用同樣的一個三角形旋轉(zhuǎn)后和它拼成一個平行四邊形,這樣每排的數(shù)也變成同樣多了。1+3+5=6×3÷2。筆者追問到:這里的6和3分別表示什么?為什么要除以2?通過交流明確這里的6相當(dāng)于拼成的平行四邊形的底,可以通過1+5=6計算得到;3相當(dāng)于平行四邊形的高,除以2是因為三角形中圓的個數(shù)是平行四邊形的一半。通過這樣的交流討論,學(xué)生們將三角形的面積公式推導(dǎo)過程遷移到這里的求和中來,不僅理解了這里的規(guī)律,而且還知道了為什么可以這樣算。接著再讓學(xué)生同樣用畫圖的方法表示另外幾道稍復(fù)雜的算式:1+3+5+7和1+3+5+7+9,并追問:如果算式的加數(shù)繼續(xù)增多,畫圖還適合嗎?仔細觀察這幾幅圖形和算式,你發(fā)現(xiàn)有什么規(guī)律?通過討論,學(xué)生們發(fā)現(xiàn)這些算式的加數(shù)是有規(guī)律的,后一個總比前一個數(shù)大2,概括得出求和公式:(首數(shù)+末數(shù))×個數(shù)÷2。
畫圖不僅可以幫助學(xué)生分析問題和解決問題,還能促進學(xué)生對問題進行反思。我們不用過多追求解題的數(shù)量,而應(yīng)更重視質(zhì)量,特別是重視解題之后的反思,及時溝通不同題目之間的內(nèi)在聯(lián)系。這樣學(xué)生就能主動地由一個問題聯(lián)想到一類問題,最終在頭腦中形成一類問題的共同“模型”。
總之,畫圖是小學(xué)數(shù)學(xué)分析問題和解決問題的一種重要的策略。教師要在教學(xué)中整體把握畫圖策略,將畫圖教學(xué)貫穿于整個小學(xué)數(shù)學(xué)日常教學(xué)之中,不斷引導(dǎo)學(xué)生體會畫圖的作用和價值,使學(xué)生形成用圖表征概念、用圖描述問題、用圖分析和解決問題的良好習(xí)慣,增強學(xué)生解決問題的能力,逐步提升他們的數(shù)學(xué)素養(yǎng)。