劉旭燕 朱新杰 陸友才 潘登
摘要:
對鋰離子電池中硅/碳負極材料的納米結構、摻雜改性以及三元復合等制備工藝及其電化學性能、相關機理進行了總結。通過研究不同改性方法對硅/碳負極材料電化學性能的影響,以找到較為優(yōu)異的改性路徑。經過對比發(fā)現(xiàn),通過采用納米結構、原子摻雜以及三元復合的方法均可顯著提升硅/碳負極材料的電化學性能。最后對硅/碳負極材料發(fā)展現(xiàn)狀進行了簡要分析,并對其研究前景進行了展望。
關鍵詞:
鋰離子電池; 硅/碳負極; 納米化; 改性
中圖分類號: TQ 152 文獻標志碼: A
Preparation and Application of Silicon/carbon Anodes for Lithium-ion Batteries
LIU Xuyan, ZHU Xinjie, LU Youcai, PAN Deng
(School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:
The electrochemical properties of silicon/carbon anodes for lithium-ion batteries with nanostructures,doping modification and ternary composites and the relevant mechanism are summarized in this paper.In orde to find out better modification methods for silicon/carbon anodes,the influence of various ways on their electrochemical performance are also investigated in detail.Besides,it is found that modification methods such as using nanostructures,heteroatom doping and ternary compound methods can significantly improve the electrochemical performance of silicon/carbon anode materials.In addition,the current development situation of the silicon/carbon anode materials is briefly analyzed and the research prospects are also discussed.
Keywords:
lithium-ion batteries; silicon/carbon anodes; nanostructures; modification
鋰離子電池因其具有較高的容量和穩(wěn)定的循環(huán)壽命,被認為是滿足便攜式電子器件、電動及混合動力汽車日益增加的能源需求的新型電源[1-4]。在不同負極材料中,硅的理論比容量(最高可達4 200 mA·h·g-1)是傳統(tǒng)碳負極材料理論比容量(約372 mA·h g-1)的10倍,且硅較低的脫嵌鋰電位(<0.5 V vs.Li/Li+)使得鋰離子電池能獲得更高的功率[5]。但是,硅負極材料具有較低的導電性,且在充放電過程中存在嚴重的體積膨脹問題,導致活性材料的損耗和短暫的循環(huán)壽命,故硅負極材料在鋰電池中的應用并不可觀[6]。納米管、納米線、納米棒、納米片、多孔、中空或帶防護涂層的封裝硅顆粒等結構,通常用于改善硅負極材料的結構以及其電化學性能[7-8]。另外,制備這些納米結構的方法(如氣液固法,磁控濺射)都有技術復雜和步驟多等缺點[9-10]。因為石墨和多孔碳在鋰化過程中體積變化相對較?。ㄈ缡捏w積膨脹率僅為10.6%),且具有良好的循環(huán)穩(wěn)定性和電導率,而成為極具潛力的負極材料。與硅材料相比,碳材料具有與其相似的性質,且它們可以緊密結合,所以碳材料自然地被選為用于分散硅顆粒的襯底材料(即分散載體)[11-12]。通過硅/碳復合,鋰離子電池可獲得更高的比容量、更好的導電性與循環(huán)穩(wěn)定性[13]。
本文主要總結了多種鋰離子電池硅/碳負極材料的合成方法、結構和電化學性能,綜述了硅/碳負極材料的研究現(xiàn)狀。
1 硅/碳負極材料的合成方法
1.1 氣相沉積法
氣相沉積法包括化學氣相沉積法(CVD法)和物理氣相沉積法(PVD法)。CVD法是一種用于生產高質量、高性能的固體材料的化學方法,通常應用于半導體領域的薄膜制造。PVD法是一種真空沉積法,可以用來制作薄膜和涂層。PVD法中,材料經歷了凝聚態(tài)轉變?yōu)闅鈶B(tài),然后再轉變?yōu)槟蹜B(tài)薄膜的變化過程。PVD法最常用到的處理方法是濺射和蒸發(fā)。PVD法常用于制造具有力學、光學、化學或電學性能的薄膜[14]。
1.2 高溫固相合成法
高溫固相合成是一種在高溫(1 000~1 500 ℃)下,通過固體界面之間的接觸、反應、成核和晶體生長反應生成大量的復合氧化物的方法。高溫固相合成是制備硅/碳負極材料的一種常用方法,為了防止惰性相硅/碳的生成,反應溫度通??刂圃? 200 ℃[15]。在反應過程中,升溫速率、反應前驅物的選擇和反應溫度將直接影響材料的結構和性能。高溫固相合成技術因工藝簡單,工藝參數(shù)易于控制,重現(xiàn)性好而被廣泛應用。
1.3 機械合金化法
機械合金化是一種固態(tài)粉末加工技術,是通過采用重復冷焊、壓裂和在高能球磨機中重新焊接混合粉末粒子,得到均勻材料的一種方法,已被證明能夠從混合元素或預合金粉末中合成各種平衡和非平衡合金相[16]。
與高溫固相合成法相反,機械合金化法制備的材料通常具有更小的粒度,更大的比表面積和更均勻的組織[17]。
1.4 靜電紡絲法
靜電紡絲技術融合了電噴涂和傳統(tǒng)的溶液干法紡絲纖維的優(yōu)點[18],纖維直徑一般為幾百納米。靜電紡絲過程不需要使用化學凝固或高溫從溶液中產生紡絲,這使得該工藝特別適用于生產大而復雜的微粒纖維[19-20]。靜電紡絲法可利用各種材料制備納米纖維,是一種低成本、工藝簡單的通用方法。同軸靜電紡絲法是一種改進的靜電紡絲技術,可制備納米管和核殼結構納米纖維[21]。
2 硅/碳負極材料的結構
碳納米材料因其具有獨特的性能,而應用在輕量化構造、電子、能源、環(huán)保、醫(yī)藥等領域[22-23]。納米材料的物理和化學性能與普通材料的物理、化學性能不同,甚至更優(yōu)于普通材料,這些優(yōu)異的性能通常由材料組織的微結構決定[24-25]。碳材料因其具有良好的力學性能,高導電性和化學穩(wěn)定性,在無黏結劑電極和輕質電極研究領域備受關注。近年來,納米線、納米纖維、納米管、納米球等硅/碳納米結構經常被應用于鋰離子電池中。
2.1 硅/碳納米線
納米線是納米級應用的一種,產業(yè)化的納米線直徑分布在50~100 nm[26]。圖1為硅/碳核殼納米線的SEM形貌。將非晶硅包覆在碳納米線上制備的硅/碳核殼納米線材料[27]可制作高功率和長壽命的鋰電池負極,其容量可達2 000 mA·h·g-1,且具有良好的循環(huán)壽命。該材料初始庫倫效率為90.0%,隨后周期的庫倫效率仍高達98.0%~99.6%。研究發(fā)現(xiàn),均勻和完整的碳涂層可以緩解硅納米線完全鋰化產生的膨脹。催化生長的碳納米纖維的應用已經有十幾年,碳納米纖維已經產業(yè)化,其優(yōu)點是強度較高,導熱性和導電性好[28-29]?;旌霞{米結構硅/碳納米纖維負極在比容量和循環(huán)壽命方面表現(xiàn)出優(yōu)越的性能。碳納米纖維不僅提供了良好的應變/應力松弛層,而且還提供了電子的傳輸路徑[30-31]。
圖1 硅/碳核殼納米線的SEM形貌[27]
Fig.1 SEM image of Si/C NWs after 5 cycles[27]
2.2 硅/碳納米纖維
Shu等[32]利用CVD法研制了空心硅/碳納米纖維復合材料,所得的負極材料具有優(yōu)異的倍率特性。在0.6 C(C為倍率)下,硅/碳納米纖維電極的初始放/充電容量分別為1 197.8和941.4 mA·h·g-1,循環(huán)20個周期后的可逆充電容量為733.9 mA·h·g-1,其容量保持率高達77.9%。硅/碳納米纖維負極材料具有優(yōu)異的電化學性能,既可以為硅顆粒之間提供導電橋和集電器,也可以為抑制硅顆粒體積膨脹而提供緩沖區(qū)。
2.3 硅/碳納米管
近年,基于碳納米管的鋰電池負極材料的制備是
圖2 純硅與硅/碳納米纖維循環(huán)前后電極結構比較[32]
Fig.2 Comparison of pure Si and Si/CNFs electrodes before and after cycling[32]
業(yè)內的研究熱點之一[33]。以往使硅與碳納米管外表面產生電子連接的研究,主要集中在通過簡單的機械混合、碳納米管在硅材料上的生長、碳納米管表面硅原子的植入或者在碳納米管薄膜上沉積硅以形成硅/碳納米管薄膜等方面。但是,由于硅顆粒的不均勻分布,碳納米管的約束能力不強,導致硅在納米空間內并沒有被碳納米管網絡充分約束[34]。Zhao等[35]采用CVD法原位合成了一種硅/非晶碳納米管核殼復合負極材料。在100 mA·g-1下,該電極容量可達1 496 mA·h·g-1,在300個循環(huán)周期后仍有80%容量保持率,具有良好的循環(huán)穩(wěn)定性。
圖3 不同尺寸的硅/非晶碳納米管復合材料的TEM圖[35]
Fig.3 TEM images of different microstructure size of the Si/ACNT composite [35]
2.4 硅/碳納米球
碳納米球由石墨結構中分布不連續(xù)的玻璃態(tài)石墨層組成[36]。由于碳納米球具有高比表面積,良好的化學穩(wěn)定性和熱穩(wěn)定性等特性,可以用于制備高強度高密度的碳/碳復合材料、高效液相色譜柱、高比表面積活性碳材料、鋰電池負極材料以及一系列高性能碳材料。碳納米球具有很強的吸附能力,可以重復利用[37-38]。
圖4 化學還原后及未進行化學還原的不同尺寸下的硅/碳復合材料的TEM圖[39]
Fig.4 TEM images of different microstructure size of Si/C nanospheres composite[39]
Zhou等[39]用簡單的化學方法制備了硅/碳納米球。通過熱處理,硅顆粒被非晶碳包覆,從而抑制了原始硅的集聚,緩解了硅在循環(huán)過程中巨大的體積膨脹。在200 mA·g-1下,該材料的初始可逆容量為888.6 mA·h·g-1。在50次循環(huán)后,電極的充電容量仍有610.7 mA·h·g-1。在鋰化過程中,硅/碳納米球能有效地緩沖硅納米顆粒的體積膨脹/收縮,具有優(yōu)異的電化學性能和循環(huán)穩(wěn)定性。
3 摻雜型硅/碳負極材料
在摻雜型硅/碳負極材料中,硅和碳緊密地結合形成了一個穩(wěn)定均勻的系統(tǒng)。在充放電過程中,硅原子是電化學反應的活性中心,碳原子是鋰化的載體。另外,碳載體還可作為電子傳輸通道和支撐的結構體。
3.1 氮摻雜型硅/碳負極材料
由于氮摻雜所造成的缺陷,氮摻雜的碳具有較高的導電性和電化學活性,并有助于界面中鋰離子的傳輸[40]。氮摻雜層可以防止電極材料與電解液的直接接觸,且可提高復合材料和鋰離子在電極和電解液界面上的傳輸速率[41]。氮摻雜的碳涂層在促進和保持穩(wěn)定的SEI層中提供了一個有效的電子傳輸途徑,促進了脫嵌鋰化反應[42]。此外,研究發(fā)現(xiàn)摻雜氮的碳涂層比原始碳涂層有著更高的導電性和鋰離子遷移率[43-44]。
Shen等[45]用離子液體輔助制備的硅/氮摻雜碳納米顆粒與硅/碳納米顆粒進行比較。在420 mA·g-1下,經過100次循環(huán)后,所制備的硅/氮摻雜碳復合材料表現(xiàn)出較高的可逆容量,約為725 mA·h·g-1,是同種方法制備的硅/碳材料的兩倍(360 mA·h·g-1)。該材料電化學性能的改善得益于納米復合材料穩(wěn)定的核殼結構,更重要的是氮摻雜到碳殼中。包覆的氮摻雜碳層不僅改善了材料的導電性,且緩解了鋰化過程體積膨脹產生的應力。
圖5 不同電流密度下,硅/氮摻雜碳,硅/碳和硅納米顆粒的循環(huán)性能[45]
Fig.5 Cycling performance and rate capability of Si/N-C,Si/C and Si nanoparticles at different current density[45]
3.2 硅/碳/石墨負極材料
硅負極材料最大的缺陷是當硅最大鋰化時,其體積膨脹率高達300%[46]。減少硅體積膨脹效應,并充分利用硅超高可逆容量的一種方法是將石墨與其結合[47]。石墨因其良好的穩(wěn)定性、低成本、低工作電壓等優(yōu)點成為了新型復合負極材料的理想選擇[48]。石墨、碳和硅復合材料可提供可觀的可逆容量,并可有效減少負極材料的體積膨脹[49]。
Wang等[50]通過噴霧干燥自組裝法將熱解碳和天然石墨包覆在亞微米硅片上成功制備了硅/碳/石墨復合材料。該材料的初始庫倫效率高達82.8%,在100 mA·g-1下循環(huán)100個周期后仍有1 524.0 mA·h·g-1的容量保留,這種層級結構的材料與純硅相比有著多層碳涂層和空隙,有效地緩解了硅充放電過程中的體積膨脹。
3.3 硅/碳/石墨烯負極材料
近年來,石墨烯由于具有高導電性、高強度、高化學穩(wěn)定性、超高的比表面積和開放的多孔結構等特性,具有對鋰電池電極材料體積變化的靈活約束作用,被認為是最有前景的碳材料[51]。由于具有大比表面積、高導電性和良好的放電能力,石墨烯可以提高硅基復合電極的電化學性能,改善大電流密度下的循環(huán)穩(wěn)定性,是一種極具研究價值的碳材料[52-53]。
圖6 顆粒截面的SEM圖[50]
Fig.6 SEM images of partical cross sections[50]
圖7 硅/碳和硅/碳/石墨烯復合材料電化學性能比較[54]
Fig.7 Comparision of the electrochemical performance of Si/C and Si/C/RGO composite[54]
Pan等[54]先采用工業(yè)通用的噴霧干燥法然后采用煅燒工藝制備了硅/碳/石墨烯球形微結構復合材料。碳殼和柔性石墨烯的結合可有效提高復合材料的電導率,并可適應硅在循環(huán)過程中巨大的體積變化。在100 mA·g-1的低電流密度下,該種材料的初始可逆性為1 599 mA·h·g-1,當在200 mA·g-1下循環(huán)多次后的容量保持率高達94.9%。此外,即使在2 000 mA·g-1的高電流密度下,硅/碳/石墨烯負極也仍有951 mA·h·g-1的高可逆比容量。硅在脫嵌鋰過程中易發(fā)生結構變化。研究表明,石墨烯是一種防止該變化的有效緩沖物質,且可極大地提高鋰電池的可逆容量、循環(huán)穩(wěn)定性和倍率特性[55]。
4 展 望
表面涂覆改性是電極材料制備的基本工藝,對材料的比例和循環(huán)性能的改進研究主要集中在用摻雜、改性或噴霧干燥等方法對材料進行納米化,提高電子和離子的傳輸速率以改善材料的導電性和穩(wěn)定性。具有良好的彈性、高電導率和化學穩(wěn)定性的碳材料在鋰離子電池硅/碳負極材料的發(fā)展中具有巨大的潛力。此外,對于鋰離子電池硅/碳負極材料脫嵌鋰機理的研究,以及與硅/碳材料更相容的黏結劑和電解液的探索,也是未來的研究熱點。
參考文獻:
[1] BENAOUADJ M,ABOUBOU A,AYAD M Y,et al.Fuel cells,batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control[J].Technologies & Materials for Renewable Energy,2016,1758(1):333-341.
[2] NITTA N,WU F X,LEE J T,et al.Li-ion battery materials:present and future[J].Materials Today,2015,18(5):252-264.
[3] HUANG B,LI X,WANG Z X,et al.A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method[J].Journal of Power Sources,2014,252:200-207.
[4] SZCZECH J R,JIN S.Nanostructured silicon for high capacity lithium battery anodes[J].Energy & Environmental Science,2011,4(1):56-72.
[5] ZHU C Y,HAN K,GENG D S,et al.Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings:an overview[J].Electrochimica Acta,2017,251:710-728.
[6] WU H,CHAN G,CHOI J W,et al.Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J].Nature Nanotechnology,2012,7:310-315.
[7] LU Z Z,WONG T L,NG T W,et al.Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries[J].RSC Advances,2014,4(5):2440-2446.
[8] FAN Y,ZHANG Q,XIAO Q,et al.High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology[J].Carbon,2013,59(7):264-269.
[9] LYU Y Y,WU Z X,F(xiàn)ANG Y,et al.Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries[J].Apl Materials,2014,2(11):113302.
[10] QIAN J,MA J Q,HE W W,et al.Facile synthesis of prussian blue derivate-modified mesoporous material via photoinitiated thiol-ene click reaction for cesium adsorption[J].Chemistry-An Asian Journal,2015,10(8):1738-1744.
[11] MA T,ZHAO Q,WANG J,et al.A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery[J].Angewandte Chemie,2016,55(22):6428-6432.
[12] DING W H,LEI X L,OUYANG C Y.Coordination of lithium ion with ethylene carbonate electrolyte solvent:A computational study[J].International Journal of Quantum Chemistry,2016,116(2):97-102.
[13] MA X M,LIU M X,GAN L H,et al.Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(9):4135-4142.
[14] BKE F,GINER I,KELLER A,et al.Plasma-enhanced chemical vapor deposition(PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition(PVD)[J].Acs Applied Materials & Interfaces,2016,8(28):17805-17816.
[15] FUKUI H,OHSUKA H,HINO T,et al.Influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-Ccomposite anodes for lithium-ion batteries[J].Journal of Power Sources,2011,196(1):371-378.
[16] SALLEH E M,RAMAKRISHNAN S,HUSSAIN Z.Synthesis of biodegradable Mg-Zn alloy by mechanical alloying:effect of milling time[J].Procedia Chemistry,2016,19:525-530.
[17] KUMAR M A,BEYERLEIN I J,LEBENSOHN R A,et al.Role of alloying elements on twin growth and twin transmission in magnesium alloys[J].Materials Science and Engineering:A,2017,706:295-303.
[18] ZIABICKI A.Fundamentals of fiber formation[M].London:John Wiley and Sons,1976.
[19] WANG B,SUN L,WU N,et al.Combined synthesis of aligned SiC nanofibers via electrospinning and carbothermal reduction[J].Ceramics International,2017,43(13):10619-10623.
[20] WANG P,CHENG L F,ZHANG Y N,et al.Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning[J].Journal of Alloys and Compounds,2017,716:306-320.
[21] LIU Q,ZHU J H,ZHANG L W,et al.Recent advances in energy materials by electrospinning[J].Renewable and Sustainable Energy Reviews,2017,81:1825-1858.
[22] QIANG X F,LI H J,ZHANG Y L,et al.Synthesis and toughening effect of SiC nanowires wrapped by carbon nanosheet on C/C composites[J].Journal of Alloys and Compounds,2016,676:245-250.
[23] DONG Z J,MENG J,ZHU H,et al.Synthesis of SiC nanowires via catalyst-free pyrolysis of silicon-containing carbon materials derived from a hybrid precursor[J].Ceramics International,2017,43(14):11006-11014.
[24] FARHAN S,WANG R M,LI K Z.Characterization of latticed SiC nanowires containing coating for carbon foam using carbonization activated pack cementation process[J].Journal of Alloys and Compounds,2016,682:695-705.
[25] SHEN Q L,LI H J,LI L,et al.SiC nanowire reinforced carbon/carbon composites with improved interlaminar strength[J].Materials Science & Engineering:A,2016,651:583-589.
[26] YUAN Y,WU L,ZHI J.Carbon nanowires obtained by tempering diamantane dicarboxylic acid inside carbon nanotubes[J].Angewandte Chemie,2014,53:14326-14351.
[27] CUI L F,YANG Y,HSU C M,et al.Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J].Nano Letters,2009,9(9):3370-3375.
[28] ZHOU S S,CHEN J N,GAN L,et al.Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries[J].Science Bulletin,2016,61(3):227-235.
[29] ZHAO H,YIN H,YU X X,et al.In2O3 nanoparticles/carbon fiber hybrid mat as free-standing anode for lithium-ion batteries with enhanced electrochemical performance[J].Journal of Alloys and Compounds,2018,735:319-326.
[30] LI S L,CHEN C,F(xiàn)U K,et al.Nanosized Ge@CNF,Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries[J].Journal of Power Sources,2014,253:366-372.
[31] FU K,XUE L G,YILDIZ O,et al.Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries[J].Nano Energy,2013,2(5):976-986.
[32] SHU J,MA R,SHUI M,et al.Facile fabrication of conducting hollowcarbon nanofibers/Si composites for copper phthalocyanine-based field effect transistors and high performance lithium-ion batteries[J].RSC Advances,2012,2(22):8323-8331.
[33] FANG S,SHEN L,ZHANG X.Application of carbon nanotubes in lithium-ion batteries[M].Industrial Applications of Carbon Nanotubes.Amsterdam:Elsevier Inc,2017.
[34] YU W J,LIU C,HOU P X,et al.Lithiation of silicon nanoparticles confined in carbon nanotubes[J].ACS Nano,2015,9(5):5063-5071.
[35] ZHAO T K,SHE S F,JI X L,et al.In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J].Journal of Alloys and Compounds,2017,708:500-507.
[36] MEHRALI M,LATIBARI S T,MEHRALI M,et al.Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage[J].Energy Conversion & Management,2014,88(5):206-213.
[37] AN W L,F(xiàn)U J J,SU J J,et al.Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes[J].Journal of Power Sources,2017,345(31):227-236.
[38] ZENG S Z,YAO Y C,ZENG X R,et al.A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries[J].Journal of Power Sources,2017,357(31):11-18.
[39] ZHOU Y,GUO H J,YANG Y,et al.Facile synthesisof silicon/carbon nanospheres composite anode materials for lithium-ion batteries[J].Materials Letters,2016,168:138-142.
[40] PARK S W,SHIM H W,KIM J C,et al.Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries[J].Journal of Alloys and Compounds,2017,728:490-496.
[41] LEI C,HAN F,LI D,et al.Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J].Nanoscale,2013,5(3):1168-1175.
[42] WEN Z H,LU G H,CUI S M,et al.Rational design of carbon network cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries[J].Nanoscale,2014,6(1):342-351.
[43] SHIN W H,JEONG H M,KIM G C,et al.Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J].Nano Letters,2012,12(5):2283-2288.
[44] JEONG H M,LEE J W,SHIN W H,et al.Nitrogen-doped graphene for high-performance ultra capactors and the importance of nitrogen-doped sitesat basal planes[J].Nano Letters,2011,11:2472-2477.
[45] SHEN X D,JIANG W F,SUN H J,et al.Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries[J].Journal of Alloys and Compounds,2017,691:178-184.
[46] WU W J,LIANG Y H,MA H Y,et al.Insights into the conversion behavior of SiO-C hybrid with pre-treated graphite as anodes for Li-ion batteries[J].Electrochimica Acta,2016,187:473-479.
[47] CHEN M,WANG Z L,WANG A N,et al.Novel self assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries[J].Journal of Materials Chemistry A,2016,4:9865-9872.
[48] JUNG H,KIM K S,PARK S E,et al.The structural and electrochemical study on the blended anode with graphite and silicon carbon nano composite in Li ion battery[J].Electrochimica Acta,2017,245:791-795.
[49] YANG J,ZHOU X Y,LI J,et al.Study of nano-porous hard carbons as anode materials for lithium ion batteries[J].Materials Chemistry and Physics,2012,135:445-450.
[50] WANG Z L,MAO Z M,LAI L F,et al.Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries[J].Chemical Engineering Journal,2017,313:187-196.
[51] TOKUR M,ALGULH,UYSAL M,et al.Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes[J].Surface & Coatings Technology,2016,288:62-68.
[52] TOKUR M,ALGUL H,OZCAN S,et al.Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries[J].Electrochimica Acta,2016,216:312-319.
[53] YI R,ZAI J T,DAI F,et al.Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J].Nano Energy,2014,6:211-218.
[54] PAN Q R,ZUO P J,LOU S F,et al.Micro-sized spherical silicon@carbon @graphene prepared by spray drying as anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,723:434-440.
[55] GUZMAN R C D,YANG J,CHENG M M C,et al.Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode[J].Journal of Power Sources,2014,246:335-345.