• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iodoplumbate(II)-based Hybrid Templated by 1,4-Diazabicyclo[2.2.2]octane Derivative: Structure,Photocurrent Response Behavior and Photocatalytic Activity for the Degradation of Organic Dye①

    2018-11-22 01:58:46LIJinWeiJIANGChengChun
    結(jié)構(gòu)化學(xué) 2018年10期

    LI Jin-Wei JIANG Cheng-Chun

    (School of Construction and Environment Engineering,Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China)

    A new iodoplumbate/organic hybrid has been synthesized, whose unique (Pb3I11)n5n-chain is constructed from face- and edge-sharing PbI6octahedra.C–H…I hydrogen bonds contribute to the structural extending from 1D chains to a 3D network.The energy band gap of 2.64 eV indicates its broad-gap semiconductor nature, and it exhibits both photocurrent response property and photocatalytic activity for the degradation of rhodamine B.

    1 INTRODUCTION

    The main group element (Bi(III), Pb(II), Sn(II),Ge(II), et al) halometallates have captured the interests of chemists for their fascinated functional properties[1–3].Among them, lead-based halometallates are special because of their unique photoconductivity, ionic-conductivity, electrical-conductivity, and photo/electro-luminescence properties[4–6].And recently, they have been extensively studied due to their fascinated applications in thin film transistors(TFTs)[7]and solar energy conversion[8,9].When concerning about their structures, lead iodides/organic hybrids can present an enormous number of intriguing structural topologies, where lead centers exhibit a wide variety of coordination numbers and stereochemistries with or without the suggestion of a‘lone pair’ in their coordination sphere[10,11].Therefore, their anion structures range from isolated anions to infinite chains, layered perovskites, and threedimensional polymeric networks based on face-,edge-, or vertex-sharing PbI6octahedra[12].Organic ammoniums countercations with tunable charge, size and shape have been proved to be good templates during the design and synthesis of different functional hybrids[13,14].So far, the organic ammonium countercations have ranged from short to long chain alkylammonium cations (4 to 18 carbon atoms),cyclic alkylammonium cations (3 to 8 carbon atoms)or chiral aromatic cations[12,15], which exhibit structural flexibilities or rigidities in the process of assembly of functional hybrids.But the usage of templates possessing both flexibility and rigidity in this system is still in its infancy[16-19].In this work,we used template possessing both rigidity (1,4-diazabicyclo[2.2.2] octane) and flexibility (substitutes lengths of ethyl) to produce a new lead iodide/organic hybrid, [(Et2DABCO)2(Pb3I11)(H3O)]n(1,Et2DABCO = N,N?-diethyl-1,4-diazabicyclo[2.2.2]octane).Its band gap, photocurrent response property and photocatalytic activity were also discussed.

    2 EXPERIMENTAL

    2.1 Materials and methods

    All chemicals except Et2DABCO·I2of regent grade were obtained from commercial sources and used without further purification.Elemental analyses for C, H and N were performed on a Vario MICRO elemental analyzer.IR spectra were recorded on a Perkin-Elmer Spectrum-2000 FTIR spectrophotometer (4000~2400 cm-1).UV-Vis spectrum was measured on a Perkin-Elmer lambda 900 UV/Vis spectrophotometer equipped with an integrating sphere at 293 K, and a BaSO4plate was used as reference.TG data were collected under argon atmosphere using a Mettler Toledo TGA/DSC 3+thermal analyzer (thermal ramp 5 ℃/min, temperature range 25~2800 ℃).

    2.2 Synthesis

    2.2.1 Synthesis of Et2DABCO·I2

    Et2DABCO·I2was synthesized by a one step N-alkylated reaction of 1,4-diazabicyclo[2.2.2]octane with iodoethane according to the literature method[20]:

    2.2.2 Synthesis of

    [(Et2DABCO)2(Pb3I11)(H3O)]n(1)1was prepared by the solution method.PbI2(0.0461 g, 0.1 mmol) and Et2DABCO·I2(0.0424 g,0.1 mmol) were dissolved in 15 mL DMF and stirred for 30 minutes.Then KI (0.0166 g, 0.1 mmol) and I2(0.0253 g, 0.1 mmol) were added into the above suspension followed by continuous stirring for 1 h.Afterwards, 1 mL HI (10%) was used to adjust the pH to 2.5.After that the solution was stirred to be homogeneous yellow and then filtered.The filtrate was kept in an undisturbed surrounding for 15 days with yellow block crystals obtained (0.0276 g, yield 34.8% based on Pb.).We want to introduce polyiodine ions into hybrid system by using I2as the starting material, but out of our expectation, no poly-iodine ion was present in the product.Anal.Calcd.for C20H47I11N4OPb3(2377.11): C, 10.10; H,1.97; N, 2.36.Found: C, 10.28; H, 2.06; N, 2.25.IR(cm-1): 3228(m), 2996(w), 2960(w), 1556(s),1439(s), 1110(s), 850(s), 1388(s), 803(m), 580(w).

    2.3 Structure determination

    The intensity data of1were collected on a Bruker APEX II diffractometer using graphite-monochromated MoKα radiation (λ = 0.71073?) at room temperature.The empirical absorption correction was based on equivalent reflections.Structure was solved by direct methods followed by successive difference Fourier method.Computations were performed using SHELXTL and final full-matrix least-squares refinements were against F2[21].All non-hydrogen atoms were refined anisotropically.Hydrogen atoms of C–H were generated geometrically.Crystal data of1:monoclinic, space group P21/c with Mr= 2377.11, a= 10.3899(13), b =18.366(2), c = 15.3630(14) ?, β =121.433(6)°, V = 2501.4(5) ?3, Z = 2, Dc=3.155g/cm3, F(000) = 2062, μ(MoKα) = 16.879 mm–1,the final R = 0.0478 and wR = 0.1320 (w = 1/[σ2(Fo2)+ (0.0885P)2+ 0.0000P], where P = (Fo2+ 2Fc2)/3), S= 1.044, (Δ/σ)max= 0.000, (Δρ)max= 3.796 and(Δρ)min= –3.170 e/?3.Selected bond lengths and bond angles are given in Table 1.Hydrogen bond lengths and bond angles are shown in Table 2.

    Table 1.Selected Bond Lengths (?) and Bond Angles (°)

    Table 2.Hydrogen Bridging Details of 1

    2.4 Electrode preparation and photocurrent measurement

    Film of1was prepared using the solution coating method.0.5 mg of the new prepared compound1was dissolved in 1.5 mL DMF, and the solution was coated on the ITO glass (10.6 × 0.6 cm).The coating film was obtained after the solvent was carefully removed under reduced pressure.A 150 W highpressure xenon lamp, located 10 cm away from the surface of the ITO electrode, was employed as a fullwavelength light source.The photocurrent experiment was carried out on a CHI650E electro-chemistry workstation using a three electrodes system, in which the sample-coated ITO glass was used as the working electrode, Pt wire as auxiliary electrode and a saturated calomel electrode (SCE) as the reference electrode.The supporting electrolyte solution was a 0.1 mol·L?1sodium sulfate aqueous solution.The applied potential was 0.5 V for all measurements.The lamp was kept on continuously, and a manual shutter was used to block exposure of the sample to thelight.The sample was typically irradiated at an interval of 10 s.

    2.4 Photocatalytic testing

    The visible light source was set as a 300 W Xe arc lamp equipped with a λ ≥ 420 nm cutoff filter and an IR filter, and the output light intensity was measured as 110 mw/cm2.During the photodegradation experiment of RhB, 40 mg catalyst powder was suspended in 80 mL RhB solutions (concentration:10 ppm).Before irradiation, the suspensions were magnetically stirred in the dark for 2 h to achieve adsorption-desorption equilibrium of the organic contaminants on the catalyst surfaces.3 mL of the sample solutions was taken out at given time intervals and separated through sample filtration.The residual concentrations of pollutants in solution were analyzed by recording variations of the organics at the absorption band maximum in the UV-Vis spectra using a UV-Vis spectrophotometer.The percentage of degradation is reported as C/C0, where C is the absorption of RhB at each irradiated time interval of the main peak of the absorption spectrum at 553 nm,and C0is the absorption of the starting concentration when adsorption-desorption equilibrium is achieved.

    3 RESULTS AND DISCUSSION

    3.1 Structure description

    1crystallizes in monoclinic space group P21/c,which is composed of 1D (Pb3I11)n5n-chain,(Et2DABCO)2+dications and one protonized water.C–H··I hydrogen bonds contribute to the formation of a 3D network.As shown in Fig.1, there are two crystallographically independent Pb centers (Pb(1),Pb(2)), whose coordination environments are both slightly distorted octahedra.The Pb–I bond distances range among 3.0544(9)~3.465(6) ? (for Pb(1)I6octahedron) and 3.1812(8)~3.2525(8) ? (for Pb(2)I6octahedron, Table 1).The I–Pb–I bond angles fall in the ranges of 81.52(2)~97.469(17)° (for Pb(1)I6octahedron) and 88.87(2)~93.95(2)° (for Pb(2)I6octahedron).Therefore, the distortion degree of Pb(1)I6octahedron is greater than that of Pb(2)I6.In addition, the bond lengths and bond angles are similar to those observed in the literature[12,22].The Pb(1), Pb(2) and Pb(1)#2-centered PbI6octahedra(#2: –x–1, –y, –z–2) are connected into a linear Pb3I12trinuclear cluster via face-sharing model (Fig.1),which further vertex-share with each other through the μ2-I(1) to give an infinite staircase chain.The Pb(1)–Pb(2) and Pb(2)–Pb(1)#2separations are 4.133(20) ?.The 1D (Pb3I10)n4n-staircase chain shaped by edge-sharing of Pb3I12trinuclear clusters has been previously reported[12], but the case of vertex-sharing Pb3I12trinuclear cluster in1has never been observed.The bond lengths of (Et2DABCO)2+are normal.The N(1)–C(1)–C(2) and N(2)–C(9)–C(10) angles are 115.39° and 117.14° respectively,which are larger than ideal sp3-hybrid carbon angle of 109.28o.So, a slight unfolding of ethyl groups has occurred.This unfolding might be driven by the hydrogen bonds between (Et2DABCO)2+dicaiton and (Pb3I11)n5n-chain.As shown in Fig.2, one(Et2DABCO)2+dication links three neighboring(Pb3I11)n5n-chains through C–H··I hydrogen bonding interactions to extend the 1D chains into a 3D network (Fig.2), and the mean C··I separation is 3.831(8) ? and the mean C–H··I angle is 140°(Table 2).One protonized water molecule is also stacked in the lattice, whose protonation is judged from the charge balance.In all, weak interactions including hydrogen bonding and electrostatic interacttions stabilize the packing of crystal of1.

    Fig.1.1D (Pb3I10)n4n- staircase chain of 1 constructed from vertex-sharing Pb3I12 trinuclear clusters

    3.2 Adsorption spectra and linear absorption optical property

    The stability of compound1has been investigated by thermogravimetry measurement, which was measured under argon atmosphere in the 25~800 °C temperature range (TGA curve is shown in Fig.3a).The result implies that compound1exhibits good thermal stability up to 200 oC.The weigh loss from 200 to 400 °C corresponds to the loss of lattice protonized water, (Et2DABCO)2+dications and I2vapor (weight loss: theoretical 64.1%, observed 64.5%).The phase purity of bulk compound1has been verified by powder X-ray diffraction (PXRD).Obviously, the peaks in the experimental patterns are consistent with the corresponding simulated ones,suggesting its good phase purity (Fig.3b).

    Fig.2.3D network based on C–H…I hydrogen bonds in 1

    Fig.3.(a) Thermogrevimetric curve for 1; (b) PXRD patterns of 1 before and after photocatalysis

    Fig.4a shows the diffuse reflectance UV-Vis absorption spectra of bulk PbI2and1.Compound1exhibits broad adsorption ranging from 250 to 485 nm, and absorption peak at 383 nm can be observed.Compared the UV-Vis absorption spectra of bulk PbI2and relative compounds, the peak at 383 nm can be assigned to the characteristic of the corner, edge-,or face-sharing PbI6octahedra[23-25].Due to the presence of absorption peak around the visible region,its photocatalytic activity was further driven by visible light excitation.The optical gap of1was assessed from its optical diffuse reflectance data, and the Kubelka-Munk functions converted from the diffuse reflectance data are plotted in Fig.4b[26,27].From Fig.4b, the optical gap of 2.64 eV was calculated, illustrating its semiconductor property and the existence of direct transitions.Compared with that of bulk PbI2(2.47~2.49eV)[28], the gap of1is broadened clearly,which might be led by the introduction of nonconjugated organic cations.Together with the decreased ban gaps of iodoplum-bate(II)-based hybrids incorporated with conjugated organic ligand-containing[25], we can control the band gaps of hybrids by using different organic templates.

    Fig.4.(a) UV-Vis spectrum of 1, (b) Optical adsorption spectrum of 1

    3.3 Photocurrent response behavior

    The photocurrent response experiment of1was recorded with a three-electrode system in order to investigate the photoelectric conversion behavior of1(the detailed description is given in the experimental section), and the result can be seen in Fig.5.Upon repetitive irradiation with xenon light on and off (interval 10 s), repeatable and steady photocurrents with rapid responses can be achieved, and there are not any decay after ten on/off cycles of illumination.The photocurrent reaches 4.8 μA, which is much larger than that of Zn4L2(bpca)4·4DMF·9H2O(0.014 μA)[29].Inorganic PbI2possesses good carrier mobility, but its hole-electron recombination is high,which leads to its low light-induced current[30].The photocurrent response mechanism can be explained as the electron-transfer among the [(Et2DABCO)2-(Pb3I11)(H3O)]n/ITO electrodes in solution: upon irradiation, electron transfers can occur from the(Pb3I11)n5n-donors to the (Et2DABCO)2+cations to give (Et2DABCO)?+species, then the (Et2DABCO)?+radicals transfer their electrons to the ITO electrodes to produce the effective electron flow.

    Fig.5.Photocurrent responses of 1 irradiated by a full-wavelength band high-pressure xenon lamp

    3.4 Photocatalytic degradation of organic pollutant

    Viologen-containing compounds have been proved to possess good ability of photocatalytic degradation organic pollutant[31,32,33].In this work, N-containing dye, rhodamine B (RhB) was selected as a model pollutant for degradation experiment.The wavelength and absorption intensity changes of RhB under the irradiation of xenon-lamp with the presence of catalysts are revealed in Fig.6a.The degradation experiments without the presence of catalyst and with PbI2were also conducted in order to verify the activity of catalyst1.The reference experiments show that the adsorption peaks change little.But with the presence of1, the adsorption spectra of RhB decrease to different extents with the lengthening of irradiation time, suggesting that the degeneration reactions on RhB have occurred.The peak shifts at 552 nm can not be observed, indicating that only deethylation of RhB has happened.Fig.6b shows the rates of RhB degradation (measured as RhB concentration versus irradiation time) in aqueous solutions with the presence of1, PbI2and without catalyst.After irradiation for 210 min, the degradation ratio is about 82.1% (in the presence of1), 8.9% (PbI2) and 4.1% (no catalyst).These results verify the degradation activity of1, and the degradation ratio of PbI2is consistent with the literature data (about 10%)[30].In order to verify the stability of1as photocatalyst, the sample was recovered from the reaction systems with filtration method.The PXRD pattern of recovered samples nearly identical with that of the as-prepared sample(Fig.3b), indicating its good stability as photo-catalyst.The pohtocatalystic degradation reaction is a heterocatalystic process, in which the catalysts can retain their patterns.

    Fig.6.(a) Time-dependent UV-Vis spectra of RhB in the presence of 1 under the irradiation of xenon-lamp;(b) Concentration change of RhB irradiated under xenon-lamp as a function of irradiation time with or without the presence of 1.Ct and C0 stand for the RhB concentrations after and before irradiation

    4 CONCLUSION

    A new lead iodide/organic hybrid has been synthesized, whose (Pb3I11)n5n-chain was templated by(Et2DABCO)2+dication.Its (Pb3I11)n5n-chain is constructed from face- and edge-sharing PbI6octahedra,which has never been observed in haloplumbate polymeric chains.C–H··I hydrogen bonds contribute to the structural extending from 1D chains to a 3D network.Its energy band gap of 2.10 eV indicates semiconductor nature.Interestingly, it exhibits both photocurrent response property and photocatalytic activity for the degradation of rhodamine B.

    REFERENCES

    (1) Leblanc, N.; Mercier, N.; Zorina, L.; Simonov, S;.Auban-Senzier, P.; Pasquier, C.Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide [BiI3Cl2] polar chains and methylviologen dication.J.Am.Chem.Soc.2011, 133,14924–14927.

    (2) Dang, Y.Y.; Liu, Y.; Sun, Y.X.; Yuan, D.S.; Liu, X.L.; Lu, W.Q.; Liu, G.F.; Xia, H.B.; Tao, X.T.Bulk crystal growth of hybrid perovskite material CH3NH3PbI3.CrystEngComm.2015, 17, 665–670.

    (3) Stoumpos, C.C.; Frazer, L.; Clark, D.J.; Kim, Y.S.; Rhim, S.H.; Freeman, A.J.; Ketterson, J.B.; Jang, J.I.; Kanatzidis, M.G.Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties.J.Am.Chem.Soc.2015, 137, 6804?6819.

    (4) Chung, I.; Song, J.H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G.CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material: high hole mobility and phase-transitions.J.Am.Chem.Soc.2012, 134, 8579–8587.

    (5) Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M.Conducting tin halides with a layered organic-based perovskite structure.Nature1994,369, 467–469.

    (6) Mitzi, D.B.; Wang, S.; Feild, C.A.; Chess, C.A.; Guloy, A.M.Conducting layered organic-inorganic halides containing <110>- oriented perovskite sheets.Science1995, 267, 1473–1476.

    (7) Kagan, C.R.; Mitzi, D.B.; Dimitrakopoulos, C.D.Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors.Science1999, 286, 945–947.

    (8) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J.Am.Chem.Soc.2009, 131, 6050–6051.

    (9) Wang, L.; Cleese, C.M.; Kovalsky, A.; Zhao, Y.; Burda, C.Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3perovskite films: evidence for passivation effect of PbI2.J.Am.Chem.Soc.2014, 136, 12205–12208.

    (10) Zhang, Z.J.; Guo, G.C.; Xu, G.; Fu, M.L.; Zou, J.P.; Huang, J.S.[(H2en)7(C2O4)2]n(Pb4I18)n·4nH2O, a new type of perovskite co-templated by both organic cations and anions.Inorg.Chem.2006, 45, 10028–10030.

    (11) Aragoni, M.C.; Arca, M.; Caltagirone, C.; Devillanova, F.A.; Demartin, F.; Garau, A.; Isaia, F.; Lippolis, V.Inorganic-organic hybrid materials:construction of the first polymeric channelled halometallate(II) system.CrystEngComm.2005, 7, 544–547.

    (12) Wu, L.M.; Wu, X.T.; Chen, L.Structural overview and structure-property relationships of iodoplumbate and iodobismuthate.Coord.Chem.Rev.2009,253, 2787–2804.

    (13) Mitzi, D.B.; Dimitrakopoulos, C.D.; Kosbar, L.L.Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors.Chem.Mater.2001, 13, 3728–3740.

    (14) Mercier, N.; Poiroux, S.; Riou, A.; Batail, P.Unique hydrogen bonding correlating with a reduced band gap and phase transition in the hybrid perovskites (HO(CH2)2NH3)2PbX4(X = I, Br).Inorg.Chem.2004, 43, 8361–8366.

    (15) Lemmerer, A.; Billing, D.G.Effect of heteroatoms in the inorganic-organic layered perovskite-type hybrids [(ZCnH2nNH3)2PbI4], n = 2, 3, 4, 5, 6; Z= OH, Br and I; and [(H3NC2H4S2C2H4NH3)PbI4].CrystEngComm.2010, 12, 1290–1301.

    (16) Wang, G.E.; Xu, G.; Wang, M.S.; Cai, L.Z.; Li, W.H.; Guo, G.C.Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission.Chem.Sci.2015, 6, 7222–7226.

    (17) Wang, G.E.; Xu, G.; Liu, B.W.; Wang, M.S.; Yao, M.S.; Guo, G.C.Semiconductive nanotube array constructed from giant [PbII18I54(I2)9] wheel clusters.Angew.Chem.Int.Ed.2016, 55, 514–518.

    (18) Krautscheid, H.; Vielsack, F.[BuN(CH2CH2)3NBu]3[Pb5I16]·4DMF -ein Iodoplumbat mit nahezu D5h-symmetrischem anion.Z.Anorg.Allg.Chem.2000, 626, 3–5.

    (19) Krautscheid, H.; Lode, C.; Vielsack.F.; Vollmer, H.Synthesis and crystal structures of iodoplumbate chains, ribbons and rods with new structural types.J.Chem.Soc., Dalton Trans.2001, 1099–1104

    (20) Huang, S.; Xie, R.G.Preparation Manual of Organic Synthesis Reagent.Sichuan University Press, Chengdu1988, p252–253.

    (21) Sheldrick, G.M.SHELXL-97, Program for X-ray Crystal Structure Refinement.University of G?ttingen, Germany1997.

    (22) Wang, G.E.; Wang, M.S.; Jiang, X.M.; Liu, Z.F.; Lin, R.G.; Cai, L.Z.; Guo, G.C.; Huang, J.S.Crystal structures and optical properties of 1-D iodoplumbates templated by in situ synthesized p-phenylenediamine derivatives.Inorg.Chem.Commun.2011, 14, 1957–1961.

    (23) Sourisseau, S.; Louvain, N.; Bi, W.; Mercier, N.; Rondeau, D.; Boucher, F.; Buzare, J.Y.; Legein, C.Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface.Chem.Mater.2007, 19, 600–607.

    (24) Zhu, X.H.; Mercier, N.; Frere, P.; Blanchard, P.; Roncali, J.; Allain, M.; Pasquier, C.; Riou, A.Effect of mono- versus di-ammonium cation of 2,2?-bithiophene derivatives on the structure of organic-inorganic hybrid materials based on iodo metallates.Inorg.Chem.2003, 42, 5330–5339.

    (25) Zeng, X.H.; He, X.; Chen, J.Y.; Zhang, J.W.; Li, H.H.; Chen, Z.R.Polymeric iodoplumbate templated by photochemically active coordination cation [Ru(phen)3]2+: structure and properties of a bimetallic inorganic-organic hybrid.J.Clust.Sci.2014, 25, 979–988.

    (26) Wendlandt, W.W.; Hecht, H.G.Reflectance Spectroscopy.Interscience Publishers: New York1966, p298–230.

    (27) Kotiim, G.Reflectance Spectroscopy.Springer-Verlag: New York1969, p72–102.

    (28) Baibarac, M.; Preda, N.; Mihut, L.; Baltog, I.; Lefrant, S.; Mevellec, J.Y.On the optical properties of micro- and nanometric size PbI2particles.J.Phys.Condens.Matter.2004, 16, 2345–2356.

    (29) Meng, J.P.; Gong, Y.; Lin, J.H.Enhanced photocurrent response on a CdTe incorporated coordination polymer based on 3-(3-(1H-imidazol-1-yl)phenyl)-5-(4-(1H-imidazol-1-yl)phenyl)-1-methyl-1H-1,2,4-triazole.RSC Adv.2016,6, 73869–73878.

    (30) Ma, W.L.; Yang, F.; Wang, Y.S.; Chen, J.R.; Yuan, L.; Xie, D.; Zhao, Y.; Zhang, Y.; Peng, J.F.Surface photovoltage inversion and photocatalytic properties of PbI2 microcrystals under sub-bandgap illumination.J.Mater.Sci.2017, 52, 9696–9708.

    (31) Li, H.H.; Zeng, X.H.; Wu, H.Y.; Jie, X.; Zheng, S.T.; Chen, Z.R.Incorporating guest molecules into honeycomb structures constructed from uranium(VI)-polycarboxylates: structural diversities and photocatalytic activities for the degradation of organic dye.Cryst.Growth Des.2015, 15,10–13.

    (32) Wang, D.H.; Lin, X.Y.; Wang, Y.K.; Zhang, W.T.; Song, K.Y.; Lin, H.; Li, H.H.; Chen, Z.R.A new iodiplumbate-based hybrid constructed from asymmetric viologen and polyiodides: structure, properties and photocatalytic activity for the degradation of organic dye.Chin.J.Struct.Chem.2017, 36, 2000–2006.

    (33) Li, X.K.; Jiang, Y.Q.A new iodocuprate/methyl viologen-based hybird: structure, properties and photocatalytic activity for the degradation of organic dye.Chin.J.Struct.Chem.2017, 36, 1020–1026.

    搡老岳熟女国产| 99久久成人亚洲精品观看| 久久精品人妻少妇| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 色在线成人网| 国内精品久久久久久久电影| 动漫黄色视频在线观看| 免费人成视频x8x8入口观看| 久久精品国产亚洲av涩爱 | 免费观看的影片在线观看| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 欧美国产日韩亚洲一区| 亚洲美女视频黄频| 精品久久久久久成人av| 91av网一区二区| 国产精品久久久久久久久免| 亚洲精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 成人毛片a级毛片在线播放| 好男人在线观看高清免费视频| 精品一区二区三区人妻视频| 成人无遮挡网站| 久久香蕉精品热| www.www免费av| 久久香蕉精品热| 禁无遮挡网站| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 国内精品宾馆在线| 国产精品一区www在线观看 | 久久精品久久久久久噜噜老黄 | 欧美成人性av电影在线观看| 91在线观看av| 校园人妻丝袜中文字幕| 国产精品一区二区三区四区免费观看 | 老女人水多毛片| 亚州av有码| 亚洲欧美日韩高清在线视频| 成年女人永久免费观看视频| 中国美白少妇内射xxxbb| 免费搜索国产男女视频| 国产精品久久久久久久电影| 国产人妻一区二区三区在| 日日啪夜夜撸| 一卡2卡三卡四卡精品乱码亚洲| 色综合亚洲欧美另类图片| 亚洲在线自拍视频| 国产一区二区三区在线臀色熟女| 特级一级黄色大片| 亚洲精华国产精华精| 欧美日韩黄片免| 三级毛片av免费| 18禁黄网站禁片免费观看直播| 久久久久久久久久久丰满 | 深爱激情五月婷婷| 老熟妇乱子伦视频在线观看| 久久精品国产自在天天线| 久久久久久久久久久丰满 | 偷拍熟女少妇极品色| 一个人看的www免费观看视频| 男插女下体视频免费在线播放| 色哟哟哟哟哟哟| 国产亚洲欧美98| 亚洲美女视频黄频| 国产精品电影一区二区三区| 国内毛片毛片毛片毛片毛片| 看十八女毛片水多多多| 日本欧美国产在线视频| 人人妻人人澡欧美一区二区| 国产精品永久免费网站| 国产欧美日韩精品亚洲av| 国产精品亚洲美女久久久| videossex国产| 波多野结衣高清无吗| 亚洲久久久久久中文字幕| 免费高清视频大片| 亚洲国产精品合色在线| 成年人黄色毛片网站| 色在线成人网| 淫妇啪啪啪对白视频| 制服丝袜大香蕉在线| 国产国拍精品亚洲av在线观看| 国产伦精品一区二区三区视频9| ponron亚洲| av福利片在线观看| 午夜日韩欧美国产| 人妻丰满熟妇av一区二区三区| 色播亚洲综合网| av在线观看视频网站免费| 国产在线精品亚洲第一网站| 亚洲av第一区精品v没综合| 悠悠久久av| 欧美国产日韩亚洲一区| 超碰av人人做人人爽久久| 国产一区二区三区视频了| 男人狂女人下面高潮的视频| av在线蜜桃| 久久久久国产精品人妻aⅴ院| 极品教师在线视频| 51国产日韩欧美| 日本 欧美在线| 制服丝袜大香蕉在线| 免费观看人在逋| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩高清在线视频| 69av精品久久久久久| 国产精品福利在线免费观看| 日日摸夜夜添夜夜添小说| 伦精品一区二区三区| 18禁在线播放成人免费| 国产精品综合久久久久久久免费| 日本三级黄在线观看| 欧美日韩乱码在线| 日本免费一区二区三区高清不卡| 亚洲第一电影网av| 嫩草影院新地址| 男人舔奶头视频| 精品久久久噜噜| 中国美女看黄片| 午夜a级毛片| 久久久久久久久久成人| 国产成人av教育| 日本精品一区二区三区蜜桃| 亚洲色图av天堂| 日本撒尿小便嘘嘘汇集6| 哪里可以看免费的av片| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频| 久久国产乱子免费精品| 午夜日韩欧美国产| 日本一二三区视频观看| 国产蜜桃级精品一区二区三区| 黄色一级大片看看| 一级av片app| 国产男人的电影天堂91| 亚洲av二区三区四区| 亚洲av电影不卡..在线观看| 极品教师在线免费播放| 嫩草影视91久久| 精品国内亚洲2022精品成人| 最后的刺客免费高清国语| 在线观看一区二区三区| 国产探花极品一区二区| 最新在线观看一区二区三区| 嫩草影院精品99| 中文字幕av成人在线电影| 欧美一级a爱片免费观看看| 一区二区三区免费毛片| 成人国产麻豆网| 白带黄色成豆腐渣| 老司机福利观看| 观看美女的网站| 日韩欧美精品v在线| 韩国av一区二区三区四区| 精品人妻熟女av久视频| 哪里可以看免费的av片| 悠悠久久av| 日韩一区二区视频免费看| 麻豆国产av国片精品| 88av欧美| 精品一区二区三区人妻视频| 国产大屁股一区二区在线视频| 嫩草影院入口| 日本免费一区二区三区高清不卡| 麻豆av噜噜一区二区三区| 欧美日韩精品成人综合77777| 在线国产一区二区在线| 精品人妻熟女av久视频| 亚洲精品国产成人久久av| 99国产极品粉嫩在线观看| 亚洲午夜理论影院| 97超级碰碰碰精品色视频在线观看| 亚洲无线在线观看| 此物有八面人人有两片| 日韩一区二区视频免费看| 三级毛片av免费| 色尼玛亚洲综合影院| 国产色爽女视频免费观看| 日韩欧美国产在线观看| 中文在线观看免费www的网站| 中文在线观看免费www的网站| 国产精品一区二区免费欧美| 亚洲国产色片| 国内毛片毛片毛片毛片毛片| 一a级毛片在线观看| av福利片在线观看| 成人美女网站在线观看视频| 亚洲四区av| 亚洲最大成人av| 久久精品国产自在天天线| 九九在线视频观看精品| 欧美一级a爱片免费观看看| 国产精品美女特级片免费视频播放器| 亚洲国产色片| 国产中年淑女户外野战色| 一级黄片播放器| 美女高潮的动态| 91精品国产九色| 亚洲av电影不卡..在线观看| 国产高清三级在线| 三级毛片av免费| 91久久精品国产一区二区成人| 久久久成人免费电影| 国内精品一区二区在线观看| 久久99热6这里只有精品| 日日干狠狠操夜夜爽| 久久久久久伊人网av| 老熟妇仑乱视频hdxx| 中国美白少妇内射xxxbb| 一卡2卡三卡四卡精品乱码亚洲| 99riav亚洲国产免费| 99久久中文字幕三级久久日本| 亚洲专区中文字幕在线| 国内精品一区二区在线观看| 国产大屁股一区二区在线视频| 99在线视频只有这里精品首页| 国产一区二区亚洲精品在线观看| 亚洲av中文av极速乱 | 在线观看一区二区三区| 亚洲一区二区三区色噜噜| 韩国av一区二区三区四区| 久久精品国产亚洲av天美| 国产真实乱freesex| 日日干狠狠操夜夜爽| 国产亚洲91精品色在线| 少妇人妻一区二区三区视频| 国产视频一区二区在线看| 国产伦精品一区二区三区四那| 特大巨黑吊av在线直播| 真人一进一出gif抽搐免费| 欧美一区二区亚洲| 国产91精品成人一区二区三区| 91午夜精品亚洲一区二区三区 | 哪里可以看免费的av片| 五月伊人婷婷丁香| 三级国产精品欧美在线观看| 内射极品少妇av片p| 国产又黄又爽又无遮挡在线| 国内精品久久久久久久电影| 久久午夜福利片| 嫩草影院精品99| 高清日韩中文字幕在线| 午夜影院日韩av| 国产精品久久久久久久电影| 欧美人与善性xxx| 日韩大尺度精品在线看网址| 成人亚洲精品av一区二区| 精品人妻熟女av久视频| 午夜福利在线观看吧| 黄色视频,在线免费观看| 亚洲av美国av| 国产一区二区在线观看日韩| 久久热精品热| 在线观看免费视频日本深夜| 亚洲,欧美,日韩| 午夜精品一区二区三区免费看| 老司机福利观看| 久久久久性生活片| 久久午夜亚洲精品久久| 久久6这里有精品| 久久久精品欧美日韩精品| 亚洲av美国av| 久久亚洲精品不卡| 婷婷精品国产亚洲av在线| 亚洲一区二区三区色噜噜| 一个人看的www免费观看视频| 亚洲无线观看免费| 日韩大尺度精品在线看网址| 国产精品永久免费网站| 免费看日本二区| 午夜激情福利司机影院| 久久国内精品自在自线图片| 亚洲av熟女| 最近视频中文字幕2019在线8| 国产成年人精品一区二区| 午夜福利欧美成人| 国产三级在线视频| 日韩一本色道免费dvd| 日韩中文字幕欧美一区二区| 欧美不卡视频在线免费观看| 国产午夜精品论理片| 在线国产一区二区在线| 啦啦啦观看免费观看视频高清| 亚洲久久久久久中文字幕| 免费看日本二区| 麻豆av噜噜一区二区三区| 国产精品美女特级片免费视频播放器| 日本一二三区视频观看| 最近最新免费中文字幕在线| 岛国在线免费视频观看| 国内毛片毛片毛片毛片毛片| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 亚洲人成伊人成综合网2020| 成人性生交大片免费视频hd| 国产亚洲精品久久久com| 国模一区二区三区四区视频| 精品99又大又爽又粗少妇毛片 | 精品乱码久久久久久99久播| 俄罗斯特黄特色一大片| 久久久国产成人免费| 在线播放国产精品三级| 特级一级黄色大片| 欧美精品啪啪一区二区三区| 日本熟妇午夜| 日韩精品中文字幕看吧| 国产精品国产高清国产av| 天天一区二区日本电影三级| 伊人久久精品亚洲午夜| 日本熟妇午夜| 少妇高潮的动态图| 精品福利观看| 国产乱人伦免费视频| 婷婷亚洲欧美| h日本视频在线播放| 三级男女做爰猛烈吃奶摸视频| 亚洲国产高清在线一区二区三| 美女黄网站色视频| 久久久久久久精品吃奶| 国产69精品久久久久777片| 国产欧美日韩精品一区二区| 免费av不卡在线播放| www日本黄色视频网| 国内毛片毛片毛片毛片毛片| 啦啦啦啦在线视频资源| 久久精品国产99精品国产亚洲性色| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合久久99| 亚洲不卡免费看| 九色国产91popny在线| 精品国内亚洲2022精品成人| 免费一级毛片在线播放高清视频| 日韩欧美在线乱码| 搞女人的毛片| 婷婷精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 亚洲第一区二区三区不卡| 成人av一区二区三区在线看| 嫩草影视91久久| 亚洲美女黄片视频| 婷婷色综合大香蕉| 九九久久精品国产亚洲av麻豆| 日韩欧美三级三区| 免费高清视频大片| 国产精品自产拍在线观看55亚洲| 国产精品伦人一区二区| 国内精品一区二区在线观看| 日韩欧美一区二区三区在线观看| 欧美黑人欧美精品刺激| 成人特级av手机在线观看| 免费观看人在逋| 色精品久久人妻99蜜桃| 嫁个100分男人电影在线观看| 亚洲欧美日韩高清专用| 免费在线观看成人毛片| 国产精品久久久久久久久免| 黄色丝袜av网址大全| 人妻丰满熟妇av一区二区三区| 人人妻人人看人人澡| 成人高潮视频无遮挡免费网站| av福利片在线观看| 国产高潮美女av| 少妇人妻一区二区三区视频| 精品一区二区三区人妻视频| av在线蜜桃| 日韩精品中文字幕看吧| 三级男女做爰猛烈吃奶摸视频| 12—13女人毛片做爰片一| 久久人人精品亚洲av| 丰满的人妻完整版| 色哟哟·www| 国产黄色小视频在线观看| 最近最新免费中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 欧美中文日本在线观看视频| 亚洲第一电影网av| 精品久久久久久久人妻蜜臀av| 亚洲最大成人中文| 欧美日韩黄片免| 国产精品无大码| 久久久久久久久久黄片| av在线天堂中文字幕| 性色avwww在线观看| 很黄的视频免费| 高清在线国产一区| 日韩欧美在线乱码| 国产黄片美女视频| 久久久久久九九精品二区国产| eeuss影院久久| 变态另类丝袜制服| 狠狠狠狠99中文字幕| 真人一进一出gif抽搐免费| 一级av片app| 精品一区二区三区av网在线观看| 欧美日本视频| 国产精品久久久久久久电影| 最好的美女福利视频网| 99热只有精品国产| 男女之事视频高清在线观看| 国产精品嫩草影院av在线观看 | 级片在线观看| 亚洲,欧美,日韩| 亚洲成人免费电影在线观看| 精品人妻1区二区| 久久精品国产清高在天天线| 狂野欧美激情性xxxx在线观看| 制服丝袜大香蕉在线| 亚洲四区av| 成年女人毛片免费观看观看9| 乱码一卡2卡4卡精品| 中文字幕av在线有码专区| 全区人妻精品视频| 精品人妻视频免费看| 欧美精品国产亚洲| 亚洲五月天丁香| 啦啦啦啦在线视频资源| 啦啦啦观看免费观看视频高清| 伦理电影大哥的女人| 神马国产精品三级电影在线观看| 免费电影在线观看免费观看| 国产黄色小视频在线观看| 久99久视频精品免费| 中文在线观看免费www的网站| 内射极品少妇av片p| 在线观看av片永久免费下载| 九九久久精品国产亚洲av麻豆| 美女xxoo啪啪120秒动态图| 麻豆国产av国片精品| 久久久久精品国产欧美久久久| 特级一级黄色大片| 中文字幕av成人在线电影| 99久久中文字幕三级久久日本| 成人午夜高清在线视频| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 色综合色国产| 深夜a级毛片| 国产一区二区三区在线臀色熟女| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满 | 熟女电影av网| 国产主播在线观看一区二区| 午夜亚洲福利在线播放| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 九九在线视频观看精品| 少妇丰满av| 欧美性猛交黑人性爽| 国产真实乱freesex| 国产精品1区2区在线观看.| 天堂动漫精品| 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 黄色女人牲交| 成人性生交大片免费视频hd| 欧美人与善性xxx| 免费电影在线观看免费观看| 久久午夜福利片| 级片在线观看| 99视频精品全部免费 在线| 搡老岳熟女国产| 欧美成人一区二区免费高清观看| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 久久九九热精品免费| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 精品无人区乱码1区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产蜜桃级精品一区二区三区| 日本 欧美在线| 级片在线观看| 亚洲电影在线观看av| 美女黄网站色视频| 99久久精品国产国产毛片| 欧美一级a爱片免费观看看| 成人av一区二区三区在线看| 亚洲熟妇熟女久久| 熟女人妻精品中文字幕| 真人做人爱边吃奶动态| 午夜福利在线在线| 免费看美女性在线毛片视频| 久久久国产成人精品二区| 日韩国内少妇激情av| 精品久久久久久久久亚洲 | 十八禁国产超污无遮挡网站| 国产熟女欧美一区二区| 久久中文看片网| 久久久久国内视频| 乱码一卡2卡4卡精品| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 能在线免费观看的黄片| netflix在线观看网站| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看| 最好的美女福利视频网| 国产高清有码在线观看视频| 蜜桃久久精品国产亚洲av| 国产精品亚洲一级av第二区| 国产男人的电影天堂91| 国产麻豆成人av免费视频| 亚洲精华国产精华液的使用体验 | 最好的美女福利视频网| 亚洲七黄色美女视频| 亚洲第一电影网av| 三级国产精品欧美在线观看| 九九热线精品视视频播放| 亚洲精品456在线播放app | 亚洲av日韩精品久久久久久密| 美女 人体艺术 gogo| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 不卡视频在线观看欧美| 久久久久久伊人网av| 精品人妻熟女av久视频| 欧美激情国产日韩精品一区| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 国产精品不卡视频一区二区| 午夜a级毛片| 1024手机看黄色片| av在线亚洲专区| 他把我摸到了高潮在线观看| 成人性生交大片免费视频hd| 国产免费男女视频| 99久久中文字幕三级久久日本| 真人一进一出gif抽搐免费| 色5月婷婷丁香| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 国产亚洲精品av在线| 国产蜜桃级精品一区二区三区| 男人和女人高潮做爰伦理| 中文资源天堂在线| 他把我摸到了高潮在线观看| bbb黄色大片| 婷婷亚洲欧美| 国产成人福利小说| 婷婷丁香在线五月| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 国产大屁股一区二区在线视频| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 国产不卡一卡二| 久99久视频精品免费| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 两个人的视频大全免费| 日韩av在线大香蕉| 真人做人爱边吃奶动态| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 国产精品1区2区在线观看.| 91久久精品国产一区二区三区| 级片在线观看| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 亚洲国产精品合色在线| 成人特级av手机在线观看| 国产在视频线在精品| 国产精品无大码| 成人性生交大片免费视频hd| 国产乱人伦免费视频| 黄色视频,在线免费观看| 天堂网av新在线| 久久精品夜夜夜夜夜久久蜜豆| 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 欧美日韩精品成人综合77777| 无人区码免费观看不卡| 欧美三级亚洲精品| 欧美在线一区亚洲| 韩国av一区二区三区四区| 97超视频在线观看视频| 久久精品国产99精品国产亚洲性色| 国产高潮美女av| 啪啪无遮挡十八禁网站| 日韩在线高清观看一区二区三区 | 99热网站在线观看| 久久久国产成人精品二区| 永久网站在线| 色精品久久人妻99蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 丰满乱子伦码专区| 亚洲av成人精品一区久久| 久久婷婷人人爽人人干人人爱| 一级av片app| 免费看a级黄色片| 国产美女午夜福利| 永久网站在线| www.www免费av| 一个人看的www免费观看视频| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看| 哪里可以看免费的av片| 男女那种视频在线观看| www.色视频.com| 欧美极品一区二区三区四区| 国产精品无大码| 国产亚洲欧美98| 波多野结衣高清无吗|