• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural, Electronic, Optical and Thermodynamic Properties of Nanolaminated Boride Cr4AlB6①

    2018-11-22 01:58:52ZHANGRuiZhouCUIHongLingLIXioHongCollegeofPhysicsndEngineeringHennUniversityofSciencendTechnologyLuoyng471003ChinHennKeyLortoryofPhotoelectricEnergyStorgeMterilsndApplictionsLuoyng471023Chin
    結構化學 2018年10期

    ZHANG Rui-Zhou CUI Hong-Ling LI Xio-Hong, ② (College of Physics nd Engineering, Henn University of Science nd Technology, Luoyng 471003, Chin) (Henn Key Lortory of Photoelectric Energy Storge Mterils nd Applictions, Luoyng 471023, Chin)

    The structural, electronic, optical and thermal properties of Cr4AlB6were investigated by density functional theory.The investigated results confirm the metallic nature of Cr4AlB6and the maximum optical conductivity occurs at about 8.12 eV.Thermodynamic properties such as thermal expansion, bulk modulus, and heat capacity were further investigated with increasing the temperature and pressure.

    1 INTRODUCTION

    In recent years, a family of ternary nano-layered compounds known as MAX alloys or MAX phases[1-3]was investigated.The general formula for MAX phases is Mn+1AXn, where M is an early transition metal, A is an A-group (mostly IIIA and IVA) element, X is either C or N, and n is an integer,commonly equal to 1, 2 or 3[4,5].Such a nanolaminated structure endows the unique property combination of metals and ceramics because of a hard carbide or nitride part (MX)nand a ductile intermetallic part MA[1-3,6].The MAX phases have the properties such as: good electrical and thermal conductivity, machinability, low thermal expansion, and reversible plasticity[7].Furthermore, they are the only polycrystalline solids in which single grains can deform by a combination of slip, kink band formation and delamination[8,9].The MAX phases have been applied into the defense, high temperature reactor, automobile, protective coatings, etc[10-12].The remarkable property collection of the MAX phases makes them open the door to viable commercial applications from catalysis to aerospace in future[13].

    In the 1960s, the metallic ceramics MAX phases were discovered[14]and became the research focus in recent years[1-3].Now, about 70 MAX compounds are discovered[15].In the MAX phases, the oxidation of alumina can make materials used at extended high temperature[16], and this is observed only in the Al-containing MAX carbides such as Ti3AlC2[17]and Cr2AlC[18].So, it is reasonable to assume that other Al-containing MAX phases would also exhibit a similar oxidation resistance.Ade et al.[19]thought that inserting Al layer to form nanolaminated, ternary transition-metal borides (called MAB phases) can improve the intrinsic brittleness and poor oxidation resistance of binary borides.The general formula for MAB phases is (MB)2Alm(MB2)n(n = 1, 2, ···; m = 1,2, 3, ···).Bai et al.[20]investigated the electronic structure, elastic properties of ternary layered boride MoAlB and thought that there exhibit similarities in properties between MAB and MAX.Li et al.[21]investigated the electrical and mechanical properties of polycrystalline Fe2AlB2bulk from element powders.They thought that Fe2AlB2is quite damage tolerant and the energy-absorbing mechanisms are delamination and pullout of Fe2AlB2grains.Li et al.[22]investigated the mechanical, electronic and bonding properties of MAB phases (CrB2)nCrAl (n =1,2 3), Dai et al.[23]further calculated the shear response of nanonaminated (CrB2)nCrAl and thought that dislocations tend to nucleate in basal planes and may result from the local open structure around Al layers.

    The structure of CrB was determined[24]and the combination of the polygons beyond hexagons appears such as YCrB4[25].The crystal structure of Cr3AlB4was determined in 1972[26].By insertion of additional boron atoms in the surrounding of Cr in Cr3AlB4, Martin et al.[19]synthesized the ternary borides Cr4AlB6, a new MAB phase, and its structure is similar to the MAX phases with two Al layers interleaving the transition metal boride sublattice.To the best of our knowledge, little experimental and theoretical information about the electronic, optical and thermodynamic information is available for Cr4AlB6.Thus, investigating these properties theoretically can help Cr4AlB6to be used in industrial applications.

    The all-electron projector augmented wave (PAW)method was reported to investigate the structural and electronic properties of MnB4-type structure[27].This method has also been used by Wang et al.[28]to investigate the elastic constants of B4CO4.Using the PAW method, we calculated the structural, optical,and thermal properties of Cr4AlB6.Density functional theory (DFT) within the quasi harmonic approximation (QHA) was used to investigate the thermal properties of bulk materials[13,29].

    2 COMPUTATIONAL DETAILS

    Cr4AlB6has orthorhombic crystal structure and belongs to Cmmm space group[19].The calculations about energy and electronic structure were carried out within the generalized gradient approximation(GGA), as implemented in the Vienna ab-initio simulation package (VASP)[30].The PAW[31]and GGA[32]were used.Perdew-Burke-Ernzerhof (PBE)functional[33]was also used.Geometry optimizations were performed without any restriction.The plane wave cut-off energy is 800 eV.And the Monkhorst-Pack k-point mesh is set to 7 ′ 7 ′ 7 to ensure the energy differences of less than 10-6eV/atom.The k-point of 9 ′ 9 ′ 9 mesh was used to calculate the band structure.In the calculation of DOS, the tetrahedron method[34]was used for the Brillouinzone integration and a dense 15 ′ 15 ′ 15 k-points was used.

    The optical properties are determined by the complex dielectric function e(w) = e1(w) + ie2(w).The real part e1(w) and imaginary part e2(w) can be obtained by calculating the wave function matrix.Based on the dielectric function, the other optical properties such as the refraction index n(w), the extinction coefficient k(w), the optical reflectivity R(w), the absorption coefficient a(w), and the energyloss spectrum L(w) can be obtained[35].A dense sampling grid of 15 ′ 15 ′ 15 k-points was used for the calculation of optical properties.The related theoretical formulas of optical properties are as follows[36]:

    where C and V represent the conduction band and valence band, respectively.BZ means the first Brillouin zone, K is the reciprocal lattice, EC(K) and E(K) are the intrinsic energy levels of conduction and valence bands, respectively.the matrix element of momentum transition, e0is the vacuum permittivity, a is the unit direction vector, wis the angular frequency, n(w) is the refractive index,k(w) is the extinction coefficient, R(w) is the reflectivity, a(w) is the absorption coefficient, and L(w) is the energy loss function.

    For metal, the intraband transition is more important than the interband transition in the low energy (< 1 eV).So the intraband transition affects mainly the low-energy infrared part of the spectra and can be expressed using empirical Drude term,which can be expressed as

    where wpand gDare the plasma frequency and damping parameter, respectively and can be obtained from the experiment.

    The quasi-harmonic Debye model is applied to investigate the thermodynamic properties.In the quasi-harmonic Debye model, the non-equilibrium Gibbs function G*(V; P, T) can be expressed as

    where E(V) represents the total energy per unit cell of the crystal and can be obtained from the electronic structure calculations.PV represents the constant hydrostatic pressure condition.q (V) corresponds to the Debye temperature.AVibcorresponds to the vibrational Helmholtz free energy and can be obtained by the following equation[37,38]:

    where D(q/T) is the Debye integral, n is the number of atoms per formula unit, and q is the Debye temperature and related to an average sound velocity.For an isotropic solid, q can be computed as

    where M corresponds to the molecular mass per formula, Bsis the adiabatic bulk modulus, and f(s)and Bs are given by the following equations[39]:

    Therefore, the non-equilibrium Gibbs function G*(V; P, T) can be minimized with respect to volume V.

    One could get the thermal equation of state (EOS)V(P, T) by solving Eq.(14).The thermodynamic function was fitted to the integral form of Vinet's equation of state (EOS) at zero pressure[40].The heat capacity Cpwas determined by a numerical differentiationand by polynomial fitting for both Cvand S.The phonon modes were calculated from the force constants using the PHONOPY package[41].A 2 ′ 1 ′ 2 supercell including 88 atoms with 11 ′ 11 ′ 11 k-mesh was used to ensure the convergence.

    3 RESULTS AND DISCUSSION

    3.1 Structural and elastic properties

    Cr4AlB6crystal is in orthogonal system with space group Cmmm and Fig.1 shows its crystal structure.Its unit cell contains two unit formulas.Table 1 lists the lattice constants, structural parameters and available experimental values[19]of Cr4AlB6.Obviously, the calculated results are in good agreement with the experimental values, which confirms the reliability of our computation.

    Fig.1.Crystal structure and molecular numbering of Cmmm-Cr4AlB6

    In Table 1, the calculated lattice constants agree well with the experimental values of 2.9517,21.2803, and 3.0130 ? for a, b and c, respectively.For the lattice constants, the maximum differences between the calculated and experimental values are 0.17%, 0.19% and 0.82% for a, b, and c,respectively.The B6–B10bond length is 1.7396 ?,which is close to the experimental value of 1.7384 ?[19].The B6–B10and B10–B11bonds form a zigzag chain with B6–B10–B11bond angle of 120.19°, close to the experimental value of 120.23°.The B10–B11distance is 1.761 ? for the Cr2AlB2crystal, 1.739 ? for Cr3AlB4and 1.708 ? for Cr4AlB6[19].This shows that the B–B bond length shortens with increasing the boron content.Thereby, the stronger B–B covalent interactions and shorter B–B bond in Cr4AlB6may play an important role in resisting the plastic deformation and make Cr4AlB6tougher than Cr2AlB2and Cr3AlB4.In addition, it is noted that the other bond lengths and bond angles are all close to the corresponding experimental values[19].

    Table 1.Experimental and Calculated Lattice Constants, Atomic Position,Bond Lengths and Bond Angles of the Cmmm-Cr4AlB6 Crystal at Standard Pressure

    From Fig.1, all B atoms form the planar hexagons and the hardness of materials can be improved by adding metal binder[42], so we think that Cr4AlB6is a hard material.We further investigated the elastic constants of Cr4AlB6by CASTEP program[43].For orthorhombic system, nine independent components of the elastic constants must satisfy the necessary conditions for mechanical stability[44]:

    Table 2 lists the calculated elastic constants Cij(GPa), bulk modulus B (GPa), shear modulus G(GPa), Young's modulus Y (GPa), the G/B ratio,Poisson's ratio v and Vicher's hardnesss Hv(GPa) at ambient pressure.The available experimental values[45]were also included.From Table 2, the whole set of elastic constants matrix Cijsatisfies the mechanical stability criteria[46], which shows that Cr4AlB6is mechanically stable at ambient pressure.

    Table 2.Calculated Elastic Constants, Cij (GPa), Bulk Moduli, B (GPa), Shear Moduli, G (GPa),Young's Moduli, Y (GPa), the G/B Ratio, Poisson's Ratio n and Vicker's Hardness, Hn (GPa) at Ambient Pressure, Compared with the Available Experimental and Theoretical Results

    Fig.2 presents the graph of the total energy (E)versus the volume (V).By fitting the E-V data to Birch-Murnaghan's equation of state[46], we can obtain the equilibrium lattice volume, the bulk modulus B0and the pressure derivative of the bulk modulus

    Fig.2.Graph of the total energy versus volume

    From Table 2, the calculated bulk modulus is 234 GPa, which is close to the fitted value (237 GPa)from the Birch-Murnaghan equation of state.The shear modulus and Pugh's ratio[47](k = G/B) are two important elastic properties which are related with the hardness according to the empirical formulation of Chen et al.[48], and the hardness can be written as

    where K = G/B.

    Using Eq.(9), the hardness of Cr4AlB6is estimated to 28.4 GPa, which is smaller than the hardness' of B4C, c-BN, and diamond[36]listed in Table 2.Compared to other materials with similar structures, such as WAlB (Hv: ~21.7 GB)[19]and W45.6Re30.4B24(Hv= 23.5 GPa)[49], the hardness of Cr4AlB6is moderate.In Table 2, the C11value is larger than the C22and C33values, which implies the strong resistances to deformation along the a-direction when compared with that along the c- and b-directions.

    3.2 Electronic and dynamic properties

    In our previous paper[22], we have confirmed the dynamical stability of Cr4AlB6and Fig.S1 in Supporting Information shows the phonon dispersion.Fig.3 illustrates the density of states (DOS) and partial density of states (PDOS) of Cr4AlB6.There is a large finite DOS of 11.67 states/eV at the Fermi energy level for Cr4AlB6, which confirms the metallic characteristic of Cr4AlB6.The DOS near Fermi level are mainly from the Cr-3d orbital electrons, with some of the B-2p orbital electrons and negligible contributions from Al-2p states.Few electrons are available from the s orbital near the Fermi energy level.From –7.8 to –3.7 eV, the PDOS for Cr-d and B-p orbitals are similar, indicating the strong hybridization between Cr-d and B-p states.

    Fig.3.Total electronic density of states and the projected atomic orbital density of states of Cr4AlB6

    Fig.4 shows the normalized total phonons density of states and the total atomic projected density of states of Cr4AlB6.From Figs.S1 and 4, there are two distinct peaks of bands of frequency.The first peak of frequencies ranges from 0 to 11.48 THz and characterized as the optical and acoustic bands of the Cr and Al atoms.The second peak of frequency ranges from 11.48 to 30 THz and corresponds to the optical mode of B atoms.In addition, from Fig.4, the intensity of Cr and B compositions is much stronger than that of the Al bands.And the frequency compositions of Cr and B atoms form the relative broad peak of bands, when compared with the Al atom.

    Fig.5 presents the calculated band structure of Cr4AlB6along the high-symmetry directions of the Brillouin zone.The overlap between the conduction and valence bands confirmed its metallic nature once again.This suggests that Cr4AlB6would exhibit metallic conductivity like other MAX phases.From Fig.5, the Fermi energy (EF) is crossed by several different bands along the G-X, S-Y, G-Z and Z-U directions, indicating metallic behavior along the directions parallel to the a- and c-directions.While the buckling along the b- direction opens band gaps of 0.86 and 0.12 eV along X-S and Y-G, respectively.Thus Cr4AlB6behaves as a metal with strong anisotropy.And the electrical conductivity is confined along the b-direction.

    3.3 Optical properties

    The dielectric function was investigated and Fig.6(a)presents the real part e1(w) and imaginary part e2(w)of dielectric functions of Cr4AlB6as a function of photon energy.The investigation of e1(w) can make us understand the electronic polarizability of the material[50].For Cr4AlB6, e1(w) decreases drasticcally when the photon energy ranges from 0 to 2 eV.When the photon energy varies between 7.87 and 23.48 eV, e1(w) 0, indicating the metallic behavior of Cr4AlB6.When the photon energy is above 23.48 eV, e1(w) increases with increasing the photon energy and is nearly a constant at higher energy.This shows that Cr4AlB6becomes a transparent material at higher energy radiation.When the photon energy is zero, the static dielectric constant e1(0) is about 128.0,much larger than those of BaTiO3, BiInO3and Ti3N4[51-53].Thereby, Cr4AlB6may be useful for manufacturing the high value capacitors[54].

    Fig.4.(a) Normalized total phonons density of states and (b~d)heir total atomic projected density of states of Cr4AlB6

    Fig.5.Electronic band structures of Cr4AlB6

    Fig.6.Dielectric functions and refractive index of Cr4AlB6

    The peak of e2(w) is related to the electron excitation.From Fig.6(a), the metallic behavior of Cr4AlB6is observed once again, since for small frequencies, w ? 0, e2(w) is much larger compared with the rest of the spectrum.e2(w) has three main peaks for Cr4AlB6.At low energy, where intraband transitions occur, an abrupt rise appears below 1 eV,and e2(w) reaches the first minimum at about 2.04 eV,which confirms the low energy divergence for metallic materials.e2(w) reaches the first dielectric peak at 3.63 eV and the second and third peaks at 6.95 and 9.47 eV, respectively.The first and second peaks are derived from the transition between Cr-d and B-p states, while B-s and Al-s states contribute to the third peaks.For Cr4AlB6, e2(w) is zero at about 55 eV.This indicates that Cr4AlB6becomes transparent above 55 eV.

    The refractive index exhibits the fundamental optical and electronic properties.The refractive index n(w) and extinction coefficient k(w) are illustrated in Fig.6(b).From Fig.6(b), the static refractive index n(0) is 11.3, which satisfies the condi-When the photon energy ranges from 0 to 11.25 eV, refractive index n(w) is greater than 1, which indicates that the interactions with the electrons make the photons slow down.According tothe valley of e1(w)corresponds to the peak of k(w) in this frequency range.The extinction coefficient k first increases, and reaches the first peak at 1.24 eV.Then k fluctuates and reaches the second and third peaks at 5.23 and 8.55 eV, respectively.k decreases to zero at about 55 eV, so the intrinsic oscillation frequency of Cr4AlB6is about 55 eV and Cr4AlB6possesses the characteristics of transparent ultraviolet.k is bigger than n when the photon energy varied between 7.87 and 23.48 eV, and Cr4AlB6shows a metal reflective property.

    Fig.7 presents the absorption, energy loss function,reflectivity, and the optical conductivity of Cr4AlB6as a function of photon energy.Fig.7(a) presents the absorption coefficient spectrum of Cr4AlB6, which begins at zero photon energy due to the metallic nature.The absorption coefficient of Cr4AlB6has two main peaks.The first peak of 3.60058 ′ 105cm-1is at 14.2 eV and the second peak of 4.95160 ′ 105cm-1at 44.5 eV.Then the absorption coefficient decreases to zero at about 60 eV, which indicates that Cr4AlB6is colorless and transparent above 60 eV.Meanwhile, the absorption coefficient is greater than 105cm-1, indicating that Cr4AlB6is a promising candidate for optical applications.

    Fig.7(b) presents the energy loss function with the increasing photon energy.And the plasma resonance frequency wpis the highest peak.From Fig.7(b), wpof Cr4AlB6is at 23.85 eV.If the frequencies of incident light are larger than the plasma frequencies of Cr4AlB6, Cr4AlB6will change from metal to dielectric material.

    Fig.7(c) presents the variation of reflectivity of Cr4AlB6with incident photon energy.The average reflectivity is more than 40% for Cr4AlB6in the infrared-visible -UV range up to ~20.1 eV.When the photon energy is bigger than 20.1 eV, the reflectivity sharply decreases to very low reflectivity (high transparency) for short wavelength.According to Li et al.[55], a MAX-phase compound can reduce solar heating if it has a reflectivity of ~44% in the visible light region, so we think that Cr4AlB6is a candidate material for coating to reduce solar heating.

    Fig.7.Absorption (a), energy loss function (b), refractivity (c) and optical conductivity (d) of Cr4AlB6

    Fig.7(d) presents the optical conductivity of Cr4AlB6.The photoconductivities start with zero photon energy, which indicates that Cr4AlB6has no band gap and has metallic nature.The maximum optical conductivity occurs at the photon energy about 8.12 eV.

    3.4 Thermodynamic properties

    The quasi-harmonic Debye approximation is applied to investigate the thermodynamic properties of Cr4AlB6.The thermodynamic properties are determined in the temperature range from 0 to 2000 K and pressure range from 0 to 100 GPa.

    Fig.8 presents the dependence of the primitive cell volume and thermal expansion coefficient as the function of T and P.From Fig.8(a), the volume increases nearly linearly with increasing T for a given P, and decreases with increasing P for a given T.The rate of increase is nearly zero from 0 to 250 K and becomes very moderate for T > 250 K.At T =300 K and P = 0 GPa, the calculated equilibrium primitive cell volume V is 187.28 ?3, which is close to the experimental values of 189.26 ?3[19].From Fig.8(b), the thermal expansion coefficient a firstly increases quickly with increasing T up to 500 K for a given P.When T > 500 K, a tends to a linear increase and the propensity of increment becomes very moderate, which means that the effect of T on ais very small at high T.In addition, a decreases quickly with increasing P for a given T.At T = 300 K and P = 0 GPa, a is 2.16 ′ 10-5K-1.

    Fig.8.Dependence of the primitive cell volume (a) and thermal expansion (b) as a function of temperature and pressure

    Fig.9 shows the variations of bulk modulus and heat capacity Cvas a function of T and P.From Fig.9(a),the compressibility is nearly a constant when T 150 K, then decreases linearly with increasing T for a given P.The bulk modulus increases with increasing P for a given T.This indicates that the ability to resist the volume change becomes weaker with increasing T and stronger with increasing P.Heat capacity Cvcan provide the information about the vibrational properties.Two famous limiting cases are correctly predicted by the standard elastic continuum theory[56].Cvis proportional to T3at very low temperature[53]and tends to the Dulong-Petit limits[57]at high T.From Fig.9(b), Cvincreases exponentially from 0 to 500 K and tends to the Dulong-Petit limits(548.7 J×mol-1×K-1).The interactions between ions in Cr4AlB6have great effect on Cv, especially at low T.In addition, Cvdecreases gradually with the increasing P for a given T.And the effect of T on Cvis more significant than that of P.At T = 300 K and P= 0 GPa, Cvis 243.94 J×mol-1×K-1.

    Fig.9.Dependence of the bulk modulus (a) and heat capacity Cv (b) as a function of temperature and pressure

    4 CONCLUSION

    Using PAW method based on the DFT within GGA, the electronic, optical and thermodynamic properties of Cr4AlB6were investigated.The obtained conclusions are as follows:

    (1) The stronger B-B covalent interactions in Cr4AlB6play an important role in resisting the plastic deformation.(2) Like other MAX phases, Cr4AlB6exhibits metallic nature from the analysis of band structure and DOS.(3) The analysis of optical properties shows that Cr4AlB6is a promising dielectric material with e1(0) of 128.0.In the photon energy range from 7.87 to 23.48 eV, Cr4AlB6presents a metal reflective property.(4) The obtained thermal properties under different T and P show that the heat capacity Cvis proportional to T3at very low T for a given P and tends to the Dulong-Petit limits (541.1 J×mol-1×K-1).The effect of T on Cvis more significant than that of P, while the effect of T on the thermal expansion coefficient a is very small at high T.

    REFERENCES

    (1) Hadi, M.A.; Naqib, S.H.; Christopoulos, S.R.; Isiam, A.K.M.A.Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase.J.Alloys.Comp.2017, 724, 1167-1175.

    (2) Zapata-Solvas, E.; Hadi, M.A.; Horlait, D.; Parfitt, D.C.; Thibaud, A.; Chroneos, A.; Lee, W.E.Synthesis and physical properties of(Zr1?x,Tix)3AlC2MAX phases.J.Am.Ceram.Soc.2017, 100, 3393-3401.

    (3) Hadi, M.A.; Rohnuzzaman, M.; Chroneos, A.; Naqib, S.H.; Islam, A.K.M.A.; Vovk, R.V.; Ostrikov, K.Elastic and thermodynamic properties of new (Zr3?xTix)AlC2MAX-phase solid solutions.Comp.Mater.Sci.2017, 137, 318-326.

    (4) Barsoum, M.W.; El-Raghy, T.Synthesis and characterization of a remarkable ceramic: Ti3SiC2.J.Am.Ceram.Soc.1996, 79, 1953-1956.

    (5) Wang, J.Y.; Zhou, Y.C.Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides.Annu.Rev.Mater.Res.2009, 39, 1-29.

    (6) Eklund, P.; Beckers, M.; Jansson, U.The Mn+1AXnphases: materials science and thin-film processing.Thin Solid Films 2010, 518, 1851-1878.

    (7) Radovic, M.; Barsoum, M.W.MAX phases: bridging the gap between metals and ceramics.Am.Ceram.Soc.Bull.2013, 92, 20-27.

    (8) Barsoum, M.W.; Ei-Raghy, T.Room-temperature ductile carbides.Met.Mater.Trans.1999, 30A, 363-369.

    (9) Barsoum, M.W.; Farber, L.; Ei-Raghy, T.Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2.Mater.Trans.1999, 30A,1727-1738.

    (10) Guilera, G.; Gorges, B.; Pascarelli, S.; Hara, N.Novel high-temperature reactors for in situ studies of three-way catalysts using turbo-XAS.J.Synchrotron Radiat.2009, 16, 628-634.

    (11) Yin, K.D.; Zhang, X.T.; Huang, Q.; Xue, J.M.Theoretical investigation on radiation tolerance of Mn+1AXnphase.Thin Solid Films 2017, 26,060703-8.

    (12) Sun, Z.M.Progress in research and development on MAX phases: a family of layered ternary compounds.Int.Mater.Rev.2011, 56, 143-166.

    (13) Lofland, S.E.; Hettinger, J.D.; Harrell, K.; Finkel, P.; Gupta, S.; Barsoum, M.W.; Hug, G.Elastic and electronic properties of select M2AX phase.Appl.Phys.Lett.2004, 84, 508-510.

    (14) Nowotny, V.H.Strukturchemie einiger verbindungen der ü bergangsmetalle mit den elementen C, Si, Ge, Sn.Prog.Solid State Chem.1970, 2,27-70.

    (15) Hu, C.; Zhang, H.; Li, F.; Huang, Q.; Bao, Y.New phases’ discovery in MAX family.Int.J.Refract.Met.Hard Mater.2013, 36, 300-312.

    (16) Barsoum, M.W.MAX Phases.Wiley-VCH Verlag GmbH & Co.KGaA: Weinheim, Germany 2013, p89-92.

    (17) Bai, Y.L.; He, X.D.; Zhu, C.C.; Chen, G.Microstructures, electrical, thermal and mechanical properties of bulk Ti2AlC synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing.J.Am.Ceram.Soc.2012, 95, 358-364.

    (18) Lin, Z.J.; Li, M.S.; Wang, J.Y.; Zhou, Y.C.High-temperature oxidation and hot corrosion of Cr2AlC.Acta Mater.2007, 55, 6182-6191.

    (19) Ade, M.; Harald, H.Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAX-phases.Inorg.Chem.2015, 54, 6122-6135.

    (20) Bai, Y.; Qi, X.; Duff, A.; Li, N.; Kong, F.; He, X.; Wang, R.; Lee, W.E.Density functional theory insights into ternary layered boride MoAlB.Acta Mater.2017, 132, 69-81.

    (21) Li, N.; Bai, Y.; Wang, S.; Zheng, Y.; Kong, F.; Qi, X.; Wang, R.; He, X.; Duff, A.I.Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2bulk from elemental powders.J.Am.Ceram.Soc.2017, 100, 4407-4411.

    (22) Li, X.H.; Chagas, da Silva, M.; Salahub, D.R.First-principles calculations of the structural, mechanical, electronic and bonding properties of(CrB2)nCrAl with n = 1, 2, 3.J.Alloys.Comp.2017, 698, 291-303.

    (23) Dai, F.Z.; Feng, Z.H.; Zhou, Y.C.Easily tiltable B_Al_B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases(CrB2)nCrAl.J.Alloys.Comp.2017, 723, 462-466.

    (24) Bertaut, F.; Blum, P.Existence et structure d'une nouvelle phase dans le systè me Mo–B.Acta Crystallogr.1951, 4, 72-72.

    (25) Kuz’ma, Y.B.Crystal structure of the compound YCrB4and its analogs.Sov.Phys.Crystallogr.1970, 15, 312-314.

    (26) Kuz’ma, Y.B.; Krypyakevich, P.I.; Chaban, N.F.Crystal structure of Cr3AlB4.Dopov.Akad.Nauk Ukr.RSR, Ser.A: Fiz.-Mat.Tekh.Nauki.1972,34, 1118-1125.

    (27) Zhao, W.J.; Xu, B.First-principles calculations of MnB4, TcB4, and ReB4with the MnB4-type structure.Comp.Mater.Sci.2012, 65, 372-376.

    (28) Wang, S.; Oganov, A.R.; Qian, G.; Zhu, Q.; Dong, H.; Dong, X.; Mahdi Davari Esfahani, M.Novel superhard B-C-O phases predicted from first principles.Phys.Chem.Chem.Phys.2016, 18, 1859-1863.

    (29) Magnuson, M.; Mattesini, M.; Wilhelmsson, O.; Emmerlich, J.; Palmquist, J.P.; Li, S.; Ahuja, R.; Hultman, L.; Eriksson, O.; Jansson, U.Electronic structure and chemical bonding in Ti4SiC3investigated by soft X-ray emission spectroscopy and first-principles theory.Phys.Rev.B 2006, 74,205102-12.

    (30) Kresse, G.; Furthmuller, J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B 1996, 54,11169-11186.

    (31) Kresse, G.; Joubert, D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B 1999, 59, 1758-1775.

    (32) Perdew, J.P.; Wang, Y.Accurate and simple analytic representation of the electron-gas correlation energy.Phys.Rev.B 1992, 45, 13244-13249.

    (33) Perdew, J.P.; Bruke, K.; Ernzerhof, M.Generalized gradient approximation made simple.Phys.Rev.Lett.1996, 77, 3865-3868.

    (34) Jepsen, O.; Anderson, O.K.The electronic structure of h.c.p.ytterbium.Solid State Commun.1971, 9, 1763-1757.

    (35) Pan, L.; Lu, T.C.; Su, R.Study of electronic structure and optical properties of g-AlON crystal.Acta Phys Sin.2012, 61, 027101-6.

    (36) Shen, X.C.The Spectrum and Optical Property of Semiconductor.Science Press: Beijing 1992, p121-130.

    (37) Blanco, M.A.; Pendá s, A.M.; Francisco, E.; Recio, J.M.; Franco, R.Thermodynamical properties of solids from microscopic theory: applications to MgF2and Al2O3.J.Mol.Struct.1996, 368, 245-255.

    (38) Fló rez, M.; Recio, J.M.; Francisco, E.; Blanco, M.A.; Pendas, A.M.First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides.Phys.Rev.B 2002, 66, 144112-7.

    (39) Wang, Y.; Tan, J.; Wang, Y.; Chen, X.First-principles calculations of structural and thermodynamic properties of BeB2compound.Chin.Phys.2007,16, 3046-3051.

    (40) Vinet, P.; Rose, J.H.; Ferrante, J.; Smith, J.R.Universal features of the equation of state of solids.J.Phys.: Condens.Matter.1989, 1,1941-1963.

    (41) Togo, A.; Oba, F.; Tanaka, I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures.Phy.Rev.B 2008, 78, 134106-9.

    (42) Ezzat Elshazly, S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.Mechanical properties of Cr3B4cermets cemented by different metallic binders.Inter.J.Mater.Eng.2012, 2, 57-60.

    (43) Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C.First-principles simulation: ideas, illustrations and the CASTEP code.J.Phys.: Condens.Matter.2002, 14, 2717-2744.

    (44) Patil, S.K.R.; Khare, S.V.; Tuttle, B.R.; Bording, J.K.; Kodambaka, S.Mechanical stability of possible structures of PtN investigated using first-principles calculations.Phys.Rev.B 2006, 73, 104118-8.

    (45) Wang, S.; Yu, X.; Zhang, J.; Wang, L.; Leinenweber, K.; Xu, H.; Popov, D.; Park, C.; Yang, W.; He, D.; Zhao, Y.Crystal structures, elastic properties,and hardness of high-pressure synthesized CrB2and CrB4.J.Superhard Mater.2014, 36, 279-287.

    (46) Murnaghan, F.D.On the theory of the tension of an elastic cylinder.Proc.Natl.Acad.Sci.1944, 30, 382-384.

    (47) Pugh, S.F.XCII.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals.Philos.Mag.Ser.1954, 45,823-842.

    (48) Chen, X.Q.; Niu, H.Y.; Li, D.Z.; Li, Y.Modeling hardness of polycrystalline materials and bulk metallic glasses.Intermetallics 2011, 19,1275-1281.

    (49) Thakoor, A.P.; Lamb, J.L.; Khanna, S.K.; Mehra, M.; Johnson, W.L.Refractory amorphous metallic (W0.6Re0.4)76B24coatings on steel substrates.J Appl.Phys.1985, 58, 3409-3414.

    (50) Lokman Ali, M.; Zahidur Rahaman, M.The structural, elastic, electronic and optical properties of cubic perovskite SrVO3compound: an ab initio study.Inter.J.Mater.Sci.App.2016, 5, 202-206.

    (51) Li, C.L.; Wang, H.; Wang, B.; Wang, R.First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3.Appl.Phys.Lett.2007, 91, 071902-3.

    (52) Wang, H.; Wang, B.; Li, Q.K.; Zhu, Z.Y.; Wang, R.; Woo, C.H.First-principles study of cubic perovskites BiMO3(M = Al, Ga, In and Sc).Phys.Rev.B 2007, 75, 245209-9.

    (53) Xu, M.; Wang, S.Y.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.; Jia, Y.Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4.Appl.Phys.Lett.2009, 89,151908-151910.

    (54) Rahman, M.; Rahaman, M.The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study.Inter.J.Modern Phys.B 2016, 30, 1650199-13.

    (55) Li, S.; Ahuja, R.; Barsoum, M.W.; Jena, P.; Johansson, B.Optical properties of Ti3SiC2and Ti4AlN3.Appl.Phys.Lett.2008, 92, 221907-3.

    (56) Debye, P.Zur Theorie der spezifischen W? rmen.Ann.Phys.1912, 39, 789-839.

    (57) Petit, A.T.; Dulong, P.L.Recherches sur quelques points importants de la theoreie de la chaleur.Ann.Chim.Phys.1819, 10, 395-413.

    极品少妇高潮喷水抽搐| 天天操日日干夜夜撸| 亚洲欧美精品自产自拍| 国产福利在线免费观看视频| 色94色欧美一区二区| 亚洲人成77777在线视频| 中文字幕人妻丝袜制服| 中文天堂在线官网| av片东京热男人的天堂| 精品国产国语对白av| 999精品在线视频| 亚洲精品一二三| 伊人亚洲综合成人网| 日日撸夜夜添| 超碰成人久久| 新久久久久国产一级毛片| 亚洲国产看品久久| 嫩草影视91久久| 一边摸一边抽搐一进一出视频| 日韩 亚洲 欧美在线| 亚洲美女搞黄在线观看| 精品一区二区三卡| 人妻 亚洲 视频| 成人免费观看视频高清| 久久99精品国语久久久| 中文精品一卡2卡3卡4更新| xxxhd国产人妻xxx| 国产精品一区二区精品视频观看| 亚洲国产精品国产精品| avwww免费| 国产成人一区二区在线| 国产免费又黄又爽又色| 在线观看人妻少妇| 精品亚洲成国产av| 在线观看免费视频网站a站| 99国产精品免费福利视频| 黄色视频不卡| 极品人妻少妇av视频| av国产精品久久久久影院| 亚洲成人一二三区av| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 99久久综合免费| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av涩爱| 国产 一区精品| 久久人人爽av亚洲精品天堂| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 国产一区亚洲一区在线观看| 国产精品一区二区精品视频观看| 国产成人一区二区在线| 一区二区av电影网| 色播在线永久视频| 自线自在国产av| 色94色欧美一区二区| 亚洲国产av新网站| av不卡在线播放| 国产成人系列免费观看| 国产精品 国内视频| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 久久久精品免费免费高清| av网站免费在线观看视频| 成人三级做爰电影| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 亚洲色图 男人天堂 中文字幕| 国产亚洲最大av| 亚洲五月色婷婷综合| av视频免费观看在线观看| 久久久亚洲精品成人影院| 久久久精品94久久精品| 悠悠久久av| 国产欧美亚洲国产| 日日撸夜夜添| 少妇人妻精品综合一区二区| 在线天堂中文资源库| 操出白浆在线播放| 欧美 亚洲 国产 日韩一| 国产一区有黄有色的免费视频| 久久精品国产亚洲av高清一级| 国产男人的电影天堂91| 黄网站色视频无遮挡免费观看| 亚洲国产精品999| 制服诱惑二区| av国产精品久久久久影院| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人爽人人夜夜| 免费不卡黄色视频| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 99热国产这里只有精品6| 国产一区二区在线观看av| 99久久99久久久精品蜜桃| 91成人精品电影| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 老司机在亚洲福利影院| 在线天堂中文资源库| 久久久精品国产亚洲av高清涩受| 在线观看免费高清a一片| av线在线观看网站| 日韩av在线免费看完整版不卡| 精品第一国产精品| 婷婷成人精品国产| 国产免费现黄频在线看| 亚洲国产中文字幕在线视频| 如何舔出高潮| 免费高清在线观看日韩| 色综合欧美亚洲国产小说| a 毛片基地| 1024香蕉在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 亚洲情色 制服丝袜| 飞空精品影院首页| 国产精品av久久久久免费| 狂野欧美激情性xxxx| 欧美精品亚洲一区二区| 亚洲中文av在线| 性少妇av在线| 中文乱码字字幕精品一区二区三区| 欧美变态另类bdsm刘玥| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 韩国精品一区二区三区| 国产成人精品无人区| av天堂久久9| 婷婷成人精品国产| 久久人妻熟女aⅴ| 夫妻午夜视频| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜| 大码成人一级视频| 如何舔出高潮| 男女下面插进去视频免费观看| 久久ye,这里只有精品| 国产精品久久久久久久久免| 制服丝袜香蕉在线| 综合色丁香网| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看 | 自线自在国产av| 中文字幕人妻丝袜制服| 天美传媒精品一区二区| 伊人久久国产一区二区| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 亚洲成人免费av在线播放| 中文天堂在线官网| 亚洲成人手机| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 九草在线视频观看| √禁漫天堂资源中文www| 黄色 视频免费看| 美女脱内裤让男人舔精品视频| 熟女少妇亚洲综合色aaa.| 天堂俺去俺来也www色官网| 色94色欧美一区二区| 各种免费的搞黄视频| 久久精品国产综合久久久| 亚洲专区中文字幕在线 | 久久午夜综合久久蜜桃| 久久久久网色| 飞空精品影院首页| e午夜精品久久久久久久| www.熟女人妻精品国产| 美国免费a级毛片| 亚洲专区中文字幕在线 | 一区在线观看完整版| 久久影院123| 9热在线视频观看99| 一级爰片在线观看| 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 亚洲三区欧美一区| 人体艺术视频欧美日本| 男女高潮啪啪啪动态图| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| 美女中出高潮动态图| 麻豆av在线久日| 一二三四中文在线观看免费高清| 免费看不卡的av| 久久久精品国产亚洲av高清涩受| 亚洲精品第二区| 波野结衣二区三区在线| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 国产精品无大码| 国产免费一区二区三区四区乱码| 在线精品无人区一区二区三| 欧美另类一区| 在线观看一区二区三区激情| 日韩不卡一区二区三区视频在线| 一级a爱视频在线免费观看| 久久精品人人爽人人爽视色| 久久热在线av| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 国产精品一二三区在线看| 精品国产露脸久久av麻豆| 国产片内射在线| 亚洲国产精品国产精品| 91国产中文字幕| 午夜福利影视在线免费观看| 久久av网站| 少妇人妻久久综合中文| 国产一级毛片在线| a级毛片在线看网站| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看 | 亚洲欧美清纯卡通| 大香蕉久久网| 黄片播放在线免费| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 在线亚洲精品国产二区图片欧美| 国产福利在线免费观看视频| 日韩欧美精品免费久久| 十八禁网站网址无遮挡| 久久久精品94久久精品| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区| 久久久久久免费高清国产稀缺| 亚洲国产精品一区二区三区在线| 99久久99久久久精品蜜桃| 亚洲第一青青草原| 国产精品人妻久久久影院| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 我的亚洲天堂| 午夜免费男女啪啪视频观看| 少妇的丰满在线观看| 悠悠久久av| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 夫妻性生交免费视频一级片| 亚洲精品久久午夜乱码| 欧美黄色片欧美黄色片| 国产精品欧美亚洲77777| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 97人妻天天添夜夜摸| 亚洲成人av在线免费| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 日韩一本色道免费dvd| 美国免费a级毛片| 午夜影院在线不卡| 丝袜人妻中文字幕| 夜夜骑夜夜射夜夜干| 80岁老熟妇乱子伦牲交| 操出白浆在线播放| 激情视频va一区二区三区| 久久精品国产亚洲av高清一级| 在线观看免费高清a一片| 尾随美女入室| 多毛熟女@视频| tube8黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 青春草国产在线视频| 国产欧美亚洲国产| 狂野欧美激情性xxxx| 少妇 在线观看| 考比视频在线观看| 免费高清在线观看视频在线观看| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 婷婷色综合大香蕉| 中文字幕高清在线视频| 午夜福利视频在线观看免费| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 欧美黄色片欧美黄色片| 少妇被粗大猛烈的视频| 咕卡用的链子| 亚洲av在线观看美女高潮| 亚洲七黄色美女视频| av一本久久久久| 999精品在线视频| 国产精品.久久久| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 精品人妻在线不人妻| 大码成人一级视频| 巨乳人妻的诱惑在线观看| 日本wwww免费看| 欧美成人精品欧美一级黄| 欧美亚洲 丝袜 人妻 在线| 久久久久网色| 男女下面插进去视频免费观看| 国产在视频线精品| 99国产综合亚洲精品| 国精品久久久久久国模美| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 国产精品女同一区二区软件| 一区二区日韩欧美中文字幕| 日韩中文字幕视频在线看片| 亚洲欧美色中文字幕在线| 精品一区二区免费观看| 中文字幕制服av| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区国产| 色精品久久人妻99蜜桃| 国产精品一区二区精品视频观看| 母亲3免费完整高清在线观看| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 啦啦啦在线免费观看视频4| 欧美人与善性xxx| 久久ye,这里只有精品| 日韩一区二区视频免费看| 亚洲av福利一区| 午夜福利视频在线观看免费| 桃花免费在线播放| 精品亚洲乱码少妇综合久久| 亚洲欧美成人综合另类久久久| 欧美日韩亚洲高清精品| 最黄视频免费看| 亚洲成人一二三区av| 在线观看免费日韩欧美大片| 性色av一级| 久久99精品国语久久久| 亚洲av综合色区一区| 国产精品成人在线| 另类精品久久| 日本午夜av视频| 亚洲成人一二三区av| 国产精品成人在线| 国产精品久久久久久久久免| 99热国产这里只有精品6| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 另类精品久久| 看非洲黑人一级黄片| 女的被弄到高潮叫床怎么办| av免费观看日本| 国产一级毛片在线| 日韩精品有码人妻一区| 天天躁夜夜躁狠狠躁躁| 少妇人妻久久综合中文| 少妇精品久久久久久久| 大片电影免费在线观看免费| 成年动漫av网址| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| 亚洲精品国产一区二区精华液| 男女无遮挡免费网站观看| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕精品免费在线观看视频| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 丝袜美腿诱惑在线| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 国产男人的电影天堂91| 午夜福利乱码中文字幕| 久久久久人妻精品一区果冻| 久久精品国产亚洲av涩爱| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 中文字幕人妻丝袜制服| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 国产精品偷伦视频观看了| 国产精品久久久久久精品古装| 日本午夜av视频| 男人舔女人的私密视频| 日韩大片免费观看网站| 日韩电影二区| 多毛熟女@视频| 蜜桃在线观看..| 欧美久久黑人一区二区| 国产一区二区激情短视频 | 黄色怎么调成土黄色| 91精品三级在线观看| 亚洲色图综合在线观看| 夫妻性生交免费视频一级片| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 成年人午夜在线观看视频| 亚洲av欧美aⅴ国产| 侵犯人妻中文字幕一二三四区| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久| 亚洲少妇的诱惑av| 熟女少妇亚洲综合色aaa.| 国产精品久久久人人做人人爽| 亚洲av电影在线观看一区二区三区| 亚洲第一青青草原| 一区二区日韩欧美中文字幕| 制服人妻中文乱码| 大香蕉久久网| 欧美人与性动交α欧美软件| a级毛片在线看网站| 国产乱来视频区| 黄片无遮挡物在线观看| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 一个人免费看片子| av一本久久久久| 亚洲,欧美,日韩| 啦啦啦视频在线资源免费观看| 亚洲成人av在线免费| 99久国产av精品国产电影| 午夜福利网站1000一区二区三区| 黄网站色视频无遮挡免费观看| 观看av在线不卡| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品香港三级国产av潘金莲 | 亚洲欧美激情在线| 欧美人与性动交α欧美精品济南到| 久久人人97超碰香蕉20202| e午夜精品久久久久久久| 欧美97在线视频| 国产人伦9x9x在线观看| 亚洲国产日韩一区二区| 日韩免费高清中文字幕av| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 亚洲色图 男人天堂 中文字幕| 日韩制服丝袜自拍偷拍| 可以免费在线观看a视频的电影网站 | 国产成人免费观看mmmm| 久热这里只有精品99| 成人漫画全彩无遮挡| 欧美日本中文国产一区发布| 夜夜骑夜夜射夜夜干| 一级片免费观看大全| 另类精品久久| 七月丁香在线播放| 成人午夜精彩视频在线观看| 亚洲av电影在线观看一区二区三区| 在线天堂中文资源库| av电影中文网址| 日韩人妻精品一区2区三区| 999精品在线视频| 性少妇av在线| 国产av一区二区精品久久| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| av国产久精品久网站免费入址| 亚洲精品aⅴ在线观看| 青春草国产在线视频| 成人国产麻豆网| 少妇精品久久久久久久| 青春草亚洲视频在线观看| 久久鲁丝午夜福利片| 免费观看性生交大片5| 日本黄色日本黄色录像| 99精品久久久久人妻精品| 激情五月婷婷亚洲| 欧美97在线视频| 一本色道久久久久久精品综合| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 另类精品久久| 如日韩欧美国产精品一区二区三区| 少妇人妻精品综合一区二区| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看| 老司机亚洲免费影院| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 一级毛片黄色毛片免费观看视频| 亚洲国产最新在线播放| 亚洲成色77777| 国产成人a∨麻豆精品| 国产欧美亚洲国产| 丁香六月欧美| 成人免费观看视频高清| 黄色毛片三级朝国网站| 看免费成人av毛片| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 久久 成人 亚洲| 国产免费现黄频在线看| 男男h啪啪无遮挡| 波野结衣二区三区在线| 久久精品国产综合久久久| 老司机影院毛片| 一本大道久久a久久精品| 国产精品久久久久久人妻精品电影 | 啦啦啦中文免费视频观看日本| 成年人免费黄色播放视频| 看免费av毛片| 成人午夜精彩视频在线观看| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 伦理电影大哥的女人| 久久久精品94久久精品| 亚洲成人免费av在线播放| 中文字幕色久视频| avwww免费| 久久久久精品国产欧美久久久 | 免费高清在线观看日韩| 99久久综合免费| 欧美日韩综合久久久久久| netflix在线观看网站| 成人免费观看视频高清| 99久久99久久久精品蜜桃| 精品免费久久久久久久清纯 | 国产又爽黄色视频| 中文字幕人妻熟女乱码| 欧美成人午夜精品| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 国产免费福利视频在线观看| 老司机亚洲免费影院| 国产午夜精品一二区理论片| 国产精品亚洲av一区麻豆 | 亚洲精品日韩在线中文字幕| 成年人午夜在线观看视频| 高清黄色对白视频在线免费看| 无限看片的www在线观看| 免费观看av网站的网址| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 久久 成人 亚洲| 亚洲av电影在线进入| av国产久精品久网站免费入址| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 成人亚洲欧美一区二区av| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 五月天丁香电影| 亚洲欧美成人精品一区二区| 亚洲精品视频女| 国产亚洲av高清不卡| 十八禁人妻一区二区| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 自线自在国产av| 国产精品亚洲av一区麻豆 | 成人国产麻豆网| 一个人免费看片子| 国产亚洲午夜精品一区二区久久| 久久av网站| 啦啦啦视频在线资源免费观看| 国产男女超爽视频在线观看| 婷婷色综合www| 一级片免费观看大全| 建设人人有责人人尽责人人享有的| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 亚洲免费av在线视频| 男人添女人高潮全过程视频| 国产视频首页在线观看| 国产精品二区激情视频| 男男h啪啪无遮挡| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区国产| 91国产中文字幕| 嫩草影视91久久| 成年女人毛片免费观看观看9 | 亚洲综合精品二区| 九九爱精品视频在线观看| 少妇人妻久久综合中文| 精品一区二区三卡| 国产日韩一区二区三区精品不卡| 国产在线免费精品| 少妇猛男粗大的猛烈进出视频| 久久女婷五月综合色啪小说| 日韩免费高清中文字幕av| av网站免费在线观看视频| 亚洲成人一二三区av| 精品一区二区三区四区五区乱码 | 晚上一个人看的免费电影| 国产97色在线日韩免费| 国产精品香港三级国产av潘金莲 | 国产99久久九九免费精品| 99精国产麻豆久久婷婷| 下体分泌物呈黄色| 国产一区二区三区av在线| 嫩草影视91久久| 国产精品三级大全| av视频免费观看在线观看| 国产人伦9x9x在线观看| 看免费成人av毛片| 99久国产av精品国产电影| 十八禁人妻一区二区| 自线自在国产av| 久久久国产一区二区| 亚洲成av片中文字幕在线观看| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜制服| 97精品久久久久久久久久精品| 婷婷色综合大香蕉|