• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural, Electronic, Optical and Thermodynamic Properties of Nanolaminated Boride Cr4AlB6①

    2018-11-22 01:58:52ZHANGRuiZhouCUIHongLingLIXioHongCollegeofPhysicsndEngineeringHennUniversityofSciencendTechnologyLuoyng471003ChinHennKeyLortoryofPhotoelectricEnergyStorgeMterilsndApplictionsLuoyng471023Chin
    結構化學 2018年10期

    ZHANG Rui-Zhou CUI Hong-Ling LI Xio-Hong, ② (College of Physics nd Engineering, Henn University of Science nd Technology, Luoyng 471003, Chin) (Henn Key Lortory of Photoelectric Energy Storge Mterils nd Applictions, Luoyng 471023, Chin)

    The structural, electronic, optical and thermal properties of Cr4AlB6were investigated by density functional theory.The investigated results confirm the metallic nature of Cr4AlB6and the maximum optical conductivity occurs at about 8.12 eV.Thermodynamic properties such as thermal expansion, bulk modulus, and heat capacity were further investigated with increasing the temperature and pressure.

    1 INTRODUCTION

    In recent years, a family of ternary nano-layered compounds known as MAX alloys or MAX phases[1-3]was investigated.The general formula for MAX phases is Mn+1AXn, where M is an early transition metal, A is an A-group (mostly IIIA and IVA) element, X is either C or N, and n is an integer,commonly equal to 1, 2 or 3[4,5].Such a nanolaminated structure endows the unique property combination of metals and ceramics because of a hard carbide or nitride part (MX)nand a ductile intermetallic part MA[1-3,6].The MAX phases have the properties such as: good electrical and thermal conductivity, machinability, low thermal expansion, and reversible plasticity[7].Furthermore, they are the only polycrystalline solids in which single grains can deform by a combination of slip, kink band formation and delamination[8,9].The MAX phases have been applied into the defense, high temperature reactor, automobile, protective coatings, etc[10-12].The remarkable property collection of the MAX phases makes them open the door to viable commercial applications from catalysis to aerospace in future[13].

    In the 1960s, the metallic ceramics MAX phases were discovered[14]and became the research focus in recent years[1-3].Now, about 70 MAX compounds are discovered[15].In the MAX phases, the oxidation of alumina can make materials used at extended high temperature[16], and this is observed only in the Al-containing MAX carbides such as Ti3AlC2[17]and Cr2AlC[18].So, it is reasonable to assume that other Al-containing MAX phases would also exhibit a similar oxidation resistance.Ade et al.[19]thought that inserting Al layer to form nanolaminated, ternary transition-metal borides (called MAB phases) can improve the intrinsic brittleness and poor oxidation resistance of binary borides.The general formula for MAB phases is (MB)2Alm(MB2)n(n = 1, 2, ···; m = 1,2, 3, ···).Bai et al.[20]investigated the electronic structure, elastic properties of ternary layered boride MoAlB and thought that there exhibit similarities in properties between MAB and MAX.Li et al.[21]investigated the electrical and mechanical properties of polycrystalline Fe2AlB2bulk from element powders.They thought that Fe2AlB2is quite damage tolerant and the energy-absorbing mechanisms are delamination and pullout of Fe2AlB2grains.Li et al.[22]investigated the mechanical, electronic and bonding properties of MAB phases (CrB2)nCrAl (n =1,2 3), Dai et al.[23]further calculated the shear response of nanonaminated (CrB2)nCrAl and thought that dislocations tend to nucleate in basal planes and may result from the local open structure around Al layers.

    The structure of CrB was determined[24]and the combination of the polygons beyond hexagons appears such as YCrB4[25].The crystal structure of Cr3AlB4was determined in 1972[26].By insertion of additional boron atoms in the surrounding of Cr in Cr3AlB4, Martin et al.[19]synthesized the ternary borides Cr4AlB6, a new MAB phase, and its structure is similar to the MAX phases with two Al layers interleaving the transition metal boride sublattice.To the best of our knowledge, little experimental and theoretical information about the electronic, optical and thermodynamic information is available for Cr4AlB6.Thus, investigating these properties theoretically can help Cr4AlB6to be used in industrial applications.

    The all-electron projector augmented wave (PAW)method was reported to investigate the structural and electronic properties of MnB4-type structure[27].This method has also been used by Wang et al.[28]to investigate the elastic constants of B4CO4.Using the PAW method, we calculated the structural, optical,and thermal properties of Cr4AlB6.Density functional theory (DFT) within the quasi harmonic approximation (QHA) was used to investigate the thermal properties of bulk materials[13,29].

    2 COMPUTATIONAL DETAILS

    Cr4AlB6has orthorhombic crystal structure and belongs to Cmmm space group[19].The calculations about energy and electronic structure were carried out within the generalized gradient approximation(GGA), as implemented in the Vienna ab-initio simulation package (VASP)[30].The PAW[31]and GGA[32]were used.Perdew-Burke-Ernzerhof (PBE)functional[33]was also used.Geometry optimizations were performed without any restriction.The plane wave cut-off energy is 800 eV.And the Monkhorst-Pack k-point mesh is set to 7 ′ 7 ′ 7 to ensure the energy differences of less than 10-6eV/atom.The k-point of 9 ′ 9 ′ 9 mesh was used to calculate the band structure.In the calculation of DOS, the tetrahedron method[34]was used for the Brillouinzone integration and a dense 15 ′ 15 ′ 15 k-points was used.

    The optical properties are determined by the complex dielectric function e(w) = e1(w) + ie2(w).The real part e1(w) and imaginary part e2(w) can be obtained by calculating the wave function matrix.Based on the dielectric function, the other optical properties such as the refraction index n(w), the extinction coefficient k(w), the optical reflectivity R(w), the absorption coefficient a(w), and the energyloss spectrum L(w) can be obtained[35].A dense sampling grid of 15 ′ 15 ′ 15 k-points was used for the calculation of optical properties.The related theoretical formulas of optical properties are as follows[36]:

    where C and V represent the conduction band and valence band, respectively.BZ means the first Brillouin zone, K is the reciprocal lattice, EC(K) and E(K) are the intrinsic energy levels of conduction and valence bands, respectively.the matrix element of momentum transition, e0is the vacuum permittivity, a is the unit direction vector, wis the angular frequency, n(w) is the refractive index,k(w) is the extinction coefficient, R(w) is the reflectivity, a(w) is the absorption coefficient, and L(w) is the energy loss function.

    For metal, the intraband transition is more important than the interband transition in the low energy (< 1 eV).So the intraband transition affects mainly the low-energy infrared part of the spectra and can be expressed using empirical Drude term,which can be expressed as

    where wpand gDare the plasma frequency and damping parameter, respectively and can be obtained from the experiment.

    The quasi-harmonic Debye model is applied to investigate the thermodynamic properties.In the quasi-harmonic Debye model, the non-equilibrium Gibbs function G*(V; P, T) can be expressed as

    where E(V) represents the total energy per unit cell of the crystal and can be obtained from the electronic structure calculations.PV represents the constant hydrostatic pressure condition.q (V) corresponds to the Debye temperature.AVibcorresponds to the vibrational Helmholtz free energy and can be obtained by the following equation[37,38]:

    where D(q/T) is the Debye integral, n is the number of atoms per formula unit, and q is the Debye temperature and related to an average sound velocity.For an isotropic solid, q can be computed as

    where M corresponds to the molecular mass per formula, Bsis the adiabatic bulk modulus, and f(s)and Bs are given by the following equations[39]:

    Therefore, the non-equilibrium Gibbs function G*(V; P, T) can be minimized with respect to volume V.

    One could get the thermal equation of state (EOS)V(P, T) by solving Eq.(14).The thermodynamic function was fitted to the integral form of Vinet's equation of state (EOS) at zero pressure[40].The heat capacity Cpwas determined by a numerical differentiationand by polynomial fitting for both Cvand S.The phonon modes were calculated from the force constants using the PHONOPY package[41].A 2 ′ 1 ′ 2 supercell including 88 atoms with 11 ′ 11 ′ 11 k-mesh was used to ensure the convergence.

    3 RESULTS AND DISCUSSION

    3.1 Structural and elastic properties

    Cr4AlB6crystal is in orthogonal system with space group Cmmm and Fig.1 shows its crystal structure.Its unit cell contains two unit formulas.Table 1 lists the lattice constants, structural parameters and available experimental values[19]of Cr4AlB6.Obviously, the calculated results are in good agreement with the experimental values, which confirms the reliability of our computation.

    Fig.1.Crystal structure and molecular numbering of Cmmm-Cr4AlB6

    In Table 1, the calculated lattice constants agree well with the experimental values of 2.9517,21.2803, and 3.0130 ? for a, b and c, respectively.For the lattice constants, the maximum differences between the calculated and experimental values are 0.17%, 0.19% and 0.82% for a, b, and c,respectively.The B6–B10bond length is 1.7396 ?,which is close to the experimental value of 1.7384 ?[19].The B6–B10and B10–B11bonds form a zigzag chain with B6–B10–B11bond angle of 120.19°, close to the experimental value of 120.23°.The B10–B11distance is 1.761 ? for the Cr2AlB2crystal, 1.739 ? for Cr3AlB4and 1.708 ? for Cr4AlB6[19].This shows that the B–B bond length shortens with increasing the boron content.Thereby, the stronger B–B covalent interactions and shorter B–B bond in Cr4AlB6may play an important role in resisting the plastic deformation and make Cr4AlB6tougher than Cr2AlB2and Cr3AlB4.In addition, it is noted that the other bond lengths and bond angles are all close to the corresponding experimental values[19].

    Table 1.Experimental and Calculated Lattice Constants, Atomic Position,Bond Lengths and Bond Angles of the Cmmm-Cr4AlB6 Crystal at Standard Pressure

    From Fig.1, all B atoms form the planar hexagons and the hardness of materials can be improved by adding metal binder[42], so we think that Cr4AlB6is a hard material.We further investigated the elastic constants of Cr4AlB6by CASTEP program[43].For orthorhombic system, nine independent components of the elastic constants must satisfy the necessary conditions for mechanical stability[44]:

    Table 2 lists the calculated elastic constants Cij(GPa), bulk modulus B (GPa), shear modulus G(GPa), Young's modulus Y (GPa), the G/B ratio,Poisson's ratio v and Vicher's hardnesss Hv(GPa) at ambient pressure.The available experimental values[45]were also included.From Table 2, the whole set of elastic constants matrix Cijsatisfies the mechanical stability criteria[46], which shows that Cr4AlB6is mechanically stable at ambient pressure.

    Table 2.Calculated Elastic Constants, Cij (GPa), Bulk Moduli, B (GPa), Shear Moduli, G (GPa),Young's Moduli, Y (GPa), the G/B Ratio, Poisson's Ratio n and Vicker's Hardness, Hn (GPa) at Ambient Pressure, Compared with the Available Experimental and Theoretical Results

    Fig.2 presents the graph of the total energy (E)versus the volume (V).By fitting the E-V data to Birch-Murnaghan's equation of state[46], we can obtain the equilibrium lattice volume, the bulk modulus B0and the pressure derivative of the bulk modulus

    Fig.2.Graph of the total energy versus volume

    From Table 2, the calculated bulk modulus is 234 GPa, which is close to the fitted value (237 GPa)from the Birch-Murnaghan equation of state.The shear modulus and Pugh's ratio[47](k = G/B) are two important elastic properties which are related with the hardness according to the empirical formulation of Chen et al.[48], and the hardness can be written as

    where K = G/B.

    Using Eq.(9), the hardness of Cr4AlB6is estimated to 28.4 GPa, which is smaller than the hardness' of B4C, c-BN, and diamond[36]listed in Table 2.Compared to other materials with similar structures, such as WAlB (Hv: ~21.7 GB)[19]and W45.6Re30.4B24(Hv= 23.5 GPa)[49], the hardness of Cr4AlB6is moderate.In Table 2, the C11value is larger than the C22and C33values, which implies the strong resistances to deformation along the a-direction when compared with that along the c- and b-directions.

    3.2 Electronic and dynamic properties

    In our previous paper[22], we have confirmed the dynamical stability of Cr4AlB6and Fig.S1 in Supporting Information shows the phonon dispersion.Fig.3 illustrates the density of states (DOS) and partial density of states (PDOS) of Cr4AlB6.There is a large finite DOS of 11.67 states/eV at the Fermi energy level for Cr4AlB6, which confirms the metallic characteristic of Cr4AlB6.The DOS near Fermi level are mainly from the Cr-3d orbital electrons, with some of the B-2p orbital electrons and negligible contributions from Al-2p states.Few electrons are available from the s orbital near the Fermi energy level.From –7.8 to –3.7 eV, the PDOS for Cr-d and B-p orbitals are similar, indicating the strong hybridization between Cr-d and B-p states.

    Fig.3.Total electronic density of states and the projected atomic orbital density of states of Cr4AlB6

    Fig.4 shows the normalized total phonons density of states and the total atomic projected density of states of Cr4AlB6.From Figs.S1 and 4, there are two distinct peaks of bands of frequency.The first peak of frequencies ranges from 0 to 11.48 THz and characterized as the optical and acoustic bands of the Cr and Al atoms.The second peak of frequency ranges from 11.48 to 30 THz and corresponds to the optical mode of B atoms.In addition, from Fig.4, the intensity of Cr and B compositions is much stronger than that of the Al bands.And the frequency compositions of Cr and B atoms form the relative broad peak of bands, when compared with the Al atom.

    Fig.5 presents the calculated band structure of Cr4AlB6along the high-symmetry directions of the Brillouin zone.The overlap between the conduction and valence bands confirmed its metallic nature once again.This suggests that Cr4AlB6would exhibit metallic conductivity like other MAX phases.From Fig.5, the Fermi energy (EF) is crossed by several different bands along the G-X, S-Y, G-Z and Z-U directions, indicating metallic behavior along the directions parallel to the a- and c-directions.While the buckling along the b- direction opens band gaps of 0.86 and 0.12 eV along X-S and Y-G, respectively.Thus Cr4AlB6behaves as a metal with strong anisotropy.And the electrical conductivity is confined along the b-direction.

    3.3 Optical properties

    The dielectric function was investigated and Fig.6(a)presents the real part e1(w) and imaginary part e2(w)of dielectric functions of Cr4AlB6as a function of photon energy.The investigation of e1(w) can make us understand the electronic polarizability of the material[50].For Cr4AlB6, e1(w) decreases drasticcally when the photon energy ranges from 0 to 2 eV.When the photon energy varies between 7.87 and 23.48 eV, e1(w) 0, indicating the metallic behavior of Cr4AlB6.When the photon energy is above 23.48 eV, e1(w) increases with increasing the photon energy and is nearly a constant at higher energy.This shows that Cr4AlB6becomes a transparent material at higher energy radiation.When the photon energy is zero, the static dielectric constant e1(0) is about 128.0,much larger than those of BaTiO3, BiInO3and Ti3N4[51-53].Thereby, Cr4AlB6may be useful for manufacturing the high value capacitors[54].

    Fig.4.(a) Normalized total phonons density of states and (b~d)heir total atomic projected density of states of Cr4AlB6

    Fig.5.Electronic band structures of Cr4AlB6

    Fig.6.Dielectric functions and refractive index of Cr4AlB6

    The peak of e2(w) is related to the electron excitation.From Fig.6(a), the metallic behavior of Cr4AlB6is observed once again, since for small frequencies, w ? 0, e2(w) is much larger compared with the rest of the spectrum.e2(w) has three main peaks for Cr4AlB6.At low energy, where intraband transitions occur, an abrupt rise appears below 1 eV,and e2(w) reaches the first minimum at about 2.04 eV,which confirms the low energy divergence for metallic materials.e2(w) reaches the first dielectric peak at 3.63 eV and the second and third peaks at 6.95 and 9.47 eV, respectively.The first and second peaks are derived from the transition between Cr-d and B-p states, while B-s and Al-s states contribute to the third peaks.For Cr4AlB6, e2(w) is zero at about 55 eV.This indicates that Cr4AlB6becomes transparent above 55 eV.

    The refractive index exhibits the fundamental optical and electronic properties.The refractive index n(w) and extinction coefficient k(w) are illustrated in Fig.6(b).From Fig.6(b), the static refractive index n(0) is 11.3, which satisfies the condi-When the photon energy ranges from 0 to 11.25 eV, refractive index n(w) is greater than 1, which indicates that the interactions with the electrons make the photons slow down.According tothe valley of e1(w)corresponds to the peak of k(w) in this frequency range.The extinction coefficient k first increases, and reaches the first peak at 1.24 eV.Then k fluctuates and reaches the second and third peaks at 5.23 and 8.55 eV, respectively.k decreases to zero at about 55 eV, so the intrinsic oscillation frequency of Cr4AlB6is about 55 eV and Cr4AlB6possesses the characteristics of transparent ultraviolet.k is bigger than n when the photon energy varied between 7.87 and 23.48 eV, and Cr4AlB6shows a metal reflective property.

    Fig.7 presents the absorption, energy loss function,reflectivity, and the optical conductivity of Cr4AlB6as a function of photon energy.Fig.7(a) presents the absorption coefficient spectrum of Cr4AlB6, which begins at zero photon energy due to the metallic nature.The absorption coefficient of Cr4AlB6has two main peaks.The first peak of 3.60058 ′ 105cm-1is at 14.2 eV and the second peak of 4.95160 ′ 105cm-1at 44.5 eV.Then the absorption coefficient decreases to zero at about 60 eV, which indicates that Cr4AlB6is colorless and transparent above 60 eV.Meanwhile, the absorption coefficient is greater than 105cm-1, indicating that Cr4AlB6is a promising candidate for optical applications.

    Fig.7(b) presents the energy loss function with the increasing photon energy.And the plasma resonance frequency wpis the highest peak.From Fig.7(b), wpof Cr4AlB6is at 23.85 eV.If the frequencies of incident light are larger than the plasma frequencies of Cr4AlB6, Cr4AlB6will change from metal to dielectric material.

    Fig.7(c) presents the variation of reflectivity of Cr4AlB6with incident photon energy.The average reflectivity is more than 40% for Cr4AlB6in the infrared-visible -UV range up to ~20.1 eV.When the photon energy is bigger than 20.1 eV, the reflectivity sharply decreases to very low reflectivity (high transparency) for short wavelength.According to Li et al.[55], a MAX-phase compound can reduce solar heating if it has a reflectivity of ~44% in the visible light region, so we think that Cr4AlB6is a candidate material for coating to reduce solar heating.

    Fig.7.Absorption (a), energy loss function (b), refractivity (c) and optical conductivity (d) of Cr4AlB6

    Fig.7(d) presents the optical conductivity of Cr4AlB6.The photoconductivities start with zero photon energy, which indicates that Cr4AlB6has no band gap and has metallic nature.The maximum optical conductivity occurs at the photon energy about 8.12 eV.

    3.4 Thermodynamic properties

    The quasi-harmonic Debye approximation is applied to investigate the thermodynamic properties of Cr4AlB6.The thermodynamic properties are determined in the temperature range from 0 to 2000 K and pressure range from 0 to 100 GPa.

    Fig.8 presents the dependence of the primitive cell volume and thermal expansion coefficient as the function of T and P.From Fig.8(a), the volume increases nearly linearly with increasing T for a given P, and decreases with increasing P for a given T.The rate of increase is nearly zero from 0 to 250 K and becomes very moderate for T > 250 K.At T =300 K and P = 0 GPa, the calculated equilibrium primitive cell volume V is 187.28 ?3, which is close to the experimental values of 189.26 ?3[19].From Fig.8(b), the thermal expansion coefficient a firstly increases quickly with increasing T up to 500 K for a given P.When T > 500 K, a tends to a linear increase and the propensity of increment becomes very moderate, which means that the effect of T on ais very small at high T.In addition, a decreases quickly with increasing P for a given T.At T = 300 K and P = 0 GPa, a is 2.16 ′ 10-5K-1.

    Fig.8.Dependence of the primitive cell volume (a) and thermal expansion (b) as a function of temperature and pressure

    Fig.9 shows the variations of bulk modulus and heat capacity Cvas a function of T and P.From Fig.9(a),the compressibility is nearly a constant when T 150 K, then decreases linearly with increasing T for a given P.The bulk modulus increases with increasing P for a given T.This indicates that the ability to resist the volume change becomes weaker with increasing T and stronger with increasing P.Heat capacity Cvcan provide the information about the vibrational properties.Two famous limiting cases are correctly predicted by the standard elastic continuum theory[56].Cvis proportional to T3at very low temperature[53]and tends to the Dulong-Petit limits[57]at high T.From Fig.9(b), Cvincreases exponentially from 0 to 500 K and tends to the Dulong-Petit limits(548.7 J×mol-1×K-1).The interactions between ions in Cr4AlB6have great effect on Cv, especially at low T.In addition, Cvdecreases gradually with the increasing P for a given T.And the effect of T on Cvis more significant than that of P.At T = 300 K and P= 0 GPa, Cvis 243.94 J×mol-1×K-1.

    Fig.9.Dependence of the bulk modulus (a) and heat capacity Cv (b) as a function of temperature and pressure

    4 CONCLUSION

    Using PAW method based on the DFT within GGA, the electronic, optical and thermodynamic properties of Cr4AlB6were investigated.The obtained conclusions are as follows:

    (1) The stronger B-B covalent interactions in Cr4AlB6play an important role in resisting the plastic deformation.(2) Like other MAX phases, Cr4AlB6exhibits metallic nature from the analysis of band structure and DOS.(3) The analysis of optical properties shows that Cr4AlB6is a promising dielectric material with e1(0) of 128.0.In the photon energy range from 7.87 to 23.48 eV, Cr4AlB6presents a metal reflective property.(4) The obtained thermal properties under different T and P show that the heat capacity Cvis proportional to T3at very low T for a given P and tends to the Dulong-Petit limits (541.1 J×mol-1×K-1).The effect of T on Cvis more significant than that of P, while the effect of T on the thermal expansion coefficient a is very small at high T.

    REFERENCES

    (1) Hadi, M.A.; Naqib, S.H.; Christopoulos, S.R.; Isiam, A.K.M.A.Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase.J.Alloys.Comp.2017, 724, 1167-1175.

    (2) Zapata-Solvas, E.; Hadi, M.A.; Horlait, D.; Parfitt, D.C.; Thibaud, A.; Chroneos, A.; Lee, W.E.Synthesis and physical properties of(Zr1?x,Tix)3AlC2MAX phases.J.Am.Ceram.Soc.2017, 100, 3393-3401.

    (3) Hadi, M.A.; Rohnuzzaman, M.; Chroneos, A.; Naqib, S.H.; Islam, A.K.M.A.; Vovk, R.V.; Ostrikov, K.Elastic and thermodynamic properties of new (Zr3?xTix)AlC2MAX-phase solid solutions.Comp.Mater.Sci.2017, 137, 318-326.

    (4) Barsoum, M.W.; El-Raghy, T.Synthesis and characterization of a remarkable ceramic: Ti3SiC2.J.Am.Ceram.Soc.1996, 79, 1953-1956.

    (5) Wang, J.Y.; Zhou, Y.C.Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides.Annu.Rev.Mater.Res.2009, 39, 1-29.

    (6) Eklund, P.; Beckers, M.; Jansson, U.The Mn+1AXnphases: materials science and thin-film processing.Thin Solid Films 2010, 518, 1851-1878.

    (7) Radovic, M.; Barsoum, M.W.MAX phases: bridging the gap between metals and ceramics.Am.Ceram.Soc.Bull.2013, 92, 20-27.

    (8) Barsoum, M.W.; Ei-Raghy, T.Room-temperature ductile carbides.Met.Mater.Trans.1999, 30A, 363-369.

    (9) Barsoum, M.W.; Farber, L.; Ei-Raghy, T.Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2.Mater.Trans.1999, 30A,1727-1738.

    (10) Guilera, G.; Gorges, B.; Pascarelli, S.; Hara, N.Novel high-temperature reactors for in situ studies of three-way catalysts using turbo-XAS.J.Synchrotron Radiat.2009, 16, 628-634.

    (11) Yin, K.D.; Zhang, X.T.; Huang, Q.; Xue, J.M.Theoretical investigation on radiation tolerance of Mn+1AXnphase.Thin Solid Films 2017, 26,060703-8.

    (12) Sun, Z.M.Progress in research and development on MAX phases: a family of layered ternary compounds.Int.Mater.Rev.2011, 56, 143-166.

    (13) Lofland, S.E.; Hettinger, J.D.; Harrell, K.; Finkel, P.; Gupta, S.; Barsoum, M.W.; Hug, G.Elastic and electronic properties of select M2AX phase.Appl.Phys.Lett.2004, 84, 508-510.

    (14) Nowotny, V.H.Strukturchemie einiger verbindungen der ü bergangsmetalle mit den elementen C, Si, Ge, Sn.Prog.Solid State Chem.1970, 2,27-70.

    (15) Hu, C.; Zhang, H.; Li, F.; Huang, Q.; Bao, Y.New phases’ discovery in MAX family.Int.J.Refract.Met.Hard Mater.2013, 36, 300-312.

    (16) Barsoum, M.W.MAX Phases.Wiley-VCH Verlag GmbH & Co.KGaA: Weinheim, Germany 2013, p89-92.

    (17) Bai, Y.L.; He, X.D.; Zhu, C.C.; Chen, G.Microstructures, electrical, thermal and mechanical properties of bulk Ti2AlC synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing.J.Am.Ceram.Soc.2012, 95, 358-364.

    (18) Lin, Z.J.; Li, M.S.; Wang, J.Y.; Zhou, Y.C.High-temperature oxidation and hot corrosion of Cr2AlC.Acta Mater.2007, 55, 6182-6191.

    (19) Ade, M.; Harald, H.Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAX-phases.Inorg.Chem.2015, 54, 6122-6135.

    (20) Bai, Y.; Qi, X.; Duff, A.; Li, N.; Kong, F.; He, X.; Wang, R.; Lee, W.E.Density functional theory insights into ternary layered boride MoAlB.Acta Mater.2017, 132, 69-81.

    (21) Li, N.; Bai, Y.; Wang, S.; Zheng, Y.; Kong, F.; Qi, X.; Wang, R.; He, X.; Duff, A.I.Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2bulk from elemental powders.J.Am.Ceram.Soc.2017, 100, 4407-4411.

    (22) Li, X.H.; Chagas, da Silva, M.; Salahub, D.R.First-principles calculations of the structural, mechanical, electronic and bonding properties of(CrB2)nCrAl with n = 1, 2, 3.J.Alloys.Comp.2017, 698, 291-303.

    (23) Dai, F.Z.; Feng, Z.H.; Zhou, Y.C.Easily tiltable B_Al_B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases(CrB2)nCrAl.J.Alloys.Comp.2017, 723, 462-466.

    (24) Bertaut, F.; Blum, P.Existence et structure d'une nouvelle phase dans le systè me Mo–B.Acta Crystallogr.1951, 4, 72-72.

    (25) Kuz’ma, Y.B.Crystal structure of the compound YCrB4and its analogs.Sov.Phys.Crystallogr.1970, 15, 312-314.

    (26) Kuz’ma, Y.B.; Krypyakevich, P.I.; Chaban, N.F.Crystal structure of Cr3AlB4.Dopov.Akad.Nauk Ukr.RSR, Ser.A: Fiz.-Mat.Tekh.Nauki.1972,34, 1118-1125.

    (27) Zhao, W.J.; Xu, B.First-principles calculations of MnB4, TcB4, and ReB4with the MnB4-type structure.Comp.Mater.Sci.2012, 65, 372-376.

    (28) Wang, S.; Oganov, A.R.; Qian, G.; Zhu, Q.; Dong, H.; Dong, X.; Mahdi Davari Esfahani, M.Novel superhard B-C-O phases predicted from first principles.Phys.Chem.Chem.Phys.2016, 18, 1859-1863.

    (29) Magnuson, M.; Mattesini, M.; Wilhelmsson, O.; Emmerlich, J.; Palmquist, J.P.; Li, S.; Ahuja, R.; Hultman, L.; Eriksson, O.; Jansson, U.Electronic structure and chemical bonding in Ti4SiC3investigated by soft X-ray emission spectroscopy and first-principles theory.Phys.Rev.B 2006, 74,205102-12.

    (30) Kresse, G.; Furthmuller, J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B 1996, 54,11169-11186.

    (31) Kresse, G.; Joubert, D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B 1999, 59, 1758-1775.

    (32) Perdew, J.P.; Wang, Y.Accurate and simple analytic representation of the electron-gas correlation energy.Phys.Rev.B 1992, 45, 13244-13249.

    (33) Perdew, J.P.; Bruke, K.; Ernzerhof, M.Generalized gradient approximation made simple.Phys.Rev.Lett.1996, 77, 3865-3868.

    (34) Jepsen, O.; Anderson, O.K.The electronic structure of h.c.p.ytterbium.Solid State Commun.1971, 9, 1763-1757.

    (35) Pan, L.; Lu, T.C.; Su, R.Study of electronic structure and optical properties of g-AlON crystal.Acta Phys Sin.2012, 61, 027101-6.

    (36) Shen, X.C.The Spectrum and Optical Property of Semiconductor.Science Press: Beijing 1992, p121-130.

    (37) Blanco, M.A.; Pendá s, A.M.; Francisco, E.; Recio, J.M.; Franco, R.Thermodynamical properties of solids from microscopic theory: applications to MgF2and Al2O3.J.Mol.Struct.1996, 368, 245-255.

    (38) Fló rez, M.; Recio, J.M.; Francisco, E.; Blanco, M.A.; Pendas, A.M.First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides.Phys.Rev.B 2002, 66, 144112-7.

    (39) Wang, Y.; Tan, J.; Wang, Y.; Chen, X.First-principles calculations of structural and thermodynamic properties of BeB2compound.Chin.Phys.2007,16, 3046-3051.

    (40) Vinet, P.; Rose, J.H.; Ferrante, J.; Smith, J.R.Universal features of the equation of state of solids.J.Phys.: Condens.Matter.1989, 1,1941-1963.

    (41) Togo, A.; Oba, F.; Tanaka, I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures.Phy.Rev.B 2008, 78, 134106-9.

    (42) Ezzat Elshazly, S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.Mechanical properties of Cr3B4cermets cemented by different metallic binders.Inter.J.Mater.Eng.2012, 2, 57-60.

    (43) Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C.First-principles simulation: ideas, illustrations and the CASTEP code.J.Phys.: Condens.Matter.2002, 14, 2717-2744.

    (44) Patil, S.K.R.; Khare, S.V.; Tuttle, B.R.; Bording, J.K.; Kodambaka, S.Mechanical stability of possible structures of PtN investigated using first-principles calculations.Phys.Rev.B 2006, 73, 104118-8.

    (45) Wang, S.; Yu, X.; Zhang, J.; Wang, L.; Leinenweber, K.; Xu, H.; Popov, D.; Park, C.; Yang, W.; He, D.; Zhao, Y.Crystal structures, elastic properties,and hardness of high-pressure synthesized CrB2and CrB4.J.Superhard Mater.2014, 36, 279-287.

    (46) Murnaghan, F.D.On the theory of the tension of an elastic cylinder.Proc.Natl.Acad.Sci.1944, 30, 382-384.

    (47) Pugh, S.F.XCII.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals.Philos.Mag.Ser.1954, 45,823-842.

    (48) Chen, X.Q.; Niu, H.Y.; Li, D.Z.; Li, Y.Modeling hardness of polycrystalline materials and bulk metallic glasses.Intermetallics 2011, 19,1275-1281.

    (49) Thakoor, A.P.; Lamb, J.L.; Khanna, S.K.; Mehra, M.; Johnson, W.L.Refractory amorphous metallic (W0.6Re0.4)76B24coatings on steel substrates.J Appl.Phys.1985, 58, 3409-3414.

    (50) Lokman Ali, M.; Zahidur Rahaman, M.The structural, elastic, electronic and optical properties of cubic perovskite SrVO3compound: an ab initio study.Inter.J.Mater.Sci.App.2016, 5, 202-206.

    (51) Li, C.L.; Wang, H.; Wang, B.; Wang, R.First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3.Appl.Phys.Lett.2007, 91, 071902-3.

    (52) Wang, H.; Wang, B.; Li, Q.K.; Zhu, Z.Y.; Wang, R.; Woo, C.H.First-principles study of cubic perovskites BiMO3(M = Al, Ga, In and Sc).Phys.Rev.B 2007, 75, 245209-9.

    (53) Xu, M.; Wang, S.Y.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.; Jia, Y.Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4.Appl.Phys.Lett.2009, 89,151908-151910.

    (54) Rahman, M.; Rahaman, M.The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study.Inter.J.Modern Phys.B 2016, 30, 1650199-13.

    (55) Li, S.; Ahuja, R.; Barsoum, M.W.; Jena, P.; Johansson, B.Optical properties of Ti3SiC2and Ti4AlN3.Appl.Phys.Lett.2008, 92, 221907-3.

    (56) Debye, P.Zur Theorie der spezifischen W? rmen.Ann.Phys.1912, 39, 789-839.

    (57) Petit, A.T.; Dulong, P.L.Recherches sur quelques points importants de la theoreie de la chaleur.Ann.Chim.Phys.1819, 10, 395-413.

    国产有黄有色有爽视频| 亚洲 欧美一区二区三区| 在线 av 中文字幕| 国产免费又黄又爽又色| 伦理电影大哥的女人| av播播在线观看一区| 又粗又硬又长又爽又黄的视频| 亚洲高清免费不卡视频| 成年av动漫网址| 欧美激情国产日韩精品一区| 国产精品国产三级专区第一集| 色哟哟·www| 美国免费a级毛片| 欧美成人午夜免费资源| 亚洲中文av在线| 如日韩欧美国产精品一区二区三区| 2018国产大陆天天弄谢| 2021少妇久久久久久久久久久| av线在线观看网站| 亚洲人成77777在线视频| 欧美日韩精品成人综合77777| av天堂久久9| 国产精品一区www在线观看| 国产日韩欧美亚洲二区| 久久精品人人爽人人爽视色| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 精品酒店卫生间| 街头女战士在线观看网站| 免费av中文字幕在线| 亚洲国产精品成人久久小说| 免费少妇av软件| 国产精品久久久久久久电影| 亚洲av福利一区| 婷婷色综合www| 久久精品国产鲁丝片午夜精品| 九草在线视频观看| 草草在线视频免费看| 青青草视频在线视频观看| 一二三四在线观看免费中文在 | 国产黄频视频在线观看| 天堂8中文在线网| 麻豆精品久久久久久蜜桃| 精品人妻在线不人妻| 母亲3免费完整高清在线观看 | 成人漫画全彩无遮挡| 免费黄色在线免费观看| 亚洲精品久久成人aⅴ小说| 亚洲一码二码三码区别大吗| 精品一区在线观看国产| 久久精品夜色国产| 午夜福利,免费看| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 亚洲美女搞黄在线观看| 成人亚洲欧美一区二区av| 草草在线视频免费看| 美女内射精品一级片tv| 国产精品久久久av美女十八| 熟女电影av网| 制服诱惑二区| 各种免费的搞黄视频| 成人18禁高潮啪啪吃奶动态图| 在线观看免费高清a一片| 黄色视频在线播放观看不卡| 午夜精品国产一区二区电影| 两个人免费观看高清视频| 免费在线观看完整版高清| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| 日韩中字成人| 少妇的逼好多水| 国产1区2区3区精品| 欧美国产精品va在线观看不卡| 99热6这里只有精品| 免费黄网站久久成人精品| 亚洲欧美成人精品一区二区| 狠狠婷婷综合久久久久久88av| 亚洲国产精品一区二区三区在线| 免费av不卡在线播放| 女人久久www免费人成看片| 亚洲久久久国产精品| 一级毛片黄色毛片免费观看视频| 22中文网久久字幕| 中文字幕人妻熟女乱码| 久久久精品94久久精品| 精品久久久精品久久久| 成年人午夜在线观看视频| 亚洲成人一二三区av| 久久久a久久爽久久v久久| 国产毛片在线视频| 黑丝袜美女国产一区| 男女免费视频国产| 国产精品国产三级专区第一集| 最新中文字幕久久久久| 国产片内射在线| 一本久久精品| 韩国av在线不卡| 久久久久久久大尺度免费视频| 亚洲美女搞黄在线观看| 久久精品熟女亚洲av麻豆精品| 蜜桃在线观看..| 制服丝袜香蕉在线| 精品国产一区二区久久| 狂野欧美激情性xxxx在线观看| 久久99热这里只频精品6学生| av女优亚洲男人天堂| 少妇熟女欧美另类| videos熟女内射| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品久久久久久久性| 精品亚洲乱码少妇综合久久| 成年人免费黄色播放视频| 久久免费观看电影| 成人黄色视频免费在线看| 有码 亚洲区| 一边摸一边做爽爽视频免费| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 曰老女人黄片| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| www.熟女人妻精品国产 | 99精国产麻豆久久婷婷| 日本午夜av视频| 在线观看美女被高潮喷水网站| 亚洲欧美清纯卡通| 美女视频免费永久观看网站| 久久精品国产亚洲av天美| 日韩成人伦理影院| 插逼视频在线观看| 边亲边吃奶的免费视频| 两性夫妻黄色片 | 如何舔出高潮| 国产精品.久久久| 五月伊人婷婷丁香| 天天操日日干夜夜撸| 日本91视频免费播放| 国产又色又爽无遮挡免| 欧美日韩综合久久久久久| 亚洲av成人精品一二三区| 亚洲精品乱久久久久久| 一本大道久久a久久精品| 老女人水多毛片| 国产av精品麻豆| 日韩大片免费观看网站| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 免费观看在线日韩| 日韩三级伦理在线观看| 咕卡用的链子| 在线免费观看不下载黄p国产| 国产精品久久久久久久久免| 国产xxxxx性猛交| 成人亚洲精品一区在线观看| 日韩av在线免费看完整版不卡| 久久人人爽人人爽人人片va| 国产片特级美女逼逼视频| 久久久久久久国产电影| 深夜精品福利| 久久久久视频综合| 激情视频va一区二区三区| 免费高清在线观看日韩| 男女边吃奶边做爰视频| 国产乱人偷精品视频| 久久久久久久久久久久大奶| 王馨瑶露胸无遮挡在线观看| 国产精品不卡视频一区二区| av免费在线看不卡| 丝袜在线中文字幕| 一级片免费观看大全| 综合色丁香网| 国产亚洲av片在线观看秒播厂| 精品福利永久在线观看| av卡一久久| 精品国产一区二区三区四区第35| 看非洲黑人一级黄片| 大香蕉97超碰在线| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 免费看av在线观看网站| 最近最新中文字幕大全免费视频 | 日韩在线高清观看一区二区三区| 七月丁香在线播放| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 在线观看三级黄色| 亚洲国产成人一精品久久久| 伊人亚洲综合成人网| 久久青草综合色| 国产精品久久久av美女十八| 最新中文字幕久久久久| 欧美成人午夜精品| 最近最新中文字幕大全免费视频 | 亚洲第一区二区三区不卡| av一本久久久久| 高清毛片免费看| av网站免费在线观看视频| 日本av手机在线免费观看| av在线老鸭窝| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 在线天堂中文资源库| 五月玫瑰六月丁香| 蜜桃国产av成人99| 亚洲精品视频女| av卡一久久| 青春草视频在线免费观看| 大话2 男鬼变身卡| 九色成人免费人妻av| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 精品久久蜜臀av无| 欧美日韩av久久| 日韩在线高清观看一区二区三区| 五月玫瑰六月丁香| 老熟女久久久| 亚洲熟女精品中文字幕| 丝袜脚勾引网站| www.av在线官网国产| 国产激情久久老熟女| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看 | 下体分泌物呈黄色| 国产精品久久久久久久电影| 国产综合精华液| 久久久久久久亚洲中文字幕| 亚洲美女黄色视频免费看| 国精品久久久久久国模美| 妹子高潮喷水视频| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 99热国产这里只有精品6| 欧美日韩视频高清一区二区三区二| 欧美成人精品欧美一级黄| 人人妻人人爽人人添夜夜欢视频| 蜜臀久久99精品久久宅男| 亚洲,一卡二卡三卡| 高清毛片免费看| 欧美激情极品国产一区二区三区 | 少妇熟女欧美另类| 熟女av电影| 桃花免费在线播放| 18禁观看日本| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 欧美激情国产日韩精品一区| 国产视频首页在线观看| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 亚洲成人一二三区av| 满18在线观看网站| 国产在视频线精品| 夫妻性生交免费视频一级片| 久久青草综合色| 久久久精品免费免费高清| 精品一区二区三区四区五区乱码 | 交换朋友夫妻互换小说| 亚洲精品国产av成人精品| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 热99久久久久精品小说推荐| 精品久久国产蜜桃| 夜夜爽夜夜爽视频| 桃花免费在线播放| 国产在线一区二区三区精| 成人手机av| 老司机影院成人| 看十八女毛片水多多多| 最近中文字幕高清免费大全6| 国产av一区二区精品久久| 最近最新中文字幕免费大全7| 丝袜在线中文字幕| 91午夜精品亚洲一区二区三区| 美国免费a级毛片| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 午夜免费男女啪啪视频观看| 国产国拍精品亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 国产精品一国产av| 麻豆精品久久久久久蜜桃| 男女下面插进去视频免费观看 | 男女啪啪激烈高潮av片| 成年人午夜在线观看视频| 黑丝袜美女国产一区| av国产精品久久久久影院| 免费观看av网站的网址| 咕卡用的链子| 久久精品人人爽人人爽视色| 一二三四中文在线观看免费高清| 少妇的逼水好多| 日韩中文字幕视频在线看片| 老熟女久久久| 日本wwww免费看| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 99热这里只有是精品在线观看| 日本黄大片高清| 18禁在线无遮挡免费观看视频| 99re6热这里在线精品视频| 男女高潮啪啪啪动态图| 国产成人精品一,二区| 看非洲黑人一级黄片| 亚洲五月色婷婷综合| 午夜福利网站1000一区二区三区| 国内精品宾馆在线| 久久人妻熟女aⅴ| 国产精品久久久久久av不卡| 岛国毛片在线播放| 免费观看无遮挡的男女| 亚洲中文av在线| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 国产视频首页在线观看| kizo精华| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 国产亚洲精品第一综合不卡 | 夜夜爽夜夜爽视频| 午夜激情久久久久久久| 亚洲国产看品久久| 日韩av免费高清视频| 国产成人精品一,二区| 女人精品久久久久毛片| 高清在线视频一区二区三区| 日本vs欧美在线观看视频| 中文字幕制服av| 欧美日韩视频精品一区| 国产精品久久久久久精品古装| 亚洲精品久久久久久婷婷小说| 九色亚洲精品在线播放| 亚洲一区二区三区欧美精品| 三级国产精品片| 亚洲av中文av极速乱| a 毛片基地| 男女下面插进去视频免费观看 | 黄片无遮挡物在线观看| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到 | 亚洲伊人久久精品综合| 亚洲伊人色综图| 免费播放大片免费观看视频在线观看| 中文字幕免费在线视频6| 欧美日韩精品成人综合77777| 亚洲成人一二三区av| 中文欧美无线码| 性色av一级| 大香蕉久久成人网| 丝袜在线中文字幕| 国产欧美日韩综合在线一区二区| 欧美成人午夜免费资源| 日日撸夜夜添| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| 亚洲三级黄色毛片| 夫妻午夜视频| 熟女av电影| 成人漫画全彩无遮挡| 熟女av电影| 国产日韩一区二区三区精品不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜免费鲁丝| 大香蕉久久网| 咕卡用的链子| 最近最新中文字幕大全免费视频 | 哪个播放器可以免费观看大片| 另类精品久久| av福利片在线| 精品亚洲乱码少妇综合久久| 一本—道久久a久久精品蜜桃钙片| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 亚洲伊人色综图| 亚洲国产精品专区欧美| 国产精品久久久av美女十八| 国产精品免费大片| 亚洲精华国产精华液的使用体验| av一本久久久久| 宅男免费午夜| av国产精品久久久久影院| 黄色配什么色好看| 91精品伊人久久大香线蕉| 久久精品人人爽人人爽视色| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 国产日韩欧美视频二区| 免费女性裸体啪啪无遮挡网站| 天美传媒精品一区二区| 成年女人在线观看亚洲视频| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看| 亚洲人成77777在线视频| 青青草视频在线视频观看| 天天影视国产精品| 男人操女人黄网站| 国内精品宾馆在线| 99视频精品全部免费 在线| 一本大道久久a久久精品| 亚洲国产精品一区二区三区在线| 亚洲人与动物交配视频| 国产一区二区三区av在线| 黄色 视频免费看| 婷婷色综合大香蕉| 国产日韩欧美亚洲二区| 国产国拍精品亚洲av在线观看| 亚洲精品久久成人aⅴ小说| 国产亚洲最大av| 国产精品不卡视频一区二区| av国产精品久久久久影院| 国产白丝娇喘喷水9色精品| 久久精品国产综合久久久 | 99热全是精品| 69精品国产乱码久久久| 新久久久久国产一级毛片| 亚洲精品色激情综合| h视频一区二区三区| 一级毛片电影观看| 久久久久精品人妻al黑| 丰满少妇做爰视频| 人成视频在线观看免费观看| 国产亚洲一区二区精品| 人人妻人人澡人人看| 久久久国产欧美日韩av| 欧美少妇被猛烈插入视频| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 99视频精品全部免费 在线| 国产老妇伦熟女老妇高清| 午夜日本视频在线| 国产成人欧美| 精品一区二区三区四区五区乱码 | 日本vs欧美在线观看视频| 一级爰片在线观看| 一级片'在线观看视频| av黄色大香蕉| 女人精品久久久久毛片| 久热这里只有精品99| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 十八禁高潮呻吟视频| 国产男人的电影天堂91| 尾随美女入室| 国产免费一区二区三区四区乱码| 十八禁高潮呻吟视频| 国产成人91sexporn| 精品一区二区三卡| 青青草视频在线视频观看| 久久久久久久久久久免费av| 亚洲综合精品二区| 日韩av在线免费看完整版不卡| 超碰97精品在线观看| 日韩不卡一区二区三区视频在线| 久久国产精品男人的天堂亚洲 | 波野结衣二区三区在线| 国产精品嫩草影院av在线观看| 亚洲av国产av综合av卡| 亚洲国产成人一精品久久久| 各种免费的搞黄视频| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 一级毛片黄色毛片免费观看视频| 在线免费观看不下载黄p国产| 69精品国产乱码久久久| 国产精品麻豆人妻色哟哟久久| 男女国产视频网站| 久久久久久人人人人人| 18禁裸乳无遮挡动漫免费视频| 两个人免费观看高清视频| 校园人妻丝袜中文字幕| 肉色欧美久久久久久久蜜桃| 人妻系列 视频| 日韩精品有码人妻一区| 久久精品国产a三级三级三级| 亚洲av福利一区| 热99久久久久精品小说推荐| 91精品伊人久久大香线蕉| 男女免费视频国产| 另类精品久久| 国产精品国产三级国产av玫瑰| 欧美变态另类bdsm刘玥| 在线观看免费高清a一片| 在线看a的网站| 97精品久久久久久久久久精品| 日本色播在线视频| 国产精品麻豆人妻色哟哟久久| 国产视频首页在线观看| 亚洲成色77777| 亚洲欧美中文字幕日韩二区| 99香蕉大伊视频| 老女人水多毛片| 亚洲欧洲精品一区二区精品久久久 | 一区二区三区乱码不卡18| 男女啪啪激烈高潮av片| 免费黄网站久久成人精品| 久久久国产一区二区| 99国产精品免费福利视频| 9191精品国产免费久久| 亚洲精品视频女| 天天躁夜夜躁狠狠躁躁| 精品久久国产蜜桃| 国产一区二区激情短视频 | 另类亚洲欧美激情| 热re99久久国产66热| 美女大奶头黄色视频| 国产精品蜜桃在线观看| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 日本色播在线视频| 国产xxxxx性猛交| 人人妻人人添人人爽欧美一区卜| 久久人妻熟女aⅴ| 国产69精品久久久久777片| 女人精品久久久久毛片| 免费在线观看完整版高清| 性色avwww在线观看| 亚洲av国产av综合av卡| 极品少妇高潮喷水抽搐| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 一级黄片播放器| 亚洲国产精品专区欧美| 亚洲欧美成人精品一区二区| 性色avwww在线观看| 欧美亚洲 丝袜 人妻 在线| 十八禁高潮呻吟视频| 91久久精品国产一区二区三区| 久久精品人人爽人人爽视色| 久久久久国产精品人妻一区二区| 免费播放大片免费观看视频在线观看| 久久精品aⅴ一区二区三区四区 | 国产精品秋霞免费鲁丝片| 乱人伦中国视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲久久久国产精品| 亚洲四区av| 观看av在线不卡| 成年动漫av网址| 美女福利国产在线| 亚洲一区二区三区欧美精品| 亚洲少妇的诱惑av| 久久综合国产亚洲精品| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色av中文字幕| 久久人人爽人人爽人人片va| 精品酒店卫生间| 亚洲人与动物交配视频| 少妇人妻久久综合中文| 色5月婷婷丁香| 高清欧美精品videossex| 亚洲熟女精品中文字幕| 国产淫语在线视频| 亚洲成人手机| 久久99精品国语久久久| 午夜影院在线不卡| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| 亚洲少妇的诱惑av| 综合色丁香网| 纵有疾风起免费观看全集完整版| 免费黄网站久久成人精品| 国产亚洲最大av| 中文字幕另类日韩欧美亚洲嫩草| 丝袜在线中文字幕| 亚洲欧洲日产国产| 最近中文字幕2019免费版| 热re99久久精品国产66热6| 日韩中文字幕视频在线看片| 黄色配什么色好看| 少妇人妻精品综合一区二区| 美女国产视频在线观看| 色5月婷婷丁香| 老司机影院成人| 亚洲欧洲国产日韩| 欧美激情 高清一区二区三区| 99久久精品国产国产毛片| 男人操女人黄网站| 久久精品aⅴ一区二区三区四区 | 99热全是精品| 亚洲精品色激情综合| 国产成人精品福利久久| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 不卡视频在线观看欧美| 国产黄色视频一区二区在线观看| av免费在线看不卡| 日本黄色日本黄色录像| 久久精品夜色国产| 爱豆传媒免费全集在线观看| 精品酒店卫生间| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 国产精品.久久久| 黄网站色视频无遮挡免费观看| 日韩三级伦理在线观看| 女性生殖器流出的白浆| 天堂俺去俺来也www色官网| 亚洲av福利一区| 亚洲av电影在线进入| 成人二区视频| 欧美少妇被猛烈插入视频| 肉色欧美久久久久久久蜜桃| 久久久久久久国产电影| 国产日韩一区二区三区精品不卡| 女性生殖器流出的白浆| 日本欧美国产在线视频| 在线观看免费日韩欧美大片| 免费黄网站久久成人精品| 成人国产av品久久久| 一本色道久久久久久精品综合| 国产在线视频一区二区| 亚洲欧美日韩另类电影网站|