• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural, Electronic, Optical and Thermodynamic Properties of Nanolaminated Boride Cr4AlB6①

    2018-11-22 01:58:52ZHANGRuiZhouCUIHongLingLIXioHongCollegeofPhysicsndEngineeringHennUniversityofSciencendTechnologyLuoyng471003ChinHennKeyLortoryofPhotoelectricEnergyStorgeMterilsndApplictionsLuoyng471023Chin
    結構化學 2018年10期

    ZHANG Rui-Zhou CUI Hong-Ling LI Xio-Hong, ② (College of Physics nd Engineering, Henn University of Science nd Technology, Luoyng 471003, Chin) (Henn Key Lortory of Photoelectric Energy Storge Mterils nd Applictions, Luoyng 471023, Chin)

    The structural, electronic, optical and thermal properties of Cr4AlB6were investigated by density functional theory.The investigated results confirm the metallic nature of Cr4AlB6and the maximum optical conductivity occurs at about 8.12 eV.Thermodynamic properties such as thermal expansion, bulk modulus, and heat capacity were further investigated with increasing the temperature and pressure.

    1 INTRODUCTION

    In recent years, a family of ternary nano-layered compounds known as MAX alloys or MAX phases[1-3]was investigated.The general formula for MAX phases is Mn+1AXn, where M is an early transition metal, A is an A-group (mostly IIIA and IVA) element, X is either C or N, and n is an integer,commonly equal to 1, 2 or 3[4,5].Such a nanolaminated structure endows the unique property combination of metals and ceramics because of a hard carbide or nitride part (MX)nand a ductile intermetallic part MA[1-3,6].The MAX phases have the properties such as: good electrical and thermal conductivity, machinability, low thermal expansion, and reversible plasticity[7].Furthermore, they are the only polycrystalline solids in which single grains can deform by a combination of slip, kink band formation and delamination[8,9].The MAX phases have been applied into the defense, high temperature reactor, automobile, protective coatings, etc[10-12].The remarkable property collection of the MAX phases makes them open the door to viable commercial applications from catalysis to aerospace in future[13].

    In the 1960s, the metallic ceramics MAX phases were discovered[14]and became the research focus in recent years[1-3].Now, about 70 MAX compounds are discovered[15].In the MAX phases, the oxidation of alumina can make materials used at extended high temperature[16], and this is observed only in the Al-containing MAX carbides such as Ti3AlC2[17]and Cr2AlC[18].So, it is reasonable to assume that other Al-containing MAX phases would also exhibit a similar oxidation resistance.Ade et al.[19]thought that inserting Al layer to form nanolaminated, ternary transition-metal borides (called MAB phases) can improve the intrinsic brittleness and poor oxidation resistance of binary borides.The general formula for MAB phases is (MB)2Alm(MB2)n(n = 1, 2, ···; m = 1,2, 3, ···).Bai et al.[20]investigated the electronic structure, elastic properties of ternary layered boride MoAlB and thought that there exhibit similarities in properties between MAB and MAX.Li et al.[21]investigated the electrical and mechanical properties of polycrystalline Fe2AlB2bulk from element powders.They thought that Fe2AlB2is quite damage tolerant and the energy-absorbing mechanisms are delamination and pullout of Fe2AlB2grains.Li et al.[22]investigated the mechanical, electronic and bonding properties of MAB phases (CrB2)nCrAl (n =1,2 3), Dai et al.[23]further calculated the shear response of nanonaminated (CrB2)nCrAl and thought that dislocations tend to nucleate in basal planes and may result from the local open structure around Al layers.

    The structure of CrB was determined[24]and the combination of the polygons beyond hexagons appears such as YCrB4[25].The crystal structure of Cr3AlB4was determined in 1972[26].By insertion of additional boron atoms in the surrounding of Cr in Cr3AlB4, Martin et al.[19]synthesized the ternary borides Cr4AlB6, a new MAB phase, and its structure is similar to the MAX phases with two Al layers interleaving the transition metal boride sublattice.To the best of our knowledge, little experimental and theoretical information about the electronic, optical and thermodynamic information is available for Cr4AlB6.Thus, investigating these properties theoretically can help Cr4AlB6to be used in industrial applications.

    The all-electron projector augmented wave (PAW)method was reported to investigate the structural and electronic properties of MnB4-type structure[27].This method has also been used by Wang et al.[28]to investigate the elastic constants of B4CO4.Using the PAW method, we calculated the structural, optical,and thermal properties of Cr4AlB6.Density functional theory (DFT) within the quasi harmonic approximation (QHA) was used to investigate the thermal properties of bulk materials[13,29].

    2 COMPUTATIONAL DETAILS

    Cr4AlB6has orthorhombic crystal structure and belongs to Cmmm space group[19].The calculations about energy and electronic structure were carried out within the generalized gradient approximation(GGA), as implemented in the Vienna ab-initio simulation package (VASP)[30].The PAW[31]and GGA[32]were used.Perdew-Burke-Ernzerhof (PBE)functional[33]was also used.Geometry optimizations were performed without any restriction.The plane wave cut-off energy is 800 eV.And the Monkhorst-Pack k-point mesh is set to 7 ′ 7 ′ 7 to ensure the energy differences of less than 10-6eV/atom.The k-point of 9 ′ 9 ′ 9 mesh was used to calculate the band structure.In the calculation of DOS, the tetrahedron method[34]was used for the Brillouinzone integration and a dense 15 ′ 15 ′ 15 k-points was used.

    The optical properties are determined by the complex dielectric function e(w) = e1(w) + ie2(w).The real part e1(w) and imaginary part e2(w) can be obtained by calculating the wave function matrix.Based on the dielectric function, the other optical properties such as the refraction index n(w), the extinction coefficient k(w), the optical reflectivity R(w), the absorption coefficient a(w), and the energyloss spectrum L(w) can be obtained[35].A dense sampling grid of 15 ′ 15 ′ 15 k-points was used for the calculation of optical properties.The related theoretical formulas of optical properties are as follows[36]:

    where C and V represent the conduction band and valence band, respectively.BZ means the first Brillouin zone, K is the reciprocal lattice, EC(K) and E(K) are the intrinsic energy levels of conduction and valence bands, respectively.the matrix element of momentum transition, e0is the vacuum permittivity, a is the unit direction vector, wis the angular frequency, n(w) is the refractive index,k(w) is the extinction coefficient, R(w) is the reflectivity, a(w) is the absorption coefficient, and L(w) is the energy loss function.

    For metal, the intraband transition is more important than the interband transition in the low energy (< 1 eV).So the intraband transition affects mainly the low-energy infrared part of the spectra and can be expressed using empirical Drude term,which can be expressed as

    where wpand gDare the plasma frequency and damping parameter, respectively and can be obtained from the experiment.

    The quasi-harmonic Debye model is applied to investigate the thermodynamic properties.In the quasi-harmonic Debye model, the non-equilibrium Gibbs function G*(V; P, T) can be expressed as

    where E(V) represents the total energy per unit cell of the crystal and can be obtained from the electronic structure calculations.PV represents the constant hydrostatic pressure condition.q (V) corresponds to the Debye temperature.AVibcorresponds to the vibrational Helmholtz free energy and can be obtained by the following equation[37,38]:

    where D(q/T) is the Debye integral, n is the number of atoms per formula unit, and q is the Debye temperature and related to an average sound velocity.For an isotropic solid, q can be computed as

    where M corresponds to the molecular mass per formula, Bsis the adiabatic bulk modulus, and f(s)and Bs are given by the following equations[39]:

    Therefore, the non-equilibrium Gibbs function G*(V; P, T) can be minimized with respect to volume V.

    One could get the thermal equation of state (EOS)V(P, T) by solving Eq.(14).The thermodynamic function was fitted to the integral form of Vinet's equation of state (EOS) at zero pressure[40].The heat capacity Cpwas determined by a numerical differentiationand by polynomial fitting for both Cvand S.The phonon modes were calculated from the force constants using the PHONOPY package[41].A 2 ′ 1 ′ 2 supercell including 88 atoms with 11 ′ 11 ′ 11 k-mesh was used to ensure the convergence.

    3 RESULTS AND DISCUSSION

    3.1 Structural and elastic properties

    Cr4AlB6crystal is in orthogonal system with space group Cmmm and Fig.1 shows its crystal structure.Its unit cell contains two unit formulas.Table 1 lists the lattice constants, structural parameters and available experimental values[19]of Cr4AlB6.Obviously, the calculated results are in good agreement with the experimental values, which confirms the reliability of our computation.

    Fig.1.Crystal structure and molecular numbering of Cmmm-Cr4AlB6

    In Table 1, the calculated lattice constants agree well with the experimental values of 2.9517,21.2803, and 3.0130 ? for a, b and c, respectively.For the lattice constants, the maximum differences between the calculated and experimental values are 0.17%, 0.19% and 0.82% for a, b, and c,respectively.The B6–B10bond length is 1.7396 ?,which is close to the experimental value of 1.7384 ?[19].The B6–B10and B10–B11bonds form a zigzag chain with B6–B10–B11bond angle of 120.19°, close to the experimental value of 120.23°.The B10–B11distance is 1.761 ? for the Cr2AlB2crystal, 1.739 ? for Cr3AlB4and 1.708 ? for Cr4AlB6[19].This shows that the B–B bond length shortens with increasing the boron content.Thereby, the stronger B–B covalent interactions and shorter B–B bond in Cr4AlB6may play an important role in resisting the plastic deformation and make Cr4AlB6tougher than Cr2AlB2and Cr3AlB4.In addition, it is noted that the other bond lengths and bond angles are all close to the corresponding experimental values[19].

    Table 1.Experimental and Calculated Lattice Constants, Atomic Position,Bond Lengths and Bond Angles of the Cmmm-Cr4AlB6 Crystal at Standard Pressure

    From Fig.1, all B atoms form the planar hexagons and the hardness of materials can be improved by adding metal binder[42], so we think that Cr4AlB6is a hard material.We further investigated the elastic constants of Cr4AlB6by CASTEP program[43].For orthorhombic system, nine independent components of the elastic constants must satisfy the necessary conditions for mechanical stability[44]:

    Table 2 lists the calculated elastic constants Cij(GPa), bulk modulus B (GPa), shear modulus G(GPa), Young's modulus Y (GPa), the G/B ratio,Poisson's ratio v and Vicher's hardnesss Hv(GPa) at ambient pressure.The available experimental values[45]were also included.From Table 2, the whole set of elastic constants matrix Cijsatisfies the mechanical stability criteria[46], which shows that Cr4AlB6is mechanically stable at ambient pressure.

    Table 2.Calculated Elastic Constants, Cij (GPa), Bulk Moduli, B (GPa), Shear Moduli, G (GPa),Young's Moduli, Y (GPa), the G/B Ratio, Poisson's Ratio n and Vicker's Hardness, Hn (GPa) at Ambient Pressure, Compared with the Available Experimental and Theoretical Results

    Fig.2 presents the graph of the total energy (E)versus the volume (V).By fitting the E-V data to Birch-Murnaghan's equation of state[46], we can obtain the equilibrium lattice volume, the bulk modulus B0and the pressure derivative of the bulk modulus

    Fig.2.Graph of the total energy versus volume

    From Table 2, the calculated bulk modulus is 234 GPa, which is close to the fitted value (237 GPa)from the Birch-Murnaghan equation of state.The shear modulus and Pugh's ratio[47](k = G/B) are two important elastic properties which are related with the hardness according to the empirical formulation of Chen et al.[48], and the hardness can be written as

    where K = G/B.

    Using Eq.(9), the hardness of Cr4AlB6is estimated to 28.4 GPa, which is smaller than the hardness' of B4C, c-BN, and diamond[36]listed in Table 2.Compared to other materials with similar structures, such as WAlB (Hv: ~21.7 GB)[19]and W45.6Re30.4B24(Hv= 23.5 GPa)[49], the hardness of Cr4AlB6is moderate.In Table 2, the C11value is larger than the C22and C33values, which implies the strong resistances to deformation along the a-direction when compared with that along the c- and b-directions.

    3.2 Electronic and dynamic properties

    In our previous paper[22], we have confirmed the dynamical stability of Cr4AlB6and Fig.S1 in Supporting Information shows the phonon dispersion.Fig.3 illustrates the density of states (DOS) and partial density of states (PDOS) of Cr4AlB6.There is a large finite DOS of 11.67 states/eV at the Fermi energy level for Cr4AlB6, which confirms the metallic characteristic of Cr4AlB6.The DOS near Fermi level are mainly from the Cr-3d orbital electrons, with some of the B-2p orbital electrons and negligible contributions from Al-2p states.Few electrons are available from the s orbital near the Fermi energy level.From –7.8 to –3.7 eV, the PDOS for Cr-d and B-p orbitals are similar, indicating the strong hybridization between Cr-d and B-p states.

    Fig.3.Total electronic density of states and the projected atomic orbital density of states of Cr4AlB6

    Fig.4 shows the normalized total phonons density of states and the total atomic projected density of states of Cr4AlB6.From Figs.S1 and 4, there are two distinct peaks of bands of frequency.The first peak of frequencies ranges from 0 to 11.48 THz and characterized as the optical and acoustic bands of the Cr and Al atoms.The second peak of frequency ranges from 11.48 to 30 THz and corresponds to the optical mode of B atoms.In addition, from Fig.4, the intensity of Cr and B compositions is much stronger than that of the Al bands.And the frequency compositions of Cr and B atoms form the relative broad peak of bands, when compared with the Al atom.

    Fig.5 presents the calculated band structure of Cr4AlB6along the high-symmetry directions of the Brillouin zone.The overlap between the conduction and valence bands confirmed its metallic nature once again.This suggests that Cr4AlB6would exhibit metallic conductivity like other MAX phases.From Fig.5, the Fermi energy (EF) is crossed by several different bands along the G-X, S-Y, G-Z and Z-U directions, indicating metallic behavior along the directions parallel to the a- and c-directions.While the buckling along the b- direction opens band gaps of 0.86 and 0.12 eV along X-S and Y-G, respectively.Thus Cr4AlB6behaves as a metal with strong anisotropy.And the electrical conductivity is confined along the b-direction.

    3.3 Optical properties

    The dielectric function was investigated and Fig.6(a)presents the real part e1(w) and imaginary part e2(w)of dielectric functions of Cr4AlB6as a function of photon energy.The investigation of e1(w) can make us understand the electronic polarizability of the material[50].For Cr4AlB6, e1(w) decreases drasticcally when the photon energy ranges from 0 to 2 eV.When the photon energy varies between 7.87 and 23.48 eV, e1(w) 0, indicating the metallic behavior of Cr4AlB6.When the photon energy is above 23.48 eV, e1(w) increases with increasing the photon energy and is nearly a constant at higher energy.This shows that Cr4AlB6becomes a transparent material at higher energy radiation.When the photon energy is zero, the static dielectric constant e1(0) is about 128.0,much larger than those of BaTiO3, BiInO3and Ti3N4[51-53].Thereby, Cr4AlB6may be useful for manufacturing the high value capacitors[54].

    Fig.4.(a) Normalized total phonons density of states and (b~d)heir total atomic projected density of states of Cr4AlB6

    Fig.5.Electronic band structures of Cr4AlB6

    Fig.6.Dielectric functions and refractive index of Cr4AlB6

    The peak of e2(w) is related to the electron excitation.From Fig.6(a), the metallic behavior of Cr4AlB6is observed once again, since for small frequencies, w ? 0, e2(w) is much larger compared with the rest of the spectrum.e2(w) has three main peaks for Cr4AlB6.At low energy, where intraband transitions occur, an abrupt rise appears below 1 eV,and e2(w) reaches the first minimum at about 2.04 eV,which confirms the low energy divergence for metallic materials.e2(w) reaches the first dielectric peak at 3.63 eV and the second and third peaks at 6.95 and 9.47 eV, respectively.The first and second peaks are derived from the transition between Cr-d and B-p states, while B-s and Al-s states contribute to the third peaks.For Cr4AlB6, e2(w) is zero at about 55 eV.This indicates that Cr4AlB6becomes transparent above 55 eV.

    The refractive index exhibits the fundamental optical and electronic properties.The refractive index n(w) and extinction coefficient k(w) are illustrated in Fig.6(b).From Fig.6(b), the static refractive index n(0) is 11.3, which satisfies the condi-When the photon energy ranges from 0 to 11.25 eV, refractive index n(w) is greater than 1, which indicates that the interactions with the electrons make the photons slow down.According tothe valley of e1(w)corresponds to the peak of k(w) in this frequency range.The extinction coefficient k first increases, and reaches the first peak at 1.24 eV.Then k fluctuates and reaches the second and third peaks at 5.23 and 8.55 eV, respectively.k decreases to zero at about 55 eV, so the intrinsic oscillation frequency of Cr4AlB6is about 55 eV and Cr4AlB6possesses the characteristics of transparent ultraviolet.k is bigger than n when the photon energy varied between 7.87 and 23.48 eV, and Cr4AlB6shows a metal reflective property.

    Fig.7 presents the absorption, energy loss function,reflectivity, and the optical conductivity of Cr4AlB6as a function of photon energy.Fig.7(a) presents the absorption coefficient spectrum of Cr4AlB6, which begins at zero photon energy due to the metallic nature.The absorption coefficient of Cr4AlB6has two main peaks.The first peak of 3.60058 ′ 105cm-1is at 14.2 eV and the second peak of 4.95160 ′ 105cm-1at 44.5 eV.Then the absorption coefficient decreases to zero at about 60 eV, which indicates that Cr4AlB6is colorless and transparent above 60 eV.Meanwhile, the absorption coefficient is greater than 105cm-1, indicating that Cr4AlB6is a promising candidate for optical applications.

    Fig.7(b) presents the energy loss function with the increasing photon energy.And the plasma resonance frequency wpis the highest peak.From Fig.7(b), wpof Cr4AlB6is at 23.85 eV.If the frequencies of incident light are larger than the plasma frequencies of Cr4AlB6, Cr4AlB6will change from metal to dielectric material.

    Fig.7(c) presents the variation of reflectivity of Cr4AlB6with incident photon energy.The average reflectivity is more than 40% for Cr4AlB6in the infrared-visible -UV range up to ~20.1 eV.When the photon energy is bigger than 20.1 eV, the reflectivity sharply decreases to very low reflectivity (high transparency) for short wavelength.According to Li et al.[55], a MAX-phase compound can reduce solar heating if it has a reflectivity of ~44% in the visible light region, so we think that Cr4AlB6is a candidate material for coating to reduce solar heating.

    Fig.7.Absorption (a), energy loss function (b), refractivity (c) and optical conductivity (d) of Cr4AlB6

    Fig.7(d) presents the optical conductivity of Cr4AlB6.The photoconductivities start with zero photon energy, which indicates that Cr4AlB6has no band gap and has metallic nature.The maximum optical conductivity occurs at the photon energy about 8.12 eV.

    3.4 Thermodynamic properties

    The quasi-harmonic Debye approximation is applied to investigate the thermodynamic properties of Cr4AlB6.The thermodynamic properties are determined in the temperature range from 0 to 2000 K and pressure range from 0 to 100 GPa.

    Fig.8 presents the dependence of the primitive cell volume and thermal expansion coefficient as the function of T and P.From Fig.8(a), the volume increases nearly linearly with increasing T for a given P, and decreases with increasing P for a given T.The rate of increase is nearly zero from 0 to 250 K and becomes very moderate for T > 250 K.At T =300 K and P = 0 GPa, the calculated equilibrium primitive cell volume V is 187.28 ?3, which is close to the experimental values of 189.26 ?3[19].From Fig.8(b), the thermal expansion coefficient a firstly increases quickly with increasing T up to 500 K for a given P.When T > 500 K, a tends to a linear increase and the propensity of increment becomes very moderate, which means that the effect of T on ais very small at high T.In addition, a decreases quickly with increasing P for a given T.At T = 300 K and P = 0 GPa, a is 2.16 ′ 10-5K-1.

    Fig.8.Dependence of the primitive cell volume (a) and thermal expansion (b) as a function of temperature and pressure

    Fig.9 shows the variations of bulk modulus and heat capacity Cvas a function of T and P.From Fig.9(a),the compressibility is nearly a constant when T 150 K, then decreases linearly with increasing T for a given P.The bulk modulus increases with increasing P for a given T.This indicates that the ability to resist the volume change becomes weaker with increasing T and stronger with increasing P.Heat capacity Cvcan provide the information about the vibrational properties.Two famous limiting cases are correctly predicted by the standard elastic continuum theory[56].Cvis proportional to T3at very low temperature[53]and tends to the Dulong-Petit limits[57]at high T.From Fig.9(b), Cvincreases exponentially from 0 to 500 K and tends to the Dulong-Petit limits(548.7 J×mol-1×K-1).The interactions between ions in Cr4AlB6have great effect on Cv, especially at low T.In addition, Cvdecreases gradually with the increasing P for a given T.And the effect of T on Cvis more significant than that of P.At T = 300 K and P= 0 GPa, Cvis 243.94 J×mol-1×K-1.

    Fig.9.Dependence of the bulk modulus (a) and heat capacity Cv (b) as a function of temperature and pressure

    4 CONCLUSION

    Using PAW method based on the DFT within GGA, the electronic, optical and thermodynamic properties of Cr4AlB6were investigated.The obtained conclusions are as follows:

    (1) The stronger B-B covalent interactions in Cr4AlB6play an important role in resisting the plastic deformation.(2) Like other MAX phases, Cr4AlB6exhibits metallic nature from the analysis of band structure and DOS.(3) The analysis of optical properties shows that Cr4AlB6is a promising dielectric material with e1(0) of 128.0.In the photon energy range from 7.87 to 23.48 eV, Cr4AlB6presents a metal reflective property.(4) The obtained thermal properties under different T and P show that the heat capacity Cvis proportional to T3at very low T for a given P and tends to the Dulong-Petit limits (541.1 J×mol-1×K-1).The effect of T on Cvis more significant than that of P, while the effect of T on the thermal expansion coefficient a is very small at high T.

    REFERENCES

    (1) Hadi, M.A.; Naqib, S.H.; Christopoulos, S.R.; Isiam, A.K.M.A.Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase.J.Alloys.Comp.2017, 724, 1167-1175.

    (2) Zapata-Solvas, E.; Hadi, M.A.; Horlait, D.; Parfitt, D.C.; Thibaud, A.; Chroneos, A.; Lee, W.E.Synthesis and physical properties of(Zr1?x,Tix)3AlC2MAX phases.J.Am.Ceram.Soc.2017, 100, 3393-3401.

    (3) Hadi, M.A.; Rohnuzzaman, M.; Chroneos, A.; Naqib, S.H.; Islam, A.K.M.A.; Vovk, R.V.; Ostrikov, K.Elastic and thermodynamic properties of new (Zr3?xTix)AlC2MAX-phase solid solutions.Comp.Mater.Sci.2017, 137, 318-326.

    (4) Barsoum, M.W.; El-Raghy, T.Synthesis and characterization of a remarkable ceramic: Ti3SiC2.J.Am.Ceram.Soc.1996, 79, 1953-1956.

    (5) Wang, J.Y.; Zhou, Y.C.Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides.Annu.Rev.Mater.Res.2009, 39, 1-29.

    (6) Eklund, P.; Beckers, M.; Jansson, U.The Mn+1AXnphases: materials science and thin-film processing.Thin Solid Films 2010, 518, 1851-1878.

    (7) Radovic, M.; Barsoum, M.W.MAX phases: bridging the gap between metals and ceramics.Am.Ceram.Soc.Bull.2013, 92, 20-27.

    (8) Barsoum, M.W.; Ei-Raghy, T.Room-temperature ductile carbides.Met.Mater.Trans.1999, 30A, 363-369.

    (9) Barsoum, M.W.; Farber, L.; Ei-Raghy, T.Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2.Mater.Trans.1999, 30A,1727-1738.

    (10) Guilera, G.; Gorges, B.; Pascarelli, S.; Hara, N.Novel high-temperature reactors for in situ studies of three-way catalysts using turbo-XAS.J.Synchrotron Radiat.2009, 16, 628-634.

    (11) Yin, K.D.; Zhang, X.T.; Huang, Q.; Xue, J.M.Theoretical investigation on radiation tolerance of Mn+1AXnphase.Thin Solid Films 2017, 26,060703-8.

    (12) Sun, Z.M.Progress in research and development on MAX phases: a family of layered ternary compounds.Int.Mater.Rev.2011, 56, 143-166.

    (13) Lofland, S.E.; Hettinger, J.D.; Harrell, K.; Finkel, P.; Gupta, S.; Barsoum, M.W.; Hug, G.Elastic and electronic properties of select M2AX phase.Appl.Phys.Lett.2004, 84, 508-510.

    (14) Nowotny, V.H.Strukturchemie einiger verbindungen der ü bergangsmetalle mit den elementen C, Si, Ge, Sn.Prog.Solid State Chem.1970, 2,27-70.

    (15) Hu, C.; Zhang, H.; Li, F.; Huang, Q.; Bao, Y.New phases’ discovery in MAX family.Int.J.Refract.Met.Hard Mater.2013, 36, 300-312.

    (16) Barsoum, M.W.MAX Phases.Wiley-VCH Verlag GmbH & Co.KGaA: Weinheim, Germany 2013, p89-92.

    (17) Bai, Y.L.; He, X.D.; Zhu, C.C.; Chen, G.Microstructures, electrical, thermal and mechanical properties of bulk Ti2AlC synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing.J.Am.Ceram.Soc.2012, 95, 358-364.

    (18) Lin, Z.J.; Li, M.S.; Wang, J.Y.; Zhou, Y.C.High-temperature oxidation and hot corrosion of Cr2AlC.Acta Mater.2007, 55, 6182-6191.

    (19) Ade, M.; Harald, H.Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAX-phases.Inorg.Chem.2015, 54, 6122-6135.

    (20) Bai, Y.; Qi, X.; Duff, A.; Li, N.; Kong, F.; He, X.; Wang, R.; Lee, W.E.Density functional theory insights into ternary layered boride MoAlB.Acta Mater.2017, 132, 69-81.

    (21) Li, N.; Bai, Y.; Wang, S.; Zheng, Y.; Kong, F.; Qi, X.; Wang, R.; He, X.; Duff, A.I.Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2bulk from elemental powders.J.Am.Ceram.Soc.2017, 100, 4407-4411.

    (22) Li, X.H.; Chagas, da Silva, M.; Salahub, D.R.First-principles calculations of the structural, mechanical, electronic and bonding properties of(CrB2)nCrAl with n = 1, 2, 3.J.Alloys.Comp.2017, 698, 291-303.

    (23) Dai, F.Z.; Feng, Z.H.; Zhou, Y.C.Easily tiltable B_Al_B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases(CrB2)nCrAl.J.Alloys.Comp.2017, 723, 462-466.

    (24) Bertaut, F.; Blum, P.Existence et structure d'une nouvelle phase dans le systè me Mo–B.Acta Crystallogr.1951, 4, 72-72.

    (25) Kuz’ma, Y.B.Crystal structure of the compound YCrB4and its analogs.Sov.Phys.Crystallogr.1970, 15, 312-314.

    (26) Kuz’ma, Y.B.; Krypyakevich, P.I.; Chaban, N.F.Crystal structure of Cr3AlB4.Dopov.Akad.Nauk Ukr.RSR, Ser.A: Fiz.-Mat.Tekh.Nauki.1972,34, 1118-1125.

    (27) Zhao, W.J.; Xu, B.First-principles calculations of MnB4, TcB4, and ReB4with the MnB4-type structure.Comp.Mater.Sci.2012, 65, 372-376.

    (28) Wang, S.; Oganov, A.R.; Qian, G.; Zhu, Q.; Dong, H.; Dong, X.; Mahdi Davari Esfahani, M.Novel superhard B-C-O phases predicted from first principles.Phys.Chem.Chem.Phys.2016, 18, 1859-1863.

    (29) Magnuson, M.; Mattesini, M.; Wilhelmsson, O.; Emmerlich, J.; Palmquist, J.P.; Li, S.; Ahuja, R.; Hultman, L.; Eriksson, O.; Jansson, U.Electronic structure and chemical bonding in Ti4SiC3investigated by soft X-ray emission spectroscopy and first-principles theory.Phys.Rev.B 2006, 74,205102-12.

    (30) Kresse, G.; Furthmuller, J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B 1996, 54,11169-11186.

    (31) Kresse, G.; Joubert, D.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys.Rev.B 1999, 59, 1758-1775.

    (32) Perdew, J.P.; Wang, Y.Accurate and simple analytic representation of the electron-gas correlation energy.Phys.Rev.B 1992, 45, 13244-13249.

    (33) Perdew, J.P.; Bruke, K.; Ernzerhof, M.Generalized gradient approximation made simple.Phys.Rev.Lett.1996, 77, 3865-3868.

    (34) Jepsen, O.; Anderson, O.K.The electronic structure of h.c.p.ytterbium.Solid State Commun.1971, 9, 1763-1757.

    (35) Pan, L.; Lu, T.C.; Su, R.Study of electronic structure and optical properties of g-AlON crystal.Acta Phys Sin.2012, 61, 027101-6.

    (36) Shen, X.C.The Spectrum and Optical Property of Semiconductor.Science Press: Beijing 1992, p121-130.

    (37) Blanco, M.A.; Pendá s, A.M.; Francisco, E.; Recio, J.M.; Franco, R.Thermodynamical properties of solids from microscopic theory: applications to MgF2and Al2O3.J.Mol.Struct.1996, 368, 245-255.

    (38) Fló rez, M.; Recio, J.M.; Francisco, E.; Blanco, M.A.; Pendas, A.M.First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides.Phys.Rev.B 2002, 66, 144112-7.

    (39) Wang, Y.; Tan, J.; Wang, Y.; Chen, X.First-principles calculations of structural and thermodynamic properties of BeB2compound.Chin.Phys.2007,16, 3046-3051.

    (40) Vinet, P.; Rose, J.H.; Ferrante, J.; Smith, J.R.Universal features of the equation of state of solids.J.Phys.: Condens.Matter.1989, 1,1941-1963.

    (41) Togo, A.; Oba, F.; Tanaka, I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures.Phy.Rev.B 2008, 78, 134106-9.

    (42) Ezzat Elshazly, S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.Mechanical properties of Cr3B4cermets cemented by different metallic binders.Inter.J.Mater.Eng.2012, 2, 57-60.

    (43) Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C.First-principles simulation: ideas, illustrations and the CASTEP code.J.Phys.: Condens.Matter.2002, 14, 2717-2744.

    (44) Patil, S.K.R.; Khare, S.V.; Tuttle, B.R.; Bording, J.K.; Kodambaka, S.Mechanical stability of possible structures of PtN investigated using first-principles calculations.Phys.Rev.B 2006, 73, 104118-8.

    (45) Wang, S.; Yu, X.; Zhang, J.; Wang, L.; Leinenweber, K.; Xu, H.; Popov, D.; Park, C.; Yang, W.; He, D.; Zhao, Y.Crystal structures, elastic properties,and hardness of high-pressure synthesized CrB2and CrB4.J.Superhard Mater.2014, 36, 279-287.

    (46) Murnaghan, F.D.On the theory of the tension of an elastic cylinder.Proc.Natl.Acad.Sci.1944, 30, 382-384.

    (47) Pugh, S.F.XCII.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals.Philos.Mag.Ser.1954, 45,823-842.

    (48) Chen, X.Q.; Niu, H.Y.; Li, D.Z.; Li, Y.Modeling hardness of polycrystalline materials and bulk metallic glasses.Intermetallics 2011, 19,1275-1281.

    (49) Thakoor, A.P.; Lamb, J.L.; Khanna, S.K.; Mehra, M.; Johnson, W.L.Refractory amorphous metallic (W0.6Re0.4)76B24coatings on steel substrates.J Appl.Phys.1985, 58, 3409-3414.

    (50) Lokman Ali, M.; Zahidur Rahaman, M.The structural, elastic, electronic and optical properties of cubic perovskite SrVO3compound: an ab initio study.Inter.J.Mater.Sci.App.2016, 5, 202-206.

    (51) Li, C.L.; Wang, H.; Wang, B.; Wang, R.First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3.Appl.Phys.Lett.2007, 91, 071902-3.

    (52) Wang, H.; Wang, B.; Li, Q.K.; Zhu, Z.Y.; Wang, R.; Woo, C.H.First-principles study of cubic perovskites BiMO3(M = Al, Ga, In and Sc).Phys.Rev.B 2007, 75, 245209-9.

    (53) Xu, M.; Wang, S.Y.; Yin, G.; Li, J.; Zheng, Y.; Chen, L.; Jia, Y.Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4.Appl.Phys.Lett.2009, 89,151908-151910.

    (54) Rahman, M.; Rahaman, M.The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study.Inter.J.Modern Phys.B 2016, 30, 1650199-13.

    (55) Li, S.; Ahuja, R.; Barsoum, M.W.; Jena, P.; Johansson, B.Optical properties of Ti3SiC2and Ti4AlN3.Appl.Phys.Lett.2008, 92, 221907-3.

    (56) Debye, P.Zur Theorie der spezifischen W? rmen.Ann.Phys.1912, 39, 789-839.

    (57) Petit, A.T.; Dulong, P.L.Recherches sur quelques points importants de la theoreie de la chaleur.Ann.Chim.Phys.1819, 10, 395-413.

    一个人免费在线观看的高清视频| 午夜两性在线视频| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜| 亚洲自拍偷在线| 久久精品91蜜桃| 国产v大片淫在线免费观看| 色综合站精品国产| 12—13女人毛片做爰片一| 国产精品亚洲美女久久久| 伦理电影免费视频| 99国产精品99久久久久| 国产精品综合久久久久久久免费| 国产私拍福利视频在线观看| 女生性感内裤真人,穿戴方法视频| 此物有八面人人有两片| 国产aⅴ精品一区二区三区波| 亚洲成av人片免费观看| 黄色视频不卡| 啦啦啦免费观看视频1| 日日夜夜操网爽| 亚洲国产欧美网| 老司机深夜福利视频在线观看| 三级毛片av免费| 嫩草影院精品99| 欧美性猛交╳xxx乱大交人| 欧美日韩精品网址| 高潮久久久久久久久久久不卡| 亚洲黑人精品在线| 黄色女人牲交| 国产精品久久久久久精品电影| 国产精品自产拍在线观看55亚洲| 国产精品一区二区三区四区免费观看 | 免费看美女性在线毛片视频| 少妇被粗大的猛进出69影院| 最好的美女福利视频网| 一进一出好大好爽视频| 哪里可以看免费的av片| 精品乱码久久久久久99久播| 我的老师免费观看完整版| 精品高清国产在线一区| 免费在线观看日本一区| 亚洲欧洲精品一区二区精品久久久| 亚洲第一欧美日韩一区二区三区| 午夜老司机福利片| xxxwww97欧美| 国产欧美日韩一区二区精品| 国产三级黄色录像| 日本 av在线| 亚洲成人久久性| 亚洲中文字幕日韩| 淫妇啪啪啪对白视频| 中出人妻视频一区二区| 欧美3d第一页| 国产成人av教育| 国产高清视频在线观看网站| 色在线成人网| 精品国产亚洲在线| 一级毛片精品| 欧美国产日韩亚洲一区| √禁漫天堂资源中文www| 欧美大码av| 精品久久久久久久人妻蜜臀av| 欧美中文日本在线观看视频| 日韩欧美免费精品| 国产精品久久久人人做人人爽| 精品国产亚洲在线| 变态另类成人亚洲欧美熟女| 99国产精品99久久久久| 国产免费男女视频| 国产一区二区三区视频了| 动漫黄色视频在线观看| 不卡av一区二区三区| 窝窝影院91人妻| 精品第一国产精品| 精品一区二区三区四区五区乱码| 久99久视频精品免费| 1024视频免费在线观看| 欧美乱妇无乱码| 女人被狂操c到高潮| 欧洲精品卡2卡3卡4卡5卡区| 国产成人一区二区三区免费视频网站| 天天添夜夜摸| 91成年电影在线观看| 久久国产乱子伦精品免费另类| 精品少妇一区二区三区视频日本电影| 好看av亚洲va欧美ⅴa在| 国产探花在线观看一区二区| 最近最新中文字幕大全电影3| 桃色一区二区三区在线观看| 丝袜人妻中文字幕| 亚洲五月婷婷丁香| 国产黄a三级三级三级人| 午夜影院日韩av| 精品福利观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲avbb在线观看| 国产精品美女特级片免费视频播放器 | 久久热在线av| 国产成人av教育| 亚洲一区高清亚洲精品| 精品欧美一区二区三区在线| 在线观看免费午夜福利视频| 亚洲国产欧美一区二区综合| 午夜精品在线福利| 色综合站精品国产| 两个人免费观看高清视频| 亚洲真实伦在线观看| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 黄片小视频在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲专区中文字幕在线| 久久久久免费精品人妻一区二区| 国产亚洲精品综合一区在线观看 | 嫩草影视91久久| 国产亚洲精品第一综合不卡| 日韩欧美三级三区| 午夜福利免费观看在线| 国产伦一二天堂av在线观看| 国产激情偷乱视频一区二区| 欧美绝顶高潮抽搐喷水| 女人爽到高潮嗷嗷叫在线视频| 全区人妻精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线观看日韩 | 亚洲美女视频黄频| 97人妻精品一区二区三区麻豆| 人人妻人人澡欧美一区二区| 三级男女做爰猛烈吃奶摸视频| 三级国产精品欧美在线观看 | 国产亚洲精品久久久久5区| 欧美在线一区亚洲| 成人午夜高清在线视频| 精品久久久久久久末码| 日韩av在线大香蕉| 久9热在线精品视频| x7x7x7水蜜桃| 中出人妻视频一区二区| 亚洲欧美精品综合久久99| 国产精品电影一区二区三区| 熟妇人妻久久中文字幕3abv| 国产精品99久久99久久久不卡| 欧美绝顶高潮抽搐喷水| 国产免费男女视频| 亚洲中文字幕一区二区三区有码在线看 | 床上黄色一级片| 久久久久久大精品| 一级片免费观看大全| 欧美日韩一级在线毛片| а√天堂www在线а√下载| 欧美日韩亚洲综合一区二区三区_| 18美女黄网站色大片免费观看| 欧美日韩亚洲综合一区二区三区_| videosex国产| av视频在线观看入口| 一本久久中文字幕| 久久热在线av| 成人国产一区最新在线观看| 久久精品国产亚洲av高清一级| 欧洲精品卡2卡3卡4卡5卡区| 久久精品人妻少妇| 国产又色又爽无遮挡免费看| av有码第一页| 国产精品九九99| 欧美一区二区国产精品久久精品 | 1024手机看黄色片| 久久人妻av系列| 在线观看舔阴道视频| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩无卡精品| 免费高清视频大片| 精品免费久久久久久久清纯| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看 | 欧美色欧美亚洲另类二区| 亚洲av成人一区二区三| 身体一侧抽搐| 妹子高潮喷水视频| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久人妻精品电影| 久9热在线精品视频| 亚洲免费av在线视频| 啦啦啦韩国在线观看视频| 国产成+人综合+亚洲专区| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产| or卡值多少钱| 国产成人精品无人区| 99热这里只有精品一区 | 亚洲第一欧美日韩一区二区三区| 91麻豆av在线| 欧美国产日韩亚洲一区| 亚洲av成人精品一区久久| 免费观看精品视频网站| 一级毛片精品| 国产亚洲精品av在线| 无限看片的www在线观看| 亚洲午夜精品一区,二区,三区| 激情在线观看视频在线高清| 男人舔女人的私密视频| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| av欧美777| 免费电影在线观看免费观看| www.999成人在线观看| 亚洲精品国产精品久久久不卡| 视频区欧美日本亚洲| 日韩欧美免费精品| 人成视频在线观看免费观看| 麻豆国产av国片精品| 黄色丝袜av网址大全| 日日摸夜夜添夜夜添小说| 亚洲成人久久性| 国产午夜精品久久久久久| 国产真实乱freesex| 制服人妻中文乱码| 精品少妇一区二区三区视频日本电影| 日韩成人在线观看一区二区三区| 琪琪午夜伦伦电影理论片6080| 桃红色精品国产亚洲av| 伦理电影免费视频| 亚洲国产精品合色在线| 精品久久蜜臀av无| 精品一区二区三区av网在线观看| 精品福利观看| 黄色女人牲交| 亚洲一码二码三码区别大吗| 成人国语在线视频| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站 | 国产一区二区激情短视频| 操出白浆在线播放| 国内精品久久久久精免费| 变态另类成人亚洲欧美熟女| 日韩成人在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美一区二区综合| 可以在线观看的亚洲视频| 久久国产精品人妻蜜桃| 国产精品国产高清国产av| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 国产99久久九九免费精品| 欧美日韩黄片免| 黄片小视频在线播放| 黄色视频,在线免费观看| 老鸭窝网址在线观看| 久久香蕉激情| 精品国产乱子伦一区二区三区| 中文字幕高清在线视频| 99国产精品一区二区三区| 99国产极品粉嫩在线观看| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 黄色a级毛片大全视频| 亚洲精品在线美女| 国产欧美日韩一区二区三| 舔av片在线| 十八禁人妻一区二区| 法律面前人人平等表现在哪些方面| 啦啦啦韩国在线观看视频| 久久久久国产精品人妻aⅴ院| 国产爱豆传媒在线观看 | 亚洲色图 男人天堂 中文字幕| 男女那种视频在线观看| 岛国在线观看网站| 国产亚洲av高清不卡| 亚洲成人中文字幕在线播放| 国产伦人伦偷精品视频| 黄色片一级片一级黄色片| 国产精品 欧美亚洲| 国产精品1区2区在线观看.| 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 婷婷丁香在线五月| 最近最新中文字幕大全电影3| 国产在线精品亚洲第一网站| 白带黄色成豆腐渣| 久久欧美精品欧美久久欧美| 国内揄拍国产精品人妻在线| 国内毛片毛片毛片毛片毛片| 两性夫妻黄色片| 看免费av毛片| 亚洲美女视频黄频| 真人一进一出gif抽搐免费| 两个人看的免费小视频| 一区二区三区国产精品乱码| 一二三四在线观看免费中文在| 一a级毛片在线观看| 51午夜福利影视在线观看| 两性夫妻黄色片| 欧美久久黑人一区二区| 日本成人三级电影网站| 国产精品av视频在线免费观看| 又大又爽又粗| 日本一本二区三区精品| 久久国产精品影院| 免费看a级黄色片| 国产三级黄色录像| 日韩有码中文字幕| 午夜成年电影在线免费观看| 国产高清videossex| 搡老熟女国产l中国老女人| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 老司机午夜福利在线观看视频| 精品高清国产在线一区| 日本黄色视频三级网站网址| 他把我摸到了高潮在线观看| av视频在线观看入口| svipshipincom国产片| 黄色成人免费大全| 少妇人妻一区二区三区视频| 九色成人免费人妻av| 麻豆成人午夜福利视频| 国产高清videossex| 亚洲一区中文字幕在线| 亚洲 国产 在线| 女生性感内裤真人,穿戴方法视频| 欧美日韩福利视频一区二区| 韩国av一区二区三区四区| 亚洲成人精品中文字幕电影| 日韩三级视频一区二区三区| 亚洲欧美一区二区三区黑人| 精品欧美一区二区三区在线| 欧美乱色亚洲激情| av中文乱码字幕在线| 久久精品国产清高在天天线| 一本久久中文字幕| 成人18禁在线播放| 亚洲成人中文字幕在线播放| 亚洲五月婷婷丁香| 人人妻人人看人人澡| 12—13女人毛片做爰片一| av在线播放免费不卡| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| 精品不卡国产一区二区三区| 久久中文看片网| 一夜夜www| 99久久国产精品久久久| 50天的宝宝边吃奶边哭怎么回事| 国产精品,欧美在线| 亚洲精华国产精华精| 中文字幕久久专区| 日本五十路高清| 亚洲人成77777在线视频| 97超级碰碰碰精品色视频在线观看| 国产成人精品久久二区二区免费| av中文乱码字幕在线| 91成年电影在线观看| 欧美一级毛片孕妇| 熟女电影av网| 亚洲av日韩精品久久久久久密| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 成人国产一区最新在线观看| 亚洲av第一区精品v没综合| 首页视频小说图片口味搜索| 搞女人的毛片| 亚洲欧美日韩无卡精品| 亚洲国产欧美一区二区综合| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 97超级碰碰碰精品色视频在线观看| 97碰自拍视频| 亚洲欧美激情综合另类| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 婷婷丁香在线五月| 亚洲国产精品合色在线| 美女大奶头视频| 夜夜爽天天搞| 国产成人av激情在线播放| 999久久久精品免费观看国产| 天堂√8在线中文| 亚洲人与动物交配视频| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av| 变态另类成人亚洲欧美熟女| 极品教师在线免费播放| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 十八禁人妻一区二区| netflix在线观看网站| 国产精品香港三级国产av潘金莲| 在线观看免费日韩欧美大片| 精品国内亚洲2022精品成人| 啦啦啦免费观看视频1| 成年人黄色毛片网站| 91在线观看av| 美女高潮喷水抽搐中文字幕| 99久久综合精品五月天人人| 成人高潮视频无遮挡免费网站| 两个人免费观看高清视频| 亚洲五月天丁香| 亚洲国产欧美网| 美女免费视频网站| av超薄肉色丝袜交足视频| 日韩欧美国产在线观看| 伊人久久大香线蕉亚洲五| 久久中文字幕人妻熟女| 91麻豆av在线| 此物有八面人人有两片| 日韩欧美免费精品| 成人三级做爰电影| 妹子高潮喷水视频| 免费观看人在逋| 91老司机精品| 日韩精品免费视频一区二区三区| 在线观看免费午夜福利视频| 国语自产精品视频在线第100页| 亚洲熟妇中文字幕五十中出| 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 香蕉av资源在线| 最新在线观看一区二区三区| 日本成人三级电影网站| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 中文字幕熟女人妻在线| 国产午夜精品论理片| a级毛片a级免费在线| 高潮久久久久久久久久久不卡| 国产三级在线视频| 午夜福利在线观看吧| 国产99久久九九免费精品| 国产不卡一卡二| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 男女床上黄色一级片免费看| 看免费av毛片| 午夜亚洲福利在线播放| 90打野战视频偷拍视频| 最新在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 伊人久久大香线蕉亚洲五| 中文字幕高清在线视频| 午夜免费成人在线视频| 久久中文字幕人妻熟女| 亚洲成人久久爱视频| 亚洲avbb在线观看| 成人一区二区视频在线观看| 亚洲美女视频黄频| 非洲黑人性xxxx精品又粗又长| 777久久人妻少妇嫩草av网站| 日韩 欧美 亚洲 中文字幕| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 午夜日韩欧美国产| 村上凉子中文字幕在线| 免费看美女性在线毛片视频| 很黄的视频免费| 国产熟女xx| 两个人免费观看高清视频| 日本撒尿小便嘘嘘汇集6| 欧美性长视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 两个人免费观看高清视频| xxxwww97欧美| 老司机深夜福利视频在线观看| 听说在线观看完整版免费高清| 国产成人欧美在线观看| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看| 日本a在线网址| 伦理电影免费视频| 最新美女视频免费是黄的| 一级毛片高清免费大全| 国产精品影院久久| 久久精品91无色码中文字幕| 天堂av国产一区二区熟女人妻 | 国产1区2区3区精品| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 久久99热这里只有精品18| 精品熟女少妇八av免费久了| 成人欧美大片| 亚洲国产精品合色在线| 两个人免费观看高清视频| 国产区一区二久久| 熟妇人妻久久中文字幕3abv| 又粗又爽又猛毛片免费看| 日韩大码丰满熟妇| 国产aⅴ精品一区二区三区波| 精品久久久久久,| 无人区码免费观看不卡| 91字幕亚洲| 天堂√8在线中文| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久末码| 午夜久久久久精精品| 国产三级中文精品| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 亚洲精华国产精华精| 香蕉久久夜色| 亚洲成人久久性| 嫩草影院精品99| 白带黄色成豆腐渣| 国产欧美日韩一区二区精品| 岛国在线观看网站| 一级作爱视频免费观看| 又黄又爽又免费观看的视频| 最近最新中文字幕大全免费视频| 老汉色∧v一级毛片| 国产成人aa在线观看| 999久久久精品免费观看国产| 禁无遮挡网站| 欧美乱色亚洲激情| 色综合亚洲欧美另类图片| 狠狠狠狠99中文字幕| 脱女人内裤的视频| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www| 国产精品一及| 特大巨黑吊av在线直播| 又粗又爽又猛毛片免费看| 欧美日韩亚洲综合一区二区三区_| 国产精品亚洲美女久久久| 舔av片在线| 变态另类成人亚洲欧美熟女| 久久久精品国产亚洲av高清涩受| 日韩精品中文字幕看吧| 亚洲无线在线观看| 99久久综合精品五月天人人| 久久久久久九九精品二区国产 | 黄色视频不卡| 国产日本99.免费观看| 欧美精品亚洲一区二区| 午夜免费观看网址| 18禁裸乳无遮挡免费网站照片| 久久精品亚洲精品国产色婷小说| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9| 男人舔女人的私密视频| 美女 人体艺术 gogo| 久久亚洲精品不卡| 国产激情久久老熟女| 麻豆国产97在线/欧美 | 精品人妻1区二区| 99热这里只有精品一区 | 亚洲九九香蕉| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 麻豆久久精品国产亚洲av| 久久久久九九精品影院| 亚洲午夜精品一区,二区,三区| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 久久国产乱子伦精品免费另类| 中出人妻视频一区二区| 日韩欧美三级三区| 国产探花在线观看一区二区| 母亲3免费完整高清在线观看| 一区二区三区激情视频| 亚洲无线在线观看| 99国产精品99久久久久| 97碰自拍视频| 成人av在线播放网站| 99国产精品一区二区三区| 我要搜黄色片| 国产精品电影一区二区三区| 亚洲成人国产一区在线观看| 久久九九热精品免费| 亚洲va日本ⅴa欧美va伊人久久| 国产av一区二区精品久久| 成年女人毛片免费观看观看9| 成人av一区二区三区在线看| 99热6这里只有精品| 村上凉子中文字幕在线| 国产成人av激情在线播放| 男女下面进入的视频免费午夜| 麻豆一二三区av精品| 俺也久久电影网| 国内精品一区二区在线观看| a在线观看视频网站| 妹子高潮喷水视频| 啪啪无遮挡十八禁网站| 中文资源天堂在线| 草草在线视频免费看| 日本三级黄在线观看| 老汉色∧v一级毛片| 日本一区二区免费在线视频| 国产乱人伦免费视频| 最近最新免费中文字幕在线| 欧美日本视频| 成人午夜高清在线视频| 怎么达到女性高潮| 九九热线精品视视频播放| 人妻丰满熟妇av一区二区三区| 69av精品久久久久久| 精品人妻1区二区| 色综合欧美亚洲国产小说| 亚洲18禁久久av| 国产精品98久久久久久宅男小说| 亚洲欧美日韩高清专用| 一二三四在线观看免费中文在| 精品欧美国产一区二区三| 欧美 亚洲 国产 日韩一| 人成视频在线观看免费观看|