• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Doubly Interpenetrated Co(II) Framework: Synthesis,Crystal Structure and Selective Adsorption of CO2①

    2018-11-22 01:58:46WEIFngFngLIZiYinCHENLingJiLINQunJieYEYingXingLIULiZhenZHANGZhngJingXIANGShengChng
    結(jié)構(gòu)化學(xué) 2018年10期

    WEI Fng-Fng LI Zi-Yin CHEN Ling-Ji LIN Qun-Jie YE Ying-Xing LIU Li-Zhen ZHANG Zhng-Jing, XIANG Sheng-Chng, ②

    a (Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China)b (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    A microporous and doubly interpenetrated MOF (FJU-29) was synthesized which possesses paddle-wheel {Co2(COO)4} clusters bridged by pyrazolate H2NDI and H2BDC.The desolvated FJU-29a shows the BET surface area of 560.44 m2×g-1is accompanied with relatively high CO2/N2(18/85) adsorption selectivity of 75.5 at 296 K and 100 kPa based on IAST, implying that FJU-29a is a potential material for the CO2capture from flue gas.

    1 INTRODUCTION

    Metal-organic frameworks (MOFs) are porous crystalline materials[1,2], which are built from organic and inorganic building blocks and assembled from molecular building units in modular fashion, and therefore can achieve a high degree of well-defined functionality[3,4].This makes them become a fast expanding research area because of their intriguing structural diversity and potential applications as functional materials in gas adsorption and separation[3a,3d], magnetism[5], drug delivery[6],catalysis[7], and chemical sensing[3d,8].The judicious selection of molecular building units is crucial to control the pore surfaces by changing the sizes which can also possibly be taken as a kinetic barrier of adsorption phenomena of particular gas molecules[9].Carbon dioxide (CO2) emitted through human activities and the combustion of fossil fuels is considered as the primary and pressing environmental concern[10].For the purpose of mitigating CO2emissions, CO2capture from a postcombustion flue gas becomes an important and practical approach[11].The commercial technology is based on alkanolamine solvents which are not cost effectively[12].To date, many solid porous adsorbent materials have been used to alternate liquid phase absorption process such as MOFs[3a,4d,11,13,14],porous carbons[15], and zeolites[16].

    In this work, we chose bi-pyrazolate 2,7-bis(3,5-dimethyl)dipyrazol-1,4,5,8-naphthalene-tetracarboxydiimide (H2NDI) and terephthalic acid (H2BDC)as dual-ligands which coordinate with the paddlewheel {Co2(COO)4} clusters to form a 3D porous doubly interpenetrated MOF (FJU-29) for the selective adsorption of CO2.X-ray single-crystal and powder diffractions, thermal gravimetric analysis and infrared spectra were used to characterize the as-synthesized FJU-29.The porous property endows FJU-29 with high BET surface area of 560.44 m2×g-1and pore volume of 0.216 cm3×g-1.Gas sorption analysis of the desolvated FJU-29a shows relatively larger uptake of CO2(79.8 and 54.1 cm3×g?1at 273 and 296 K, respectively) under 1 bar pressure with good selectivity over N2.Ideal adsorbed solution theory (IAST) calculation indicates that the selectivity values of CO2/N2(15:85) are 103.5 at 273 K and 75.5 at 296 K, which suggest that FJU-29a is a potential contender for the separation of flue gas.

    2 EXPERIMENTAL

    2.1 Materials and methods

    1,4,5,8-Naphthalene-tetracarboxylic dianhydride(NDA) and terephthalic acid (H2BDC) were purchased from J&K Chemical Co., Ltd..Co(NO3)2·6H2O, N,N-dimethylformamide (DMF),methanol and other reagents were purchased from Shanghai Chemical Reagent Co.All materials were of reagent grade and used without further purification.H2NDI was synthesized similar to published procedures[17].Powder X-ray diffraction (PXRD)was carried out with PANalytical X’Pert3powder diffractometer equipped with a Cu-sealed tube (λ =1.541874 ?) at 40 kV and 40 mA over the 2θ range of 5~30o.The Fourier transform infrared (KBr pellets) spectra were recorded in the range of 400~4000 cm-1on a Thermo Nicolet 5700 FT-IR instruments.Thermal analysis was carried out on a METTLER TGA/SDTA 851 thermal analyzer from 30 to 800 ℃ at a heating rate of 10 ℃ min-1under nitrogen atmosphere.

    2.2 Synthesis of {Co2(H2NDI)(BDC)·2H2O·MeOH·0.5DMF}n (FJU-29)

    A mixture of Co(NO3)2·6H2O (0.0291 g, 0.1 mmol), H2NDI (0.0227 g, 0.05 mmol), and H2BDC(0.0166 g, 0.1 mmol) was dissolved in DMF/MeOH(4 mL/1 mL) in a screw-capped vial.The vial was heated at 80 ℃ for 1 day under autogenous pressure.Deep purple bulk crystals were obtained after filtration, washed with DMF, and dried in air.Yield 46% (based on H2NDI).Elemental analysis calcd.(%) fo{Co2(H2NDI)(BDC)·2H2O·MeOH·0.5DMF}n(%) Calcd.: C, 50.74; N, 9.05; H, 3.73.Found: C,49.95; N, 9.32; H, 3.61.IR (KBr pellet, cm-1): 3734(w), 3364 (s), 2945 (w), 1721 (m), 1677 (s), 1579 (s),1385 (s), 1243 (s), 1199 (m), 1058 (w), 980 (m), 834(m), 746 (s), 545 (m).

    2.3 Crystal structure determination and refinement

    Data collection and structural analysis of crystal FJU-29 were collected on an Agilent Technologies Super Nova Single Crystal Diffractometer equipped with graphite monochromatic CuKα radiation (λ =1.54184 ?).The crystal was kept at 150 K during data collection.Using Olex2[18], the structure was solved with the Superflip structure solution program using Charge Flipping and refined with the ShelXL[19]refinement package using full-matrix least-squares minimization.All non-hydrogen atoms were refined with anisotropic displacement parameters.The hydrogen atoms on the ligands were placed in idealized positions and refined using a riding model.We employed PLATON[20]/SQUEEZE[21]to calculate the diffraction contribution of the solvent molecules and thereby produce a set of solvent-free diffraction intensities.All non-hydrogen atoms were refined anisotropically.The hydrogen atoms were placed at the calculation positions.R = 0.0585 and wR = 0.1544 for 4789 observed reflections (I >2s(I)), and R = 0.0726 and wR = 0.1627 for all data.Selected bond, angle parameters and hydrogen bond parameters are listed in Tables 1 and 2, respectively.

    Table 1.Selected Bond Lengths (?) and Bond Angles (°) for FJU-29

    Table 2.Hydrogen Bond Lengths (?) and Bond Angles (°) in FJU–29

    2.4 Gas sorption measurements

    After the bulk of the solvent was decanted, the freshly prepared sample of FJU-29 (~0.15 g) was soaked in ~10 mL MeOH for one hour, and then the solvent was decanted.Following the procedure of MeOH soaking and decanting for ten times, the solvent-exchange samples were activated by vacuum at 60 ℃ for 24 hours till the pressure of 5 μmHg to obtain FJU-29a.N2and CO2adsorption isotherms were measured on Micromeritics ASAP 2020 HD88 surface are analyzer for the FJU-29a.The sorption measurement was maintained at 77 K with liquid nitrogen and at 273 K with an ice-water bath (slush),respectively.

    2.5 Virial equation analysis

    The virial equation can be written[22]as follows:

    where n is the amount adsorbed (mol·g-1) at pressure p (Pa).At a low surface coverage, the A2and higher terms can be neglected and the equation becomes

    A linear graph of ln(n/p) versus n was obtained at low surface coverage and this is consistent with neglecting the higher terms in Eq.(2).A0is related to the adsorbate-adsorbent interactions, whereas A1describes the adsorbate-adsorbate interactions.

    Enthalpies of Adsorption.Zero surface coverage.The isosteric enthalpies of adsorption at zero surface coverage (Qst,n=0) are a fundamental measure of adsorbate-adsorbent interactions and these values were calculated from the A0values obtained by extrapolation of the virial graph to zero surface coverage.

    van't Hoff isochore.The isosteric enthalpies of adsorption as a function of surface coverage were calculated from the isotherms using the van't Hoff isochore, which is given by the equation

    A graph of lnP versus 1/T at a constant amount adsorbed (n) allows the isosteric enthalpy and entropy of adsorption to be determined.The pressure values for a specific amount adsorbed were calculated from the adsorption isotherms by: (1) assuming a linear relationship between the adjacent isotherm points starting from the first isotherm point; and (2)using the virial equation at low surface coverage.

    2.6 Prediction of the Gas adsorption selectivity by IAST

    The ideal adsorption solution theory (IAST)[23]was used to predict the binary mixture adsorption from the experimental pure gas isotherms.To perform the integrations required by IAST, single-com-ponent isotherms should be fitted by the correct model.In practice, several methods are available; for this set of data we found that the single-site Langmuir-Freundlich equation was successful in fitting the results.

    where p is the pressure of the bulk gas in equilibrium with the adsorbed phase (kPa), N is the amount adsorbed per mass of adsorbent (mmol×g-1),Nmaxis the saturation capacities of site 1 (mmol×g-1),b is the affinity coefficients of site 1 (1/kPa) and n represents the deviations from an ideal homogeneous surface.The fitted parameters were then used to predict multi-component adsorption with IAST.The adsorption selectivity based on IAST for mixed CO2/N2are defined by the following equation:

    where xiand yiare the mole fractions of component i(i = A, B) in the adsorbed and bulk phases,respectively.

    3 RESULTS AND DISCUSSION

    3.1 Structure description

    FJU-29 was synthesized via solvothermal reaction of Co(NO3)2·6H2O, H2NDI, and H2BDC in DMF/methanol solution at 80 ℃ for one day.The X-ray single-crystal diffraction study reveals that FJU-29 crystallizes in monoclinic space group C2/c.As shown in Fig.1a, there is one crystallographically independent Co2+ion as coordinating with one N atom from the NDI2-ligand and four O atoms from four BDC2-ligands.The framework of FJU-29 contains paddle-wheel binuclear {Co2(COO)4} units(Fig.1b), which are bridged by BDC ligands to form a 2D square grid.The 2D square grids are diagonally pillared by H2NDI ligands, whose nitrogen atoms occupy the axial sites of the {Co2(COO)4} paddlewheels, to form a 3D framework with pcu-topology[24]that can be described as an elongated primitive cubic lattice.The spacious nature (10.87 ×18.34 ?2) of the single network allows another identical network to penetrate it in a normal mode,thus resulting in a doubly interpenetrating array.Meanwhile, the unprotonated N(2) atoms from pyrazole of H2NDI ligands form the hydrogen-bonding interactions (d(N(2)(pyrazole)···O(5)(naphthalimide))= 3.094(6) ?) with O(5) atoms (naphthalimide groups) from H2NDI ligands of neighboring interpenetrating framework which has significant impact on the interpenetration of FJU-29.After elimination of guest solvent molecules, the total accessible volume in FJU-29 is 35.7% by using the PLATON software[20].

    Fig.1.Structure of FJU-29.(a) Coordination environments of the Co(II) atoms (Symmetry code: # = 1–x, y, 3/2–z).[Co2(COO)4] unit connects to each other with BDC2- to form 2D layers (b), which are further pillared by H2NDI to produce a 3D open framework viewed along the b axis (c) and the subsequent two crystallographically dependent pcu networks were interpenetrated (red and blue, d & e).H atoms are omitted for clarity

    3.2 Powder X-ray diffraction and thermogravimetric analysis

    The purity of the as-synthesized FJU-29 was examined by similarities between simulated and experimental PXRD patterns (Fig.2a).The as-synthesized PXRD pattern of FJU-29 is coincident well with the simulated from the single-crystal data,indicating a good purity and homogeneity of the compound.The thermal stability of FJU-29 was examined by the TGA technique in the temperature range of 30~600 ℃ under N2atmosphere.The result reveals the weight loss of 7.3% from 30 to 112 ℃ and 4.6% till 158 ℃, one belonging to the weight of two H2O molecules and one CH3OH molecule (calcd: 6.8%) and the other being a half DMF molecule (calcd: 3.8%) (Fig.2b).Finally,FJU-29 shows a plateau up to 418 ℃ following with sharp weight loss, indicating the collapse of the framework.FJU-29 exhibits high thermal stability which encourages us to further explore the practical applications of this material.

    Fig.2.(a) Powder X-ray diffraction (PXRD) patterns for FJU-29.(b) Thermogravimetric analysis (TGA) curves for FJU-29

    3.3 Gas adsorption and selectivity

    Gas adsorption studies were performed with the activated sample (denoted as FJU-29a) to test its permanent porosity.The as-synthesized FJU-29 was immersed in MeOH for ten times to remove guest molecules, and the phase purity of FJU-29a was checked by using PXRD (Fig.2a).PXRD showed good agreement among the as-synthesized and activated patterns, indicating the retention of porous structure after the solvent exchange and successive elimination of exchanged solvent molecules from the channels.As shown in Fig.3a, N2adsorptiondesorption isotherms at 77 K of FJU-29a display typical type-I sorption behavior with a Brunauer Emmett Teller (Langmuir) surface area of 560.44(600.53) m2×g-1and pore volume of 0.216 cm3×g-1,suggesting microporous nature of the FJU-29 framework.The pore size distribution of FJU-29a was calculated by employing non-local density functional theory (NLDFT), showing that the major pores are located at around 0.5, 0.8 and 1.1 nm (Fig.3a).Single component gas sorption isotherms of CO2and N2were performed at 296 and 273 K and presented in Fig.3b.FJU-29a can absorb 54.1 and 79.8 cm3×g-1of CO2at 296 and 273 K/1 atm, which is higher than the values of most reported MOFs[3a].In sharp contrast to CO2adsorption, FJU-29a only adsorbs limited amounts of N2which are 3.9 cm3g-1at 296 K and 7.5 cm3g-1at 273 K.Such a discrimination of adsorption capacities enables FJU-29a to be a very promising material for the selective separation of CO2/N2mixture.The enthalpy at zero coverage Qst,n=0for CO2adsorption on FJU-29a,using Virial equation analysis, from the isotherms at 273 and 296 K.The comparison of the results from the two methods, the linear extrapolation and the virial equation, shows very good agreement (Fig.3c).The Qstvalue for CO2of FJU-29a was found to be 31.7 kJ mol?1which is comparable to the values for CuBTTri (21 kJ·mol?1)[25], PCN-88 (27 kJ·mol?1)[26],IRMOF-3 (19 kJ mol?1)[27], and NOTT-140 (25 kJ·mol?1)[28], implying that the inner wall of the channels for FJU-29a may be engaged in strong intermolecular interactions with the adsorbed CO2gas molecules.

    Fig.3.(a) N2 sorption isotherms of FJU-29a at 77 K.Solid and open symbols represent adsorption and desorption,respectively.(Inset) Pore size distributions of FJU-29a calculated by NLDFT method.(b) CO2 and N2 adsorption isotherms of FJU-29a at 296 and 273 K.(c) Isosteric heats of adsorption (Qst) of CO2 for FJU-29a by virial equation analysis.(d) IAST-predicted selectivity of CO2/N2 (15:85) mixture for FJU-29a

    We further studied the potential of FJU-29a for CO2/N2(15:85) selective adsorption which was calculated based on the well-known ideal adsorbed solution theory (IAST) (Fig.3d).It can be seen that FJU-29a exhibits high selectivity towards CO2/N2(15:85) mixture under 100 kPa, and the value is 75.5 at 296 K and 103.5 at 273 K.The adsorption selectivity of FJU-29a for CO2/N2(15:85) is much higher than those of previously reported MOFs:SIFSIX-2-Cu (13.7)[29], PCN-61 (15)[30], ZJNU-44a(15)[31], PCN-88 (18)[26], PMOF-3a (23.4)[32], Cu-BTTri (21)[33], and ZIF-68, (18.7)[34]under similar conditions.The relatively high selectivity further implies that FJU-29a is a promising material for practical flue gas purification.

    4 CONCLUSION

    In summary, through solvothermal reaction, we have synthesized a novel, porous and doubly interpenetrated MOF (FJU-29) based on dual-ligands of bi-pyrazolate H2NDI and H2BDC.FJU-29 displays high thermal stability up to 418 ℃, and gas sorption measurements of the evacuated FJU-29a shows preferential uptake of CO2at 273 and 296 K under 1 bar over N2.Ideal adsorbed solution theory (IAST)indicated that FJU-29a has high CO2/N2(18/85)adsorption selectivity (75.5) at 296 K and 100 kPa.The relatively high selectivity further implies that FJU-29a is a potential contender for the separation of flue gas.

    REFERENCES

    (1) (a) Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O.M.Structures of metal-organic frameworks with rod secondary building units.Chem.Rev.2016, 116, 12466–12535; (b) Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J.Reticular synthesis and the design of new materials.Nature 2003, 423, 705–714; (c) Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S.Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale.Chem.Soc.Rev.2014, 43, 5700–5734; (d) Bosch, M.; Yuan, S.; Rutledge, W.;Zhou, H.C.Stepwise synthesis of metal-organic frameworks.Acc.Chem.Res.2017, 50, 857?865; (e) Li, B.; Wen, H.M.; Cui, Y.; Zhou, W.; Qian,G.D.; Chen, B.Emerging multifunctional metal-organic framework materials.Adv.Mater.2016, 28, 8819–8860.

    (2) (a) Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Umans, A.S.; Yaghi, O.M.; Wang, E.N.Water harvesting from air with metal-organic frameworks powered by natural sunlight.Science 2017, 356, 430–434; (b) Nugent, P.; Belmabkhout, Y.; Burd, S.D.;Cairns, A.J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M.J.Porous materials with optimal adsorption thermodynamics and kinetics for CO2separation.Nature 2013, 439, 7439?7443; (c) Férey, G.; Mellot-Draznieks, C.; Serre, C.;Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I.A chromium terephthalate-based solid with unusually large pore volumes and surface area.Science 2005, 309, 2040–2042.

    (3) (a) Zhang, Z.Z.; Yao, Z.Z.; Xiang, S.C.; Chen, B.Perspective of microporous metal-organic frameworks for CO2capture and separation.Energy Environ.Sci.2014, 7, 2868–2899; (b) Li, Z.Y.; Zhang, Z.J.; Ye, Y.X.; Cai, K.C.; Du, F.F.; Zeng, H.; Tao, J.; Lin, Q.J.; Zheng, Y.; Xiang,S.C.Rationally tuning host-guest interactions to free hydroxide ions within intertrimerically cuprophilic metal-organic frameworks for high OH?conductivity.J.Mater.Chem.A 2017, 5, 7816–7824; (c) Shen, Y.C.; Li, Z.Y.; Wang, L.H.; Ye, Y.X.; Liu, Q.; Ma, X.L.; Chen, Q.H.; Zhang, Z.J.; Xiang, S.C.Cobalt-citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization.J.Mater.Chem.A 2015, 3, 593–599; (d) Chen, Y.; Li, Z.Y.; Liu, Q.; Shen, Y.C.; Wu, X.Z.; Xu, D.D.; Ma, X.L.; Wang, L.H.;Chen, Q.H.; Zhang, Z.J.; Xiang, S.C.Microporous metal-organic framework with lantern-like dodecanuclear metal coordination cages as nodes for selective adsorption of C2/C1mixtures and sensing of nitrobenzene.Cryst.Growth Des.2015, 15, 3847–3852; (e) Ye, Y.X.; Xiong, S.S.; Wu,X.N.; Zhang, L.Q.; Li, Z.Y.; Wang, L.H.; Ma, X.L.; Chen, Q.H.; Zhang, Z.J.; Xiang, S.C.Microporous metal-organic framework stabilized by balanced multiple host-couteranion hydrogen-bonding interactions for high-density CO2capture at ambient conditions.Inorg.Chem.2016, 55,292–299; (f) Ye, Y.X.; Zheng, J.H.; Zeng, Y.T.; Lin, Y.L.; Zhang, L.Q.; Wang, L.H.; Zhang, Z.J.; Xiang, S.C.Syntheses, crystal structures and luminescent properties of two new zinc(II) complexes based on bifunctional ligand.Chin.J.Struct.Chem.2016, 35, 1944?1952; (g) Wang, L.H.; Ye, Y.X.; Li, Z.Y.; Lin, Q.J.; Ouyang, J.; Liu, L.Z.; Zhang Z.J.; Xiang, S.C.Highly selective adsorption of C2/C1 mixtures and solvent-dependent thermochromic properties in metal-organic frameworks containing infinite copper-halogen chains.Cryst.Growth Des.2017,17, 2081?2089.

    (4) (a) Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M.J.; Chen, B.Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene.Science 2016, 353, 141–144; (b) Cadiau, A.;Belmabkhout, Y.; Adil, K.; Bhatt, P.M.; Pillai, R.S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M.Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration.Science 2017, 356, 731–735; (c) Yuan, S.; Zou, L.; Qin, J.S.; Li, J.;Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin T.; Zhou, H.C.Construction of hierarchically porous metal-organic frameworks through linker labilization.Nat.Commun.2017, 8, 15356–15366; (d) Cai, G.; Jiang, H.L.A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability.Angew.Chem.Int.Ed.2017, 56, 563–567; (e) Mitra, S.; Kandambeth, S.;Biswal, B.P.; Khayum, M.A.; Choudhury, C.K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.A.; Verma, S.; Roy, S.; Kharul, U.K.; Banerjee,R.Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs).J.Am.Chem.Soc.2016, 138, 2823–2828; (f) Pang, J.D.; Liu,C.P.; Huang, Y.G.; Wu, M.Y.; Jiang, F.L.; Yuan, D.Q.; Hu, F.; Su, K.Z.; Liu, G.L.; Hong, M.C.Visualizing the dynamics of temperature-and solvent-responsive soft crystals.Angew.Chem.Int.Ed.2016, 55, 7478–7482; (g) Song, C.; Ling, Y.; Feng, Y.; Zhou, W.; Yildirim, T.; He, Y.A.NbO-type metal-organic framework exhibiting high deliverable capacity for methane storage.Chem.Commun.2015, 51, 8508–8511; (h) Xiong,S.S.; Gong, Y.J.; Hu, S.L.; Wu, X.N.; Li, W.; He, Y.B.; Chen, B.; Wang, X.L.A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon.J.Mater.Chem.A 2018, 6, 4752–4758.

    (5) (a) Zeng, M.H.; Yin, Z.; Tan, Y.X.; Zhang, W.X.; He, Y.P.; Kurmoo, M.Single-molecule magnetism arising from cobalt(II) nodes of a crystalline sponge.J.Mater.Chem.C 2017, 5, 835–841; (b) ?im?nas, M.; Matsuda, R.; Kitagawa, S.; P?ppl, A.; Banys, J.Electron paramagnetic resonance study of guest molecule-influenced magnetism in Kagome metal-organic framework.J.Phys.Chem.C 2016, 120, 27462–27467.

    (6) (a) Navarro-Sanchez, J.; Argente-García, A.I.; Moliner-Martínez, Y.; Roca-Sanjuan, D.; Antypov, D.; Campíns-Falco, P.; Rosseinsky, M.J.;Martí-Gastaldo, C.Peptide metal-organic frameworks for enantioselective separation of chiral drugs.J.Am.Chem.Soc.2017, 139, 4294–4297; (b)Gu, Z.G.; Fu, W.Q.; Liu, M.; Zhang, J.Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drug.Chem.Commun.2017, 53, 1470–1473.

    (7) Chen, L.; Huang, W.; Wang, X.; Chen, Z.; Yang, X.; Luque, R.; Li, Y.Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks.Chem.Commun.2017, 53, 1184–1187.

    (8) Hu, Z.; Deibert, B.J.; Li, J.Luminescent metal-organic frameworks for chemical sensing and explosive detection.Chem.Soc.Rev.2014, 43,5815–5840.

    (9) Zhao, D.; Timmons, D.J.; Yuan, D.; Zhou, H.C.Tuning the topology and functionality of metal-organic frameworks by ligand design.Acc.Chem.Res.2011, 44, 123–133.

    (10) (a) Lu, W.; Sculley, J.P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H.C.Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas.Angew.Chem., Int.Ed.2012, 51, 7480?7484; (b) Vaidhyanathan, R.; Iremonger, S.S.; Shimizu, G.K.; Boyd, P.G.; Alavi, S.; Woo,T.K.Direct observation and quantification of CO2binding within an amine-functionalized nanoporous solid.Science 2010, 330, 650?653.

    (11) Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.H.; Long, J.R.Carbon dioxide capture in metal-organic frameworks.Chem.Rev.2012, 112, 724?781.

    (12) Rochelle, G.T.Amine scrubbing for CO2capture.Science 2009, 325, 1652–1654.

    (13) (a) Li, J.R.; Sculley, J.; Zhou, H.C.Metal-organic frameworks for separations.Chem.Rev.2012, 112, 869–932; (b) Zhang, L.; Jiang, K.; Yang,Y.; Cui, Y.; Chen, B.; Qian, G.A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4and CO2/N2separations.J.Solid State Chem.2017, 255, 102–107; (c) He, C.T.; Liao, P.Q.; Zhou, D.D.; Wang, B.Y.; Zhang, W.X.; Zhang, J.P.; Chen, X.M.Visualizing the distinctly different crystal-to-crystal structural dynamism and sorption behavior of interpenetration-direction isomeric coordination networks.Chem.Sci.2014, 5, 4755–4762; (d) Pachfule, P.; Chen, Y.; Sahoo, S.C.; Jiang, J.; Banerjee, R.Structural isomerism and effect of fluorination on gas adsorption in copper-tetrazolate based metal organic frameworks.Chem.Mater.2011, 23, 2908–2916.

    (14) (a) Zhang, H.X.; Liu, M.; Xu, G.; Liu, L.; Zhang, J.Selectivity of CO2via pore space partition in zeolitic boron imidazolate frameworks.Chem.Commun.2016, 52, 3552–3555; (b) Jiao, J.; Dou, L.; Liu, H.; Chen, F.; Bai, D.; Feng, Y.; Xiong, S.S.; Chen, D.L.; He, Y.B.An aminopyrimidine-functionalized cage-based metal-organic framework exhibiting highly selective adsorption of C2H2and CO2over CH4.Dalton Trans.2016, 45, 13373–13382; (c) Yu, M.H.; Zhang, P.; Feng, R.; Yao, Z.Q.; Yu, Y.C.; Hu, T.L.; Bu, X.H.Construction of a multi-cage-based MOF with a unique network for efficient CO2capture.ACS Appl.Mater.Interfaces 2017, 9, 26177–26183; (d) Gao, W.Y.; Pham, T.; Forrest, K.A.; Space, B.; Wojtas, L.; Chen, Y.S.; Ma, S.The local electric field favours more than exposed nitrogen atoms on CO2capture: a case study on the rht-type MOF platform.Chem.Commun.2015, 51, 9636–9639.

    (15) (a) Zhang, C.M.; Song, W.; Ma, Q.L.; Xie, L.J.; Zhang, X.C.; Guo, H.Enhancement of CO2capture on biomass-based carbon from black locust by KOH activation and ammonia modification.Energy Fuels 2016, 30, 4181–4190; (b) Niu, M.Y.; Yang, H.M.; Zhang, X.C.; Wang, Y.T.; Tang,A.D.Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2capture.ACS Appl.Mater.Inter.2016, 8,17312–17320; (c) Li, Z.Y.; Ma, X.L.; Xiong, S.S.; Ye, Y.X.; Yao, Z.Z.; Lin, Q.J.; Zhang, Z.J.; Xiang, S.C.Facile synthesis of oxidized activated carbons for high-selectivity and low-enthalpy CO2capture from flue gas.New J.Chem.2018, 42, 4495–4500.

    (16) (a) Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.Adsorption of CO2on zeolites at moderate temperatures.Energy Fuels 2005, 19, 1153–1159; (b)Palomino, M.; Corma, A.; Jorda, J.L.; Rey, F.; Valencia, S.Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification.Chem.Commun.2012, 48, 215–217; (c) Sakwa-Novak, M.A.; Yoo, C.J.; Tan, S.; Rashidi, F.; Jones, C.W.Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2capture from air.ChemSusChem.2016, 9, 1–11.

    (17) (a) Wade, C.R.; Sanchez, T.C.; Narayan, T.C.; Dinc?, M.Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties.Energy Environ.Sci.2013, 6, 2172–2177; (b) Wade, C.R.; Li, M.; Dinc?, M.Facile deposition of multicolored electrochromic metal-organic framework thin films.Angew.Chem.Int.Ed.2013, 52, 13377–13381.

    (18) Dolomanov, A.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.OLEX2: a complete structure solution, refinement and analysis program.J.Appl.Crystallogr.2009, 42, 339–341.

    (19) Sheldrick, G.M.A short history of SHELX.Acta Cryst.A 2008, A64, 112–122.

    (20) Spek, A.L.Single-crystal structure validation with the program PLATON.J.Appl.Crystallogr.2003, 36, 7–13.

    (21) Spek, A.L.A subroutine of PLATON.Acta Crystallogr.Sect.A: Found.Crystallogr.1990, 46, C34.

    (22) O'koye, I.P.; Benham, M.; Thomas, K.M.Adsorption of gases and vapors on carbon molecular sieves.Langmuir.1997, 13, 4054–4059.

    (23) Myers, A.L.; Prausnitz, J.M.Thermodynamics of mixed-gas adsorption.AIChE J.1965, 11, 121–127.

    (24) Ye, Y.X.; Wu, X.Z.; Yao, Z.Z.; Wu, L.; Cai, Z.T.; Wang, L.H.; Ma, X.L.; Chen, Q.H.; Zhang, Z.J.; Xiang, S.C.Metal-organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125oC.J.Mater.Chem.A 2016, 4, 4062–4070.

    (25) Demessence, A.; D’Alessandro, D.M.; Foo, M.L.; Long, J.R.Strong CO2binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine.J.Am.Chem.Soc.2009, 131, 8784?8786.

    (26) Alduhaish, O.; Wang, H.; Li, B.; Arman, H.D.; Nesterov, V.; Alfooty, K.; Chen, B.A threefold interpenetrated pillared-layer metal-organic framework for selective separation of C2H2/CH4and CO2/CH4.ChemPlusChem.2016, 81, 764–769.

    (27) Farrusseng, D.; Daniel, C.; Gaudillere, C.; Ravon, U.; Schuurman, Y.; Mirodatos, C.; Dubbeldam, D.; Frost, H.; Snurr, R.Q.Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation.Langmuir 2009, 25, 7383?7388.

    (28) Tan, C.; Yang, S.; Champness, N.R.; Lin, X.; Blake, A.J.; Lewis, W.; Schroder, M.High capacity gas storage by a 4,8-connected metalorganic polyhedral framework.Chem.Commun.2011, 47, 4487?4489.

    (29) Nugent, P.; Belmabkhout, Y.; Burd, S.D.; Cairns, A.J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko,M.J.Porous materials with optimal adsorption thermodynamics and kinetics for CO2separation.Nature 2013, 495, 80–84.

    (30) Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M.J.Enhanced CO2binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups.J.Am.Chem.Soc.2011, 133, 748–751.

    (31) Song, C.; Hu, J.; Ling, Y.; Feng, Y.L.; Krishna, R.; Chen, D.; He, Y.The accessibility of nitrogen sites makes a difference in selective CO2adsorption of a family of isostructural metal-organic frameworks.J.Mater.Chem.A 2015, 3, 19417–19426.

    (32) Alduhaish, O.; Wang, H.; Li, B.; Hu, T.L.; Arman, H.D.; Alfooty, K.; Chen, B.A twofold interpenetrated metal-organic framework with high performance in selective separation of C2H2/CH4.ChemPlusChem.2016, 81, 770–774.

    (33) Demessence, A.; D’Alessandro, D.M.; Foo, M.L.; Long, J.R.Strong CO2binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine.J.Am.Chem.Soc.2009, 131, 8784–8786.

    (34) Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O’Keeffe, M.; Yaghi, O.M.Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks.Acc.Chem.Res.2010, 43, 58–67.

    免费av观看视频| 亚洲成a人片在线一区二区| 亚洲性夜色夜夜综合| 精品午夜福利在线看| 国产不卡一卡二| 国产真实伦视频高清在线观看 | 精品久久久久久,| 国产亚洲精品久久久久久毛片| 欧美激情国产日韩精品一区| 中国美白少妇内射xxxbb| 啦啦啦韩国在线观看视频| 日本在线视频免费播放| 欧美国产日韩亚洲一区| 欧美另类亚洲清纯唯美| 在线看三级毛片| 很黄的视频免费| 午夜激情欧美在线| 可以在线观看的亚洲视频| 91麻豆av在线| 观看免费一级毛片| 国产伦精品一区二区三区四那| 欧美绝顶高潮抽搐喷水| 婷婷亚洲欧美| 尾随美女入室| 欧美日韩瑟瑟在线播放| 黄色配什么色好看| 久久精品国产亚洲av涩爱 | 99热只有精品国产| 深夜精品福利| 久久精品国产亚洲av香蕉五月| 精品人妻1区二区| 午夜福利在线在线| 国产男靠女视频免费网站| 色在线成人网| 又粗又爽又猛毛片免费看| 免费在线观看影片大全网站| 99视频精品全部免费 在线| 99久久九九国产精品国产免费| 天天一区二区日本电影三级| 亚洲最大成人中文| 国产黄片美女视频| 久久久久久久久久成人| 亚洲无线观看免费| 国产免费男女视频| 国产午夜精品论理片| 欧美一级a爱片免费观看看| 精品一区二区三区av网在线观看| 亚洲人成网站高清观看| 欧美最黄视频在线播放免费| 日日摸夜夜添夜夜添小说| 99精品在免费线老司机午夜| 国产色婷婷99| 中文字幕久久专区| 国产激情偷乱视频一区二区| 日日摸夜夜添夜夜添小说| 久久久精品大字幕| 国产aⅴ精品一区二区三区波| 精品人妻一区二区三区麻豆 | 乱人视频在线观看| 久久久精品欧美日韩精品| 免费看美女性在线毛片视频| 亚洲狠狠婷婷综合久久图片| 久久久久久国产a免费观看| 88av欧美| 欧美一区二区国产精品久久精品| 天堂√8在线中文| 淫秽高清视频在线观看| 九九热线精品视视频播放| av在线天堂中文字幕| 色综合婷婷激情| 淫妇啪啪啪对白视频| 男女那种视频在线观看| 中文在线观看免费www的网站| av在线老鸭窝| 欧美日韩国产亚洲二区| 99久久九九国产精品国产免费| 欧美日韩综合久久久久久 | 免费黄网站久久成人精品| 欧洲精品卡2卡3卡4卡5卡区| 老师上课跳d突然被开到最大视频| 成人美女网站在线观看视频| 国产免费男女视频| 久久香蕉精品热| 日韩人妻高清精品专区| 精品人妻视频免费看| 国产伦精品一区二区三区视频9| 亚洲av.av天堂| 十八禁网站免费在线| 九色成人免费人妻av| 精品久久国产蜜桃| 观看美女的网站| 美女cb高潮喷水在线观看| 日韩 亚洲 欧美在线| 国产精品久久久久久久久免| 高清在线国产一区| 中文字幕久久专区| 欧美人与善性xxx| 精品福利观看| 国产高潮美女av| 亚洲成人精品中文字幕电影| 亚洲美女视频黄频| 久久中文看片网| or卡值多少钱| 欧美黑人巨大hd| 可以在线观看的亚洲视频| 国产v大片淫在线免费观看| 久久精品国产鲁丝片午夜精品 | 亚洲自偷自拍三级| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 91狼人影院| 亚洲国产精品久久男人天堂| 一本精品99久久精品77| 直男gayav资源| 国产av麻豆久久久久久久| 少妇熟女aⅴ在线视频| 国产午夜福利久久久久久| 人人妻人人澡欧美一区二区| 免费av毛片视频| 我要看日韩黄色一级片| 亚洲aⅴ乱码一区二区在线播放| 在现免费观看毛片| 91麻豆av在线| 精品国内亚洲2022精品成人| 国产精品国产高清国产av| 一区二区三区高清视频在线| 97人妻精品一区二区三区麻豆| 国产91精品成人一区二区三区| 露出奶头的视频| 亚洲精华国产精华精| 精品人妻熟女av久视频| 精品久久久久久成人av| 99久久精品一区二区三区| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 又粗又爽又猛毛片免费看| 亚洲美女视频黄频| 99九九线精品视频在线观看视频| 天美传媒精品一区二区| 毛片女人毛片| 最新在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久久久| 国语自产精品视频在线第100页| 国产精品综合久久久久久久免费| 一a级毛片在线观看| a级毛片a级免费在线| 日韩高清综合在线| 女人被狂操c到高潮| 精品久久久噜噜| 少妇熟女aⅴ在线视频| 国产免费一级a男人的天堂| 搡老岳熟女国产| 亚洲精品国产成人久久av| 日韩欧美精品免费久久| 最新在线观看一区二区三区| 十八禁国产超污无遮挡网站| 日韩,欧美,国产一区二区三区 | 老熟妇仑乱视频hdxx| 日韩欧美一区二区三区在线观看| or卡值多少钱| 最近在线观看免费完整版| 99久国产av精品| 伦精品一区二区三区| 欧美一区二区精品小视频在线| 日韩欧美一区二区三区在线观看| 极品教师在线免费播放| 亚洲av免费高清在线观看| 精品日产1卡2卡| 色综合婷婷激情| 999久久久精品免费观看国产| 精品久久久久久久久亚洲 | 尤物成人国产欧美一区二区三区| 亚洲成av人片在线播放无| 国产爱豆传媒在线观看| 久久久成人免费电影| 极品教师在线免费播放| 1024手机看黄色片| 国产私拍福利视频在线观看| 欧美性猛交╳xxx乱大交人| 午夜爱爱视频在线播放| 中出人妻视频一区二区| 国产精品野战在线观看| 麻豆成人av在线观看| 欧美日韩精品成人综合77777| 长腿黑丝高跟| 禁无遮挡网站| 特大巨黑吊av在线直播| 少妇的逼水好多| 亚洲电影在线观看av| 亚洲美女视频黄频| 一夜夜www| 国内精品久久久久久久电影| 天堂网av新在线| 国产精品亚洲一级av第二区| 少妇人妻一区二区三区视频| 美女高潮喷水抽搐中文字幕| 亚洲七黄色美女视频| 三级毛片av免费| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 日韩欧美精品v在线| 天堂√8在线中文| 春色校园在线视频观看| 亚洲久久久久久中文字幕| 亚洲国产日韩欧美精品在线观看| 国内精品美女久久久久久| 高清日韩中文字幕在线| 18禁裸乳无遮挡免费网站照片| 精品午夜福利视频在线观看一区| 韩国av一区二区三区四区| av.在线天堂| 动漫黄色视频在线观看| 精品人妻视频免费看| 嫩草影院精品99| 国产精品久久视频播放| 99久久无色码亚洲精品果冻| 国产人妻一区二区三区在| 国产淫片久久久久久久久| 国产aⅴ精品一区二区三区波| 婷婷亚洲欧美| 3wmmmm亚洲av在线观看| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 日本一本二区三区精品| 亚洲经典国产精华液单| www日本黄色视频网| 一级毛片久久久久久久久女| 午夜激情欧美在线| av专区在线播放| 全区人妻精品视频| 高清日韩中文字幕在线| 毛片一级片免费看久久久久 | 亚洲国产日韩欧美精品在线观看| 悠悠久久av| 国产精品人妻久久久影院| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久久免| 亚洲性久久影院| 国产精品久久久久久亚洲av鲁大| 国产av不卡久久| 午夜精品在线福利| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 亚洲成人精品中文字幕电影| 国产精品三级大全| 99在线视频只有这里精品首页| 国产 一区 欧美 日韩| 又紧又爽又黄一区二区| 99久久精品热视频| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 精品不卡国产一区二区三区| 国产亚洲精品综合一区在线观看| 12—13女人毛片做爰片一| 国产男人的电影天堂91| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 午夜a级毛片| 久久久久久久精品吃奶| 亚洲男人的天堂狠狠| 伦理电影大哥的女人| 精品久久久久久,| 国产高清有码在线观看视频| 色av中文字幕| 波野结衣二区三区在线| 深夜a级毛片| 俄罗斯特黄特色一大片| aaaaa片日本免费| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 欧美一区二区国产精品久久精品| 亚洲国产色片| 99精品在免费线老司机午夜| 午夜福利高清视频| 波多野结衣高清作品| 在线免费十八禁| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 成年人黄色毛片网站| 亚洲三级黄色毛片| 我的老师免费观看完整版| 免费不卡的大黄色大毛片视频在线观看 | 成人特级av手机在线观看| 能在线免费观看的黄片| 在线国产一区二区在线| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类 | 我的女老师完整版在线观看| 丝袜美腿在线中文| 99热这里只有精品一区| 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器| 国产精品野战在线观看| 男人舔奶头视频| 久久久久久久午夜电影| 韩国av在线不卡| 亚洲成av人片在线播放无| 波多野结衣高清无吗| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 亚洲性久久影院| 色噜噜av男人的天堂激情| 日韩av在线大香蕉| 国产又黄又爽又无遮挡在线| 国内精品美女久久久久久| 天堂√8在线中文| 99热这里只有是精品在线观看| 成人永久免费在线观看视频| av国产免费在线观看| 少妇猛男粗大的猛烈进出视频 | 久久精品国产亚洲av涩爱 | 淫妇啪啪啪对白视频| av在线蜜桃| 亚洲内射少妇av| 久久精品国产亚洲网站| 国产免费男女视频| avwww免费| 久久久久九九精品影院| 最近最新中文字幕大全电影3| 国产女主播在线喷水免费视频网站 | 亚洲av免费在线观看| 神马国产精品三级电影在线观看| 国产精品不卡视频一区二区| 在线看三级毛片| 十八禁网站免费在线| 亚洲欧美日韩无卡精品| 欧美精品国产亚洲| 欧美在线一区亚洲| 国产精品久久久久久久久免| 国产精品亚洲一级av第二区| 天堂√8在线中文| 少妇人妻精品综合一区二区 | 国产真实伦视频高清在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 婷婷色综合大香蕉| 欧美黑人巨大hd| 精品久久久久久久人妻蜜臀av| 国产精品福利在线免费观看| 啪啪无遮挡十八禁网站| 欧美一级a爱片免费观看看| 午夜免费成人在线视频| 在线观看美女被高潮喷水网站| 校园春色视频在线观看| 国产精品久久久久久久电影| 男女边吃奶边做爰视频| 干丝袜人妻中文字幕| 亚洲av二区三区四区| 国产一区二区在线av高清观看| 性欧美人与动物交配| 婷婷精品国产亚洲av| 成年女人永久免费观看视频| 性欧美人与动物交配| 免费av不卡在线播放| 天堂√8在线中文| 久久久国产成人精品二区| 欧美区成人在线视频| 欧美一区二区国产精品久久精品| 91精品国产九色| 国产精品亚洲一级av第二区| 久久精品影院6| xxxwww97欧美| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩精品久久久久久密| 午夜福利成人在线免费观看| 一区二区三区激情视频| 嫩草影院精品99| 欧美国产日韩亚洲一区| 在线观看av片永久免费下载| 天美传媒精品一区二区| 日韩欧美在线二视频| 日韩人妻高清精品专区| av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 天堂√8在线中文| 中出人妻视频一区二区| 999久久久精品免费观看国产| 免费观看人在逋| 久久亚洲真实| 又爽又黄a免费视频| 日本五十路高清| 日本 欧美在线| 国产亚洲精品综合一区在线观看| 99久久精品热视频| 国产真实乱freesex| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 久久精品国产亚洲网站| 国产亚洲精品久久久久久毛片| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清性xxxxhd video| 男女啪啪激烈高潮av片| 男女视频在线观看网站免费| 99热精品在线国产| 午夜a级毛片| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费| 99热网站在线观看| 中国美女看黄片| 一本精品99久久精品77| 国产三级在线视频| 毛片女人毛片| 国内精品一区二区在线观看| 97超视频在线观看视频| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 亚洲图色成人| 久久精品人妻少妇| 欧美成人性av电影在线观看| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 日韩 亚洲 欧美在线| 国语自产精品视频在线第100页| 舔av片在线| 国产又黄又爽又无遮挡在线| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 两人在一起打扑克的视频| 日本-黄色视频高清免费观看| 免费观看人在逋| 99热精品在线国产| 草草在线视频免费看| 国产视频内射| 欧美日韩黄片免| 丝袜美腿在线中文| 看黄色毛片网站| 国产精品一及| 一级av片app| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 亚洲三级黄色毛片| 最新中文字幕久久久久| 97超级碰碰碰精品色视频在线观看| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 国产伦精品一区二区三区四那| 日日撸夜夜添| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 国产一区二区亚洲精品在线观看| 免费高清视频大片| 老司机午夜福利在线观看视频| 91久久精品电影网| 69av精品久久久久久| 少妇的逼水好多| 国产91精品成人一区二区三区| 99热这里只有是精品在线观看| 国产精品1区2区在线观看.| 99久久精品热视频| videossex国产| 国产大屁股一区二区在线视频| 身体一侧抽搐| 欧美一区二区国产精品久久精品| 国内精品久久久久久久电影| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 日本爱情动作片www.在线观看 | 精品午夜福利在线看| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 国产精品综合久久久久久久免费| 精品久久久久久久久av| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片 | 午夜福利欧美成人| 最近最新免费中文字幕在线| 精品人妻一区二区三区麻豆 | 好男人在线观看高清免费视频| 免费观看精品视频网站| 男女啪啪激烈高潮av片| 国产精品三级大全| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 一个人观看的视频www高清免费观看| 日韩欧美在线乱码| 日日撸夜夜添| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 国产淫片久久久久久久久| 亚洲国产高清在线一区二区三| 亚洲黑人精品在线| 欧美绝顶高潮抽搐喷水| 亚洲内射少妇av| 国产aⅴ精品一区二区三区波| 成人三级黄色视频| 精品一区二区三区视频在线| 婷婷精品国产亚洲av| 亚洲av第一区精品v没综合| av在线亚洲专区| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 亚洲美女搞黄在线观看 | ponron亚洲| 午夜免费激情av| 变态另类成人亚洲欧美熟女| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| www.色视频.com| 91麻豆av在线| 日韩欧美精品v在线| 日本撒尿小便嘘嘘汇集6| 91午夜精品亚洲一区二区三区 | 国产极品精品免费视频能看的| 中国美女看黄片| 少妇高潮的动态图| 亚洲av熟女| 日韩国内少妇激情av| 免费观看人在逋| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 亚洲三级黄色毛片| 十八禁网站免费在线| 国产精品永久免费网站| 亚洲精品成人久久久久久| 欧美成人免费av一区二区三区| 精品人妻视频免费看| 欧美色欧美亚洲另类二区| 男人舔奶头视频| 亚洲成人久久爱视频| 1000部很黄的大片| 最近在线观看免费完整版| 亚洲人成网站在线播放欧美日韩| 日本a在线网址| 亚洲欧美日韩东京热| 亚洲av熟女| 欧美不卡视频在线免费观看| 欧美zozozo另类| 黄色一级大片看看| 制服丝袜大香蕉在线| 日本熟妇午夜| 一个人观看的视频www高清免费观看| 天天一区二区日本电影三级| 男女之事视频高清在线观看| 日本熟妇午夜| 一区二区三区四区激情视频 | 色精品久久人妻99蜜桃| 一级黄色大片毛片| a在线观看视频网站| av.在线天堂| 午夜福利视频1000在线观看| 日韩中文字幕欧美一区二区| 99久久精品国产国产毛片| 中文亚洲av片在线观看爽| 桃红色精品国产亚洲av| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| av在线蜜桃| 人妻少妇偷人精品九色| 少妇人妻精品综合一区二区 | 最近中文字幕高清免费大全6 | av中文乱码字幕在线| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 一级黄片播放器| 色在线成人网| 免费看日本二区| 热99在线观看视频| 亚洲精品乱码久久久v下载方式| 国产精品av视频在线免费观看| 中文字幕免费在线视频6| 国产精品av视频在线免费观看| 欧美国产日韩亚洲一区| 最新中文字幕久久久久| 久久精品国产鲁丝片午夜精品 | 如何舔出高潮| 日韩精品有码人妻一区| 99久国产av精品| 精品国产三级普通话版| 亚洲不卡免费看| 99热网站在线观看| 国产高清三级在线| 天堂√8在线中文| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 中文字幕av在线有码专区| 久久久久久大精品| 久久久久免费精品人妻一区二区| 精品久久久久久久久av| 九九爱精品视频在线观看| 午夜a级毛片| 亚洲天堂国产精品一区在线| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 亚洲一级一片aⅴ在线观看| 亚洲在线观看片| 床上黄色一级片| 18+在线观看网站| 校园人妻丝袜中文字幕| 伊人久久精品亚洲午夜| 色播亚洲综合网| 国产乱人伦免费视频| 午夜免费激情av| 日韩欧美 国产精品| aaaaa片日本免费| 国产精品av视频在线免费观看| 国产色爽女视频免费观看| 露出奶头的视频| 黄色日韩在线| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产|