• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assembly of a Heteronuclear POM{[K5Na6CuII5(CH3COO)20(CH3CN)]Cl}n via Two Kinds of Clusters as the Basic Bridge Unit①

    2018-11-22 01:58:46DAIYuMeiXUJie
    結(jié)構(gòu)化學(xué) 2018年10期

    DAI Yu-Mei XU Jie

    (Minnan Science and Technology Institute, Fujian Normal University, Quanzhou 362332, China)

    A novel 3D hetero-nuclear framework, [K5Na6CuII5(CH3COO)20(CH3CN)]Cl}n(1),was obtained by hydrothermal reaction.Triple metal centers (including sodium/potassium or/and copper) were coordinated to acetate anions in such two heteronuclear clusters, respectively.Moreover, the nine kinds of binding modes for acetate anions were illustrated in polymer 1, with the first reported pentadentate coordination mode for the acetate ligand.

    1 INTRODUCTION

    Rational design for constructing polyoxometalates(POMs) has been attracting extensive interest in material chemistry in the past several decades, not only because of the unique topologies, but also of the wide range of potential applications as functional solid materials[1-3].In general, such strategies were mainly focusing on: i) using some precursors incorporate in situ formed transition-metal (TM)clusters binding with multidentate inorganic ligands,generating a rapidly growing class of transition-metal substituted polyoxometalates (TMSPs)[4], and affording the array of 1-, 2-, and 3-D networks via self-assembly.Additional, some of the 1-D and 2-D structures might be further extended to 3-D frameworks through hydrogen bonding or/and p-pstacking interactions.ii) the research on polymers that incorporate with alkali or alkali earth metal ions,which can act as both counter ions and structural units in the synthesis[5,6].The current trends towards“rational design” are mainly based on the accumulated knowledge of crystal chemistry, thermodynamics and reactivity, as well as the relationship between structures and properties.However, little attention has been paid to the research of new strategy for constructing multi-dimensional architecture hitherto, for instance, the selection of heteronuclear clusters as bridge units to substitute the organic ligands to form the skeleton of framework.To our knowledge, the chemistry of heteronuclear complexes especially those containing nuclear triple metal elements coordinating with simple carboxylate ligands have rarely been reported, and there are only two examples up to now[7,8].

    On the other hand, the properties and supramolecular behaviors of copper-(II)/carboxylates have been studied extensively since the structure of copper(II) acetate monohydrate, Cu2(OCOCH3)4·2H2O,was first reported by Van Niekerk et al[9].The flexibility of the coordination sphere of Cu(II) in combination with steric and crystal packing forces leads to its tremendous structural diversity.Various Cu(II) carboxylate derivatives analogous to this complex which incorporated alkali metal ions, often sodium, have been investigated.The recent attempts to synthesize double salts consisting of alkali metal cations and Cu(II) acetate anions met with limited success.Such work helps us to understand the influence of alkali metal ions on the structures and properties of transition metal complexes[10-12].However, all such dinuclear copper(II) based systems both contained the well-characterized[Cu2(CH3COO)4] binuclear units.Such units were linked by acetate-bridged Na+ions to generate a 3-D network, in which the Cu(II) centers are either isolated or square planar with fairly simple motifs.And no occurrence of heteronuclear clusters could be found in structures incorporating acetate anions according to the search of CCDC.Herein, we report the hydrothermal synthesis and X-ray structure of{[K5Na6CuII5(CH3COO)20(CH3CN)]Cl}n(1).

    2 EXPERIMENTAL

    2.1 Synthesis of the title complex 1

    A mixture of Cu(Ac)2(9.1 mg, 0.05 mmol), NaAc(5.0 mg, 0.06 mmol), KAc (4.1 mg, 0.04 mmol), KCl(1 mg, 0.01 mmol), and CH3CN (3 mL) in a Pyrex glass tube (15 cm in length, 7 mm in inner diameter).The tube was then sealed and heated in an oven at 423 K for 50 h to form dark blue prism crystals of1,which were collected by filtration, washed with acetonitrile, and dried in air (yield: 66% based on Cu).The elemental analyses for C, H and N were performed on a Carlo-Erba CHNO-S microanalyzer.Elemental analysis found: C, 26.41; H, 3.35; N,0.74%.C42H63O40NK5Na6Cu5Cl requires C, 26.43; H,3.33; N, 0.73%.IR spectra were recorded on a Varian 1000 FT-IR spectrometer as KBr disks (4000~400 cm-1).IR (KBr, cm-1): 3437(s), 3414(s), 3253(m),3221(m), 3195(m), 3030(w), 2912(w), 1686(m),1655(w), 1625(w), 1528(w), 1438(w), 1385(m),1244(w), 1227(w), 1038(w).

    2.2 Structure determination

    X-ray diffraction data were collected on a Rigaku Mercury CCD diffractometer using graphite-monochromated Mo-Kα (λ = 0.70073 ?).One blue single crystal with dimensions of 0.30 mm × 0.20 mm×0.05 mm was mounted on a glass fiber and cooled at 193 K in a liquid nitrogen stream.Crystal data for C42H63O40NK5Na6Cu5Cl: Mr= 1908.57, orthorhombic, space group Pccn, a = 19.000(4), b = 20.120(4),c = 20.192(4) ?, V = 7719(3) ?3, Z = 4, Dc= 1.642 g/cm3, m = 1.781 mm-1, 24365 measured reflections,7994 unique reflections (Rint= 0.0226), 8858 observed reflections (I > 2s(I)), 467 parameters, R =0.0492, wR = 0.1188, S = 1.052, max./min.residual electron density 0.724~0.677 e/?3.The crystal structure was solved by direct methods and refined with full-matrix least-squares techniques using the SHELXS-97 and SHELXL-97 programs (Sheldrick,1997).All non-hydrogen atoms were refined anisotropically.Carbon-bound hydrogen atoms were generated geometrically, and were allowed to ride on their parent carbon atoms.All other hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

    3 RESULTS AND DISCUSSION

    3.1 Structure analysis

    The selected bond lengths and bond angles are listed in Table 1.The title compound exhibits an unprecedented 3-D POM using two kinds of heteronuclear metal-oxygen clusters as the basic bridge units and features a number of distinct acetate binding modes.To our knowledge, both heteronuclear metal-oxygen clusters and the binding modes of acetate are novel, not only in coordination chemistry, but also in POM chemistry[13].The whole structure of1was divided into the[K5Na6CuII5(CH3COO)20(CH3CN)]n+cationic host framework and Clˉ as the inclusion.And such cationic framework was described as three sections:i) bridge unit, ii) extending way and iii) acetate binding mode, respectively.

    Table 1.Selected Bond Lengths (?) and Bond Angles (°)

    Two kinds of heteronuclear clusters in such cationic framework were matryoshka-like K4Na4CuII6-O cluster unit (A) and flexure type KNa2-O cluster unit (B), respectively.In unit A, a K4Na4-O cluster was formed firstly through interleaving K4 and Na4 tetrahedra in opposite directions coordinating to acetate anions (Fig.1a).In K4Na4-O cluster, each K(1) atom was pentadentated-coordinated by five oxygen atoms from five acetate ligands: the oxygen atoms of the three acetate ligands adopt m2-O bridging K(1), Na(2)atoms, K(1), Cu(1) atoms and K(1), Cu(3) atoms with the K–O bond distances varying from 2.741(2)to 2.773(2) ?.And the oxygen atoms of the last two acetate ligands were a m3-O which coordinates to K(1), Na(1), Na(2) and K(1), K(2), Na(2) atoms,respectively (K–O = 2.773(2) and 2.881(2) ?).The bond distances between K–O are comparable to those in potassium compounds reported[14].As to K(2) atom, both K atoms were hexadentate-coordinated by six oxygen atoms from six acetate ligands while some difference is found compared to that of K(1).One of the acetate ligands uses an oxygen atom to monodentate-coordinate to the K(2)atom (K–O = 2.769(2) ?).The other two acetates use their m2-O to bridge K(2) and Na(1) atoms with the K–O bond distances of 2.841(2) and 2.812(2) ?,respectively.Moreover, the last acetate ligand tridentated-coordinates to K(2), Na(1) and Na(2)atoms via m3-O atom (K–O = 2.844(2) ?).The average distances of Na··Cl and K··Cl are 3.091 and 3.1286 ?, respectively.Thus, the Clˉ anion might be treated as template reagent in forming such interleaving tetrahedron.Furthermore, three crystallographically independent Cu(II) ions in unit A and a Cu(II) ion of adjacent heteronuclear cluster A occupied the vertexes of six directions of K4Na4O,forming a cage of distorted octahedral geometry resulting in the tight trapping of Clˉ.Fig.1b shows six CuIIatoms coordinating to acetate anions to form a distorted octahedral geometry.Fig.1c shows a matryoshka-like K4Na4CuII6-O cluster unit (A)and Fig.1d depicts the view of Clˉ which is tightly trapped in A and further acts as a counter anion to stabilize the architecture of complex.Each of two Cu(1) atoms was tetradentate-coordinated by four oxygen atoms from four acetate ligands.Two of such four acetates use their m2-O to bridge Cu(1)and Na(1), Cu(1) and K(1) atoms with the Cu–O bond distances being 1.986(2) and 1.980(2) ?,respectively.An oxygen atom of the third acetate ligand monodentate-coordinates to Cu(1) atom and the Cu–O distance was 1.942(2) ?, and the oxygen atom of the last acetate ligand bridges Cu(1) and Na(3) atoms with the Cu–O to be 1.973(2) ?.The coordination environment of Cu(2) was the same as that of Cu(1) while the situation of tetradentatedcoordinated Cu(3) atom was different from Cu(1)and Cu(2) atoms.There are two oxygen atoms from two acetate ligands bridging K(1) and Cu(3) atoms with the Cu–O bond distance of 1.959(2) ?, and them2-O atoms of the other two acetate ligands bridged K(2) and Cu(3) atoms (Cu–O = 1.965(2) ?), and all the Cu–O bond distances were classical in the range for Cu(II)–O.

    Fig.1.a) View of the K4Na4-O cluster formed through the interleaving of K4 and Na4 tetrahedra in opposite directions coordinating to acetate anions (Symmetry codes: i: x, 1+y, z; ii: 1/2–x, 1/2–y, z).b) Six Cu(II) atoms coordinating to acetate anions to form a distorted octahedral geometry(Symmetry codes: i: x, 1+y, z; ii: 1/2–x, 1/2–y, z; iii: 1/2–x, 1+y, 1/2+z).c) A matryoshka-like K4Na4CuII6-O cluster unit (A).d) View of Cl– which was tightly trapped in A and further acting as the counter anion to stabilizethe architecture of the complex

    The unit B contents a flexure type KNa2-O cluster (Fig.2), and the K(3) atom was heptadentate-coordinated by six oxygen atoms from four acetate ligands and one N atom from CH3CN.Both acetate ligands use their one m2-O atom to bridge K(3) and Na(3) atoms, respectively.The K–O bond distance is 2.814(2)~2.950(2) ?.And as to the Na(3) atoms, both of them are hexadentate-coordinated by six oxygen atoms from six acetate ligands.For each Na(3) atom, two of the six acetate ligands use their oxygen atoms to monodentate-coordinate to the Na(3) atom (Na–O =2.329(3)~2.453(3) ?), two O atoms of the other two acetate ligands bridge K(3) and Na(3) atoms viam2-O atom (Na–O = 2.396(3)~2.373(2) ?), and two O atoms of the last two acetate ligands usem2-O atom to bridge the Na(3) (Na–O = 2.356(2) ?),Cu(1) atoms, and Na(3) (Na–O = 2.395(2) ?) and Cu(2) atoms, respectively .

    Fig.2.View of the flexure type KNa2-O cluster unit (B)Symmetry codes: iv: 1/2–x, y, –1/2+z; v: x, 1/2–y, –1/2+z

    There are four units B connect with A to form a windmill fashion AB4(Fig.3a).On the other hand,four A connect with unit B in an A4B X-style through two Na(3)–O–Cu(1) and two Na(3)–O–Cu(2) bridges binding the acetate anions, respectively (Fig.3b).Furthermore, the Cu(3) and Cu(3a)atoms in unit A occupied the vertexes of K4Na4-O nuclear cluster perpendicular to such windmill architecture, and link the neighboring two units A with the rotation of 90o to form a (4,6)-connected framework finely.Fig.3c shows the 3D architecture of1.If A and B are treated as nodes respectively,such cationic skeleton of1was rationalized to be a topological net with the Schl?fli symbol(4462)(446108) (Fig.3d).Such strategy for the construction of 3-D architecture is quite different from the examples which have been reported before.In those polymers, sodium/potassium atoms are coordinating to oxygen atoms, forming the isolate unit or extending the framework through H-bonding between oxygen atoms.The acetate ligands act as counterions and connect the symmetry-related constructs.

    Fig.3.a) X fashion AB4.b) View of the windmill fashion of A4B formed by four unit A connecting with Cu(1) and Cu(2) atoms binding the acetate anions.c) 3D architecture of complex.d) Topological view of the complex with Schl?fli symbol (4462)(446108), and no means for the lines

    As to the two carboxylate oxygen atoms of each acetate coordinating to metal center, the number of coordination was 1+1, 2+2, 1+3, 2+1 for A (Fig.4)and 2+1, 2+2, 2+3 for B (Fig.5), respectively.Thus,it leads to four coordination types with eighteen modes for unit A while three coordination types with five kinds of binding modes for B, respectively according to all of the binding acetate ions.Based on such consideration, the acetate ligands act finally as di-, tri- and tetradentate ligands in A and tri-,tetra- and pentadentate ligands correlated to B,respectively.To our surprise, the unexpected pentadentate coordination mode for acetate ligand was firstly reported with the inclusion of carboxylates being part of the ligand assembly, except the reported structure of CuII(CH3COO)(CH3O)[15]which exhibits a tetradentate ligand for acetate.And no occurrence of such nine binding modes could be found in structures incorporating acetate anions according to the search of CCDC.

    Fig.4.Coordination modes (I-IV) for acetate anions in the heteronuclear cluster unit A

    Fig.5.Coordination modes (I-V) for acetate anions in heteronuclear cluster unit B

    3.2 Thermogravimetric analysis

    The thermogravimetric analysis (TGA) of complex1reveals that four stages of weight loss(30~90, 135~150, 240~320 and 450~510 oC,respectively) in the temperature range of 30~750oC (Fig.6).To understand the process of weight loss,the thermogravimetric analyses of free KAc, NaAc and Cu(Ac)2were carried out, respectively.The TGA of complex1is completely different from that offree KAc, NaAc and Cu(Ac)2, which further proves the complex coordination of1.The result also means that1is more stable in such construction, and the covalent bonds between these carboxylic groups and the triple metal centers are strong enough to withstand the stability of the complex.

    3.3 Ultraviolet absorption spectrum analysis

    The ultraviolet absorption spectrum of complex1is shown in Fig.7.It can be observed that the maximum absorption wavelength occurs at 226 nm for complex1(DMSO as solvent, 0.05 mg/mL).To understand the nature of the ultraviolet absorption spectrum of1, we analyzed the ultraviolet absorption spectrum of the reactants and found that the maximum absorption wavelength occurs at 280 nm for the reactants.The maximum absorption wavelength of1, compared to the reactants, exhibits blue shift due to the steric effect[16].Complex1is a 3D framework which can destroy the conjugate structure.The ultraviolet absorption spectrum indicates that1can be a candidate for anti-ultraviolet material.

    Fig.6.TGA plot of complex 1

    Fig.7.Ultraviolet absorption spectrum of complex 1

    In summary, we report here the hydrothermal method to produce a 3D polymer using heteronuclear clusters as the basic bridge unit.The nine kinds of binding modes for acetate anions were illustrated with the first reported pentadentate coordination mode for acetate ligand.

    REFERENCES

    (1) Ma, L.; David, J.M.; Lin, W.Highly porous and robust 4,8-connected metal-organic frameworks for hydrogen storage.J.Am.Chem.Soc.2009, 131, 4610–4612.

    (2) Zhao, J.W.; Wang, C.M.; Zhang, J.; Zheng, S.T.; Yang, G.Y.Combination of lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: IX.A series of novel polyoxotungsta-tes Sandwiched by octa-copper clusters.Chem.Eur.J.2008, 14, 9223–9239.

    (3) Tang, E.; Dai, Y.M.; Zhang, J.; Li, Z.J.; Yao, Y.G.; Zhang, J.; Huang, X.D.Two cobalt(II) 5-aminoisophthalate complexes and their stable supramolecular microporous frameworks.Inorg.Chem.2006, 45, 6276–6281.

    (4) Nsouli, N.H.; Bassil, B.S.; Dickman, M.H.; Kortz, U.; Keita, B.; Nadjo, L.Synthesis and structure of dilacunary decatungstogermanate,[V-GeW10O36]8-.Inorg.Chem.2006, 45, 3858–3860.

    (5) Guillaume, V.; Sax, A.M.; Paul, D.P.; Peter, C.J.; Jonathan, W.S.Intramolecular versus intermolecular hydrogen bonding of coordinated acetate to organic acids:? a neutron, X-ray, and database study.Cryst.Growth Des.2003, 3, 699–704.

    (6) Kennedy, A.R.; Kirkhouse, J.B.A.; Whyte, L.Supramolecuar motifs in s-block metal-bound sulfonated monoazo dyes:? the case of orange G.Inorg.Chem.2006, 45, 2965–2971.

    (7) Richard, D.M.; Tetsuya, O.; Quintus, F.Crystal structure of copper(I) acetate.Inorg.Chem.1974, 13, 802–805.

    (8) Zhou,Y.X.; Shen, X.Q.; Liu, H.L.; Zhang, H.Y.; Wu, Q.A.; Niu, C.Y.Studies on synthesis and crystal structures of heteronuclear complexes of tartarate with Na(I), K(I) and Cu(II).Synth.React.Inorg.Met.Org.Nano-Met.Chem.2006, 36, 563–568.

    (9) Niekerk, J.N.V.; Schoening, F.R.L.A new type of copper complex as found in the crystal structure of cupric acetate Cu2(CH3COO)4·2H2O.Acta Crystallogr.1953, 6, 227–232.

    (10) Liu, H.L.; Mao, H.Y.; Zhang, H.Y.; Xu, C.; Wu, Q.A.; Li, G.; Zhu, Y.; Hou, H.W.Two novel heterometallacrowns: syntheses and crystal structures of two copper(II) complexes with malonate and o-pthalate.Polyhedron2004, 23, 943–948.

    (11) Laborda, S.; Clerac R.; Anson C.E.; Powell, A.K.Intra- and intermolecular magnetic interactions in a series of dinuclear Cu(II)/hxta complexes {H5hxta =N,N?-(2-hydroxy-1,3-xylylene)-bis-(N-carboxymethylglycine)}:?correlation of magnetic properties with geometry.Inorg.Chem.2004, 43, 5931–5943.

    (12) Proust, A.; Gouzerh, P.; Robert, F.Molybdenum oxo nitrosyl complexes 1.Defect Lindqvist compounds of the type [Mo5O13(OR)4(NO)]3-(R =CH3, C2H5).Solid-state interactions with alkali-metal cations.Inorg.Chem.1993, 32, 5291–5298.

    (13) Warden, A.C.; Hearn, M.T.W.; Spiccia L.Novel acetate binding modes in [Na2Cu(CH3COO)4(H2O)].Inorg.Chem.2003, 42, 7037–7040.

    (14) Dai, Y.M.; Tang, E.; Wang, X.Q.; Huang, J.F.; Wang, L, H.; Huang, X.D.A three-dimensional neodymium(III)-potassium(I) coordination polymer.Chin.J.Struct.Chem.2008, 9, 1031–1034.

    (15) Koval, I.A.; Gamez, P.; Roubeau, O.; Driessen, W.L.; Lutz, M.; Spek, A.L.; Reedjik, J.Century-known copper salt Cu(OAc)(OMe) proven to be a unique magnetic lattice composed of tetranuclear copper(II) species with a rare binding mode of the acetate anion.Inorg.Chem.2003, 42, 868–872.

    (16) Hu, H.W.Organic Chemistry.Higher Education Press2013.

    久久国产亚洲av麻豆专区| 熟女电影av网| 菩萨蛮人人尽说江南好唐韦庄| 少妇裸体淫交视频免费看高清| 国产 精品1| 中文字幕人妻熟人妻熟丝袜美| 久久鲁丝午夜福利片| 亚洲一区二区三区欧美精品| 有码 亚洲区| 我要看黄色一级片免费的| 国产深夜福利视频在线观看| 大香蕉久久网| 草草在线视频免费看| 久久久久久久精品精品| 热re99久久精品国产66热6| a级一级毛片免费在线观看| 国产精品一区二区性色av| 精品国产一区二区久久| 成人无遮挡网站| 国产爽快片一区二区三区| 高清视频免费观看一区二区| 只有这里有精品99| 精品少妇久久久久久888优播| 最近的中文字幕免费完整| 亚洲丝袜综合中文字幕| 国产黄色免费在线视频| 9色porny在线观看| 特大巨黑吊av在线直播| 久久久国产精品麻豆| 69精品国产乱码久久久| av在线播放精品| 免费看av在线观看网站| 亚洲性久久影院| 这个男人来自地球电影免费观看 | 中国国产av一级| 丝袜脚勾引网站| 黄色欧美视频在线观看| 日韩av不卡免费在线播放| 久久人人爽人人爽人人片va| av女优亚洲男人天堂| 午夜影院在线不卡| 欧美精品一区二区大全| 免费av中文字幕在线| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| av在线观看视频网站免费| 成人影院久久| 亚洲精品中文字幕在线视频 | 日韩av免费高清视频| 99久国产av精品国产电影| 少妇精品久久久久久久| 三级国产精品欧美在线观看| a级毛片免费高清观看在线播放| 人妻少妇偷人精品九色| 亚洲丝袜综合中文字幕| 黄片无遮挡物在线观看| 久久 成人 亚洲| 亚洲精品国产av蜜桃| 成年人免费黄色播放视频 | 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 欧美精品人与动牲交sv欧美| 免费大片18禁| 丝瓜视频免费看黄片| av福利片在线观看| 国产精品人妻久久久影院| 春色校园在线视频观看| 国产在线男女| 欧美日韩精品成人综合77777| 国产黄片视频在线免费观看| 亚洲国产精品国产精品| 黑丝袜美女国产一区| 极品人妻少妇av视频| 精品卡一卡二卡四卡免费| 99久久人妻综合| .国产精品久久| 美女国产视频在线观看| 性色avwww在线观看| 精品亚洲成a人片在线观看| 国产av码专区亚洲av| 最近最新中文字幕免费大全7| 一本久久精品| 成人综合一区亚洲| 日本与韩国留学比较| 午夜免费鲁丝| 又爽又黄a免费视频| 在线天堂最新版资源| 在线观看三级黄色| 人妻少妇偷人精品九色| 人人妻人人看人人澡| 2022亚洲国产成人精品| 91精品国产国语对白视频| 亚洲不卡免费看| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 男女边吃奶边做爰视频| 午夜精品国产一区二区电影| 免费观看在线日韩| av天堂久久9| 免费看av在线观看网站| 你懂的网址亚洲精品在线观看| 黑人高潮一二区| 久久久久网色| 国产精品99久久久久久久久| 99久久中文字幕三级久久日本| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 日本av免费视频播放| 91久久精品国产一区二区成人| 亚洲不卡免费看| 夜夜看夜夜爽夜夜摸| 啦啦啦在线观看免费高清www| 简卡轻食公司| av有码第一页| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美视频二区| 久久精品国产亚洲av涩爱| 久久精品国产自在天天线| 亚洲高清免费不卡视频| 午夜免费观看性视频| 只有这里有精品99| 国产在视频线精品| 国产精品不卡视频一区二区| 精品一区二区免费观看| 熟女人妻精品中文字幕| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 一级毛片久久久久久久久女| 精品亚洲乱码少妇综合久久| av视频免费观看在线观看| 国产淫语在线视频| 成人亚洲精品一区在线观看| 国产亚洲5aaaaa淫片| av免费在线看不卡| 亚洲国产精品一区三区| 精品一区二区三区视频在线| 成年av动漫网址| 中文资源天堂在线| 成人毛片60女人毛片免费| 草草在线视频免费看| a级毛片免费高清观看在线播放| 一区二区三区乱码不卡18| 亚洲精品第二区| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看| 少妇丰满av| 青青草视频在线视频观看| 亚洲欧美中文字幕日韩二区| 日日啪夜夜爽| 日本黄色日本黄色录像| 街头女战士在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 伦精品一区二区三区| 亚洲欧美一区二区三区黑人 | av在线播放精品| 免费在线观看成人毛片| 99热这里只有是精品50| 黑丝袜美女国产一区| 视频区图区小说| 人人澡人人妻人| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 欧美精品亚洲一区二区| h日本视频在线播放| 一级片'在线观看视频| 三级国产精品片| 精品少妇黑人巨大在线播放| 日韩av免费高清视频| 男人狂女人下面高潮的视频| 精品国产一区二区三区久久久樱花| 日韩av免费高清视频| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| 欧美+日韩+精品| 日韩人妻高清精品专区| 亚州av有码| 男男h啪啪无遮挡| 香蕉精品网在线| 亚洲国产精品999| 22中文网久久字幕| 国产男人的电影天堂91| 精品国产国语对白av| 纯流量卡能插随身wifi吗| 国产成人一区二区在线| 亚洲av中文av极速乱| 色哟哟·www| 老司机影院成人| 免费看不卡的av| 少妇丰满av| av女优亚洲男人天堂| 不卡视频在线观看欧美| 国产亚洲午夜精品一区二区久久| 精品人妻一区二区三区麻豆| 欧美精品一区二区免费开放| 亚洲国产精品成人久久小说| 黑丝袜美女国产一区| av一本久久久久| 亚洲图色成人| 久久99蜜桃精品久久| 插阴视频在线观看视频| 99re6热这里在线精品视频| 97超视频在线观看视频| 91精品国产九色| 亚洲欧美一区二区三区黑人 | 成人亚洲欧美一区二区av| av一本久久久久| 亚洲av在线观看美女高潮| 国产永久视频网站| 日韩欧美精品免费久久| 国产欧美亚洲国产| 成人特级av手机在线观看| 亚洲美女搞黄在线观看| 国产精品偷伦视频观看了| 美女cb高潮喷水在线观看| 久久av网站| 亚洲自偷自拍三级| 老熟女久久久| 国产精品成人在线| 国产 精品1| h日本视频在线播放| 激情五月婷婷亚洲| 午夜影院在线不卡| 色婷婷av一区二区三区视频| 国产一级毛片在线| freevideosex欧美| 日日爽夜夜爽网站| 精品人妻一区二区三区麻豆| 国产精品.久久久| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| 大香蕉97超碰在线| 国产淫语在线视频| 久久久亚洲精品成人影院| 亚洲国产精品一区三区| 女的被弄到高潮叫床怎么办| 亚洲国产日韩一区二区| freevideosex欧美| 美女国产视频在线观看| 久久午夜福利片| 新久久久久国产一级毛片| 欧美日韩一区二区视频在线观看视频在线| 97超视频在线观看视频| 亚洲欧美中文字幕日韩二区| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 国产免费一区二区三区四区乱码| 内地一区二区视频在线| 免费av不卡在线播放| 女人精品久久久久毛片| 欧美日韩国产mv在线观看视频| 乱码一卡2卡4卡精品| 免费观看av网站的网址| 亚洲精品色激情综合| 大香蕉97超碰在线| 建设人人有责人人尽责人人享有的| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 国产av国产精品国产| 99久久人妻综合| 国产成人精品久久久久久| 国产男女内射视频| 丰满饥渴人妻一区二区三| 日本黄色日本黄色录像| 七月丁香在线播放| 国产精品久久久久成人av| 精品一区二区三卡| 日产精品乱码卡一卡2卡三| 久久人人爽av亚洲精品天堂| 狠狠精品人妻久久久久久综合| 九草在线视频观看| 一区二区av电影网| 亚洲va在线va天堂va国产| 日韩电影二区| 免费高清在线观看视频在线观看| 视频中文字幕在线观看| 内地一区二区视频在线| 久久久久久久久久人人人人人人| 日韩大片免费观看网站| 黄色视频在线播放观看不卡| 欧美老熟妇乱子伦牲交| 国产午夜精品久久久久久一区二区三区| 亚洲成人手机| tube8黄色片| 国产永久视频网站| 激情五月婷婷亚洲| 国产一区二区在线观看日韩| 免费久久久久久久精品成人欧美视频 | 九九久久精品国产亚洲av麻豆| 99九九在线精品视频 | 少妇人妻久久综合中文| 精品少妇内射三级| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃| 亚洲一级一片aⅴ在线观看| 久久久久网色| 两个人免费观看高清视频 | 国产日韩欧美视频二区| 亚洲国产精品999| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 国产成人精品久久久久久| 精品一区在线观看国产| 久久精品久久久久久久性| 亚洲中文av在线| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| 免费看不卡的av| 日韩伦理黄色片| 我要看黄色一级片免费的| 亚洲第一av免费看| 精品熟女少妇av免费看| 午夜激情久久久久久久| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 少妇丰满av| 欧美日韩国产mv在线观看视频| 97在线人人人人妻| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 国产 精品1| 免费看光身美女| 国产伦精品一区二区三区视频9| 美女cb高潮喷水在线观看| 国产av一区二区精品久久| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 91成人精品电影| 中文天堂在线官网| 欧美性感艳星| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃| 欧美另类一区| 国产无遮挡羞羞视频在线观看| 老司机影院毛片| 国产一区二区在线观看av| 亚洲国产精品成人久久小说| 少妇的逼水好多| 99热国产这里只有精品6| 亚洲av免费高清在线观看| 欧美人与善性xxx| 九九久久精品国产亚洲av麻豆| 国产 精品1| 三级经典国产精品| 色哟哟·www| 香蕉精品网在线| 欧美xxⅹ黑人| 天美传媒精品一区二区| 久久久国产欧美日韩av| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 尾随美女入室| 视频区图区小说| 国产美女午夜福利| 国产在线视频一区二区| 少妇的逼好多水| 国产爽快片一区二区三区| 永久免费av网站大全| 久久青草综合色| 成人午夜精彩视频在线观看| 国产欧美日韩综合在线一区二区 | av黄色大香蕉| 国产亚洲5aaaaa淫片| 夜夜骑夜夜射夜夜干| 大又大粗又爽又黄少妇毛片口| 精品国产乱码久久久久久小说| 精品卡一卡二卡四卡免费| 一级毛片aaaaaa免费看小| 国产极品粉嫩免费观看在线 | 伦理电影免费视频| 中文字幕免费在线视频6| 亚洲国产精品一区二区三区在线| 最近中文字幕高清免费大全6| 欧美97在线视频| 免费观看a级毛片全部| 老司机亚洲免费影院| 国产白丝娇喘喷水9色精品| 精品一区在线观看国产| 伊人久久国产一区二区| 久久久午夜欧美精品| 亚洲va在线va天堂va国产| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 国产爽快片一区二区三区| 在线观看av片永久免费下载| 亚洲婷婷狠狠爱综合网| 熟女av电影| 精品久久久久久电影网| 免费在线观看成人毛片| .国产精品久久| 美女xxoo啪啪120秒动态图| 观看免费一级毛片| 美女主播在线视频| 人妻少妇偷人精品九色| 最近中文字幕2019免费版| 欧美性感艳星| 青春草视频在线免费观看| 视频区图区小说| 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 一级毛片久久久久久久久女| 欧美97在线视频| 九九久久精品国产亚洲av麻豆| 国产乱来视频区| 国产成人精品久久久久久| 亚洲情色 制服丝袜| 女性被躁到高潮视频| 亚洲av不卡在线观看| 久久久久久久国产电影| 亚洲精品乱码久久久v下载方式| videos熟女内射| 丝瓜视频免费看黄片| tube8黄色片| 黄色欧美视频在线观看| 一级毛片aaaaaa免费看小| 亚洲国产精品一区二区三区在线| 卡戴珊不雅视频在线播放| kizo精华| 大片电影免费在线观看免费| 久久久久久久久久久丰满| 亚洲精品,欧美精品| 中文字幕av电影在线播放| 中文字幕免费在线视频6| 国产亚洲5aaaaa淫片| 各种免费的搞黄视频| 欧美3d第一页| 人妻夜夜爽99麻豆av| 一区二区三区四区激情视频| a级一级毛片免费在线观看| 少妇人妻久久综合中文| 久久精品久久久久久久性| 两个人的视频大全免费| 在线观看免费高清a一片| 久久久精品免费免费高清| 丰满人妻一区二区三区视频av| 欧美3d第一页| 伊人亚洲综合成人网| 亚洲综合精品二区| 精品酒店卫生间| 国产亚洲最大av| 久久国产精品男人的天堂亚洲 | 国产爽快片一区二区三区| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 麻豆成人av视频| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 高清欧美精品videossex| 看免费成人av毛片| 99九九线精品视频在线观看视频| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 国产乱来视频区| 日本黄大片高清| 一级毛片我不卡| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看| 特大巨黑吊av在线直播| 免费高清在线观看视频在线观看| 最近手机中文字幕大全| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区三区| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 免费黄色在线免费观看| 大话2 男鬼变身卡| 日韩欧美精品免费久久| 午夜福利,免费看| 色哟哟·www| 熟妇人妻不卡中文字幕| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 性色avwww在线观看| 免费看光身美女| 国产亚洲午夜精品一区二区久久| 日日啪夜夜爽| 国产乱人偷精品视频| av.在线天堂| 亚洲成人手机| 十八禁网站网址无遮挡 | 国产精品久久久久久精品古装| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 亚洲成人av在线免费| 国精品久久久久久国模美| 高清视频免费观看一区二区| 国国产精品蜜臀av免费| 99热这里只有是精品50| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 自拍偷自拍亚洲精品老妇| 久久久久国产精品人妻一区二区| 亚洲第一区二区三区不卡| 性色avwww在线观看| 日韩熟女老妇一区二区性免费视频| 国产高清国产精品国产三级| 男人添女人高潮全过程视频| 日日撸夜夜添| 中文字幕制服av| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 老司机影院成人| 免费观看av网站的网址| 一区二区三区免费毛片| 国产精品.久久久| 亚洲色图综合在线观看| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 狠狠精品人妻久久久久久综合| 中文欧美无线码| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| 免费观看的影片在线观看| 欧美最新免费一区二区三区| 久久韩国三级中文字幕| 亚洲中文av在线| 在线观看免费高清a一片| 少妇高潮的动态图| 亚洲色图综合在线观看| 久久久久久久久久成人| 99九九线精品视频在线观看视频| 日韩精品免费视频一区二区三区 | 久久人人爽人人片av| 久久99精品国语久久久| 日本黄色片子视频| 日本av免费视频播放| 国产一级毛片在线| 国产 一区精品| a级毛色黄片| 国产一区二区三区av在线| 亚洲av综合色区一区| 国产亚洲5aaaaa淫片| 色视频www国产| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看| 26uuu在线亚洲综合色| 熟妇人妻不卡中文字幕| 亚洲国产精品专区欧美| 久久久国产欧美日韩av| 黑人高潮一二区| 欧美97在线视频| 色哟哟·www| 国产精品人妻久久久久久| 精品久久久久久久久av| 免费人成在线观看视频色| 2018国产大陆天天弄谢| 欧美变态另类bdsm刘玥| 国产亚洲最大av| 尾随美女入室| 久久青草综合色| 久久久久国产网址| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 99久国产av精品国产电影| 在线看a的网站| 欧美精品亚洲一区二区| a级毛片在线看网站| 一级黄片播放器| freevideosex欧美| 久久精品久久久久久久性| 日本色播在线视频| 久热久热在线精品观看| 人人妻人人澡人人看| 高清在线视频一区二区三区| 国产精品人妻久久久影院| 青春草视频在线免费观看| 激情五月婷婷亚洲| 高清视频免费观看一区二区| 亚洲色图综合在线观看| av福利片在线观看| 日本欧美国产在线视频| 日本免费在线观看一区| 国产精品久久久久久精品电影小说| 男女啪啪激烈高潮av片| 色视频www国产| av福利片在线| 91成人精品电影| 日本猛色少妇xxxxx猛交久久| 蜜桃在线观看..| 国产黄片视频在线免费观看| 老司机影院毛片| 女性被躁到高潮视频| 国产成人精品久久久久久| 最近2019中文字幕mv第一页| 在线观看免费日韩欧美大片 | 99久久综合免费| 国产高清不卡午夜福利| 精品一区二区三区视频在线| 亚洲av中文av极速乱| 如何舔出高潮| 只有这里有精品99| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 亚洲国产欧美日韩在线播放 | 午夜91福利影院| 欧美精品一区二区大全| 免费在线观看成人毛片| 欧美精品一区二区免费开放| 国产91av在线免费观看| 亚洲av.av天堂| 国产欧美日韩精品一区二区| 成人漫画全彩无遮挡| 国产黄片美女视频| 精品卡一卡二卡四卡免费| 亚洲国产精品一区二区三区在线| 国产中年淑女户外野战色| 69精品国产乱码久久久| 在线观看人妻少妇| 欧美国产精品一级二级三级 |