• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Catalytic Properties of Pt/FeSnO(OH)5 towards Methanol Oxidation①

    2018-11-22 01:58:46ZHANXia-DanZHANYing-XuDUChang-Chao,LIChang-RongYUHan,LINCong
    結構化學 2018年10期

    The Pt/FeSnO(OH)5has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)5nanoboxes and demonstrates excellent catalytic activity towards methanol oxidation reaction as an electrode catalyst in DMFCs.The Pt/FeSnO(OH)5catalyst exhibits a higher mass activity (1182.35 mA/mgPt) compared with the Pt/C (594.57 mA/mgPt) catalyst.The result shows that the as-prepared Pt/FeSnO(OH)5has a great application prospect as a high-performance electrocatalyst in DMFCs.

    1 INTRODUCTION

    Direct methanol fuel cells (DMFCs) with Pt as the catalyst feasibly convert the chemical energy stored in methanol directly into electric energy, which have shown potential applications such as electric vehicles and portable electronic devices due to its attractive features including low operating temperature, easy refueling, high energy density and simplicity of system among the different types of fuel cells[1-3].However, some serious shortcomings need to be overcome before commercialization of DMFCs, including the high cost of noble-metal, the decay of catalytic activity of Pt catalyst, the low catalytic activity due to the slow methanol oxidation reaction kinetics and the low stability of the catalysts in acidic media[4].

    Deferent methods are employed to overcome these defects.One of them is to switch the working media from acidic solution to alkaline solution,which possesses apparent advantages, such as enormously enhanced methanol oxidation reaction kinetics, lower overpotential for oxygen reduction reaction and more choices for catalysts towards MOR[5,6].Another method is to fabricate composite catalysts by combining Pt with supports, which show higher electro-catalytic activity and platinum utilization efficiency compared with unsupported catalysts because of their large surface area and high dispersion of Pt on the supports[7].Nowadays the carbonaceous materials are commonly used as the electrocatalyst supports of commercial fuel cells for their high conductivity and large surface areas.However, carbon corrosion is a hard problem for all carbon supports[8].Therefore, it is significant to search for non-carbonaceous supports.

    As for the decay of catalytic activity of the Pt catalyst, this problem can be owed to the following reasons including CO poisoning of Pt during the methanol oxidation reaction (MOR), the weak interactions between Pt and support materials, the low intrinsic activity of Pt, the exfoliation of Pt element and electrochemical corrosion of the support materials[9].The CO species, the oxidation intermediates of MOR, adsorbed on the surface of Pt nanoparticles would lead to very low power densities and the loss of electrochemically active surface areas (ECSAs) by hampering further adsorption of methanol[10], so it is necessary to remove CO from the surface of platinum at a relatively negative potential.To solve the CO-poisoning problem, one common strategy is to combine Pt with other non-precious transition metals such as Ru, Fe, Co,Sn and Zn[11-15]to form Pt alloy or metal oxides like TiO2, CeO2, V2O5and WO3[16-19]to fabricate Pt-based catalysts, which would improve the catalytic activity and durability as well as lower the cost of Pt-based catalysts.The Pt-based catalysts combined with metals or metal oxides own a better CO resistance via the bifunctional mechanism and the electronic effect[20-24].According to the bifunctional mechanism model, the supporting materials can effectively activate H2O to form oxygen-containing species of OH adspecies (OHads), resulting in the oxidation of neighboring CO adspecies (COads) into CO2at a relatively negative potential, thus alleviating the CO poisoning effect and providing more active Pt sites for methanol oxidation.The electronic effect is a result of the modification of electronic structure of the Pt surface, which weakens the CO?Pt bonding and intermediate adsorptive strength for Pt, thereby improving the kinetics of methanol and CO oxidation.

    Among the supports, the stannate hydroxides have caught the attention of researchers.MSn(OH)6(M =Co, Cu, Fe, Mg, Mn, Zn), which are a kind of special perovskite-structural materials, have been used as photocatalysts and electrode materials for Li-ion batteries[25-27].Furthermore, the researchers have reported that the CoSn(OH)6supported Pt exhibited a high electro-catalytic activity, good CO resistant ability and catalytic stability towards methanol oxidation in alkaline solution[28].However,the catalytic mechanism of stannate hydroxide supported catalyst has not been deeply discussed,and fabrication of higher performance electrocatalyst towards MOR is still a challenge.

    In this paper, we synthesized hollow FeSnO(OH)5nanocubes as the support of Pt catalyst for methanol electro-oxidation.L-ascorbic acid was used as the soft reductant to prepare Pt/FeSnO(OH)5.It was found that the activity and stability toward MOR of Pt/FeSnO(OH)5was improved more effectively compared with Pt/C (Vulcan XC-72).The CO-stripping data also confirmed the enhanced electro-catalytic performance of Pt/FeSnO(OH)5as an anodic catalyst.

    2 EXPERIMENTAL

    2.1 Preparation

    All chemical reagents were used as received without further purification.Stannic chloride pentahydrate (SnCl4·5H2O, AR), iron(II) sulfate heptahydrate (FeSO4·7H2O), sodium hydroxide (NaOH,AR), L-ascorbic acid and methanol (CH3OH, AR)were purchased from Sinopharm Chemical Reagent Co., Ltd (China).Chloroplatinic acid hexahydrate(H2PtCl6·6H2O, AR) were purchased from Aladdin Reagent.Nafion solution 5% (Dupont) and carbon vulcan XC-72 (Cabot) were used as received.

    In a typical synthesis, a solution of SnCl4·5H2O in deionized water (DI water) (0.5 M, 5 mL) was added to a solution of FeSO4·7H2O (0.5 M, 5mL) at room temperature with vigorous agitation, and a solution of NaOH (2 M, 10 mL) was added to the mixture slowly, which was stirred for 6 hours in a beaker at 60℃.The synthesized FeSnO(OH)5was collected by centrifugation and washed several times with DI water, and dried under vacuum at 60 ℃ for 6 h.Afterwards, 0.3 g prepared FeSnO(OH)5was added to 45 ml water, and then 15 ml HCl solution (1.0 M)was dropped into the suspension, stirring for 2.5 h at room temperature.The product was washed with DI water and absolute alcohol for several times, and dried in vacuum oven at 60 ℃ for 6 h to obtain FeSnO(OH)5nanoboxes.

    The complex catalyst was prepared by a sonochemical reaction in the L-ascorbic acid.Firstly, 0.5 ml H2PtCl6·6H2O (0.019 M) was added into 10 mL ice water rapidly under a strong agitation.Then, 10 mL L-ascorbic acid ice-water solution (0.1 M) was dropped slowly into the above mixture.0.005 g prepared FeSnO(OH)5was dropped into the above pale-yellow solution and stirred for 10 minutes.Subsequently, the solution was treated in an ultrasonic cleaning instrument for 1 h and then was deposited for 24 h.The obtained product was washed with DI water and absolute alcohol for several times and dried at 60 ℃ for 6 h in a vacuum oven, which was denoted as Pt/FeSnO(OH)5.For comparison, the Pt/C (Vulcan XC-72) electrocatalyst was synthesized using the carbon vulcan XC-72 as the precursor following the same procedure.

    2.2 Characterization

    The X-ray diffraction (XRD) measurements of the powder samples were performed in the reflection mode (CuKα radiation, l = 1.5418 ?) on a Rigaku Ultima III X-ray diffractometer.The field emission scanning electron microscopy (FESEM) images were obtained by Hitachi S4800 field emission scanning electron microscopy.The field emission transmission electron microscopy (FETEM) images were obtained by FEI Tecnai G2 F20 S-TWIN with a field emission gun operated at 200 kV.The X-ray photoelectron spectroscopy (XPS) measurements were performed with an ESCALab250-XI electron spectrometer from VG Scientific using a 300 W AlKα radiation.The base pressure was about 3 ×10-9mbar and the binding energies were corrected by adjusting the binding energy of the C1s peak to 284.8 eV from adventitious carbon.

    2.3 Electrochemical measurement

    The electrochemical measurements were performed on a CHI-660D electrochemical workstation with a conventional three-electrode cell.The catalyst ink was prepared by dispersing 5 mg prepared nanocomposite in a mixture containing 1 ml ethanol and 0.025 mL 5% Nafion solution under ultrasonication for 30 min.A glassy carbon electrode (3 mm in diameter) was used as the working electrode,which was carefully polished with a diamond pad/0.3 μm polishing suspension and rinsed with DI water and ethanol.After dropping 5 μL of the catalyst ink onto the electrode surface, the electrode was dried in air.A Pt wire and an Ag/AgCl electrode were used as the counter electrode and the reference electrode, respectively.The electrochemical impedance spectroscopy (EIS) was measured in a mixture of N2-purged 1 M methanol and 1 M KOH under open-circuit conduction.The EIS tests were conducted by sweeping the frequency from 100 KHz to 1 Hz under open circuit potential with 5 mV of amplitude.For the measurement of hydrogen adsorption/desorption reaction, the potential was cycled between –1 and 0.4 V at 50 mV/s in N2-purged 1 M KOH solution.The electrocatalytic properties for methanol oxidation of the catalysts were measured in a mixture of 1 M methanol and 1 M KOH.The chronoamperometry (CA) was recorded at –0.2 V for 3600 s in a mixture of 1 M methanol and 1 M KOH.

    The electrocatalytic activity for CO-stripping was obtained through the following steps: (i) CO gas was bubbled into a N2saturated 1 M KOH aqueous solution for 10 min; (ii) then N2was bubbled to remove the dissolved CO in the electrolyte, while the CO molecules adsorbed on the Pt surface were not affected by this treatment; (iii) finally, the cyclic voltammetric (CV) measurements were carried out in a N2saturated 1 M KOH over the potential range from –1 to +0.4 V at a scan rate of 50 mV/s.The ECSA derived from the CO-stripping was calculated using the following equation[29].

    where QCOis the measured charge for the CO stripping and WPtis the mass of Pt.The value 420 represents the charge density required to oxidize a monolayer of CO on Pt.

    3 RESULTS AND DISCUSSION

    3.1 Structure and morphology

    As shown in the XRD profiles (Fig.1a), all peaks of the prepared FeSnO(OH)5can be indexed to the diffractions of FeSnO(OH)5(JCPDS 74-1745), indicating there is no other phase.However, four new broadened peaks located at 39.8°, 46.2°, 67.5° and 81.3° appear in the pattern of the synthesized Pt/FeSnO(OH)5, corresponding to the diffractions of Pt (1 1 1), (2 0 0), (2 2 0) and (3 3 1) planes of the face-centered cubic (fcc) Pt (JCPDS 87-0640),respectively, indicating the target complex has been prepared.As shown in Fig.1b, the Pt/C is also indexed to the cubic Pt phase (JCPDS No.87-0640).

    Fig.1.XRD patterns of (a) the prepared FeSnO(OH)5, Pt/FeSnO(OH)5 and (b) Pt/C

    The XPS measurements were used to explore the electronic states and surface composition of the catalysts.As shown in Fig.2a, the two peaks corresponding to the Pt 4f7/2and Pt 4f5/2states with a 3.3 eV spacing and a 3:4 atomic ratio can be found[30,31].For Pt/FeSnO(OH)5, the most intense doublet (at 71.00 and 74.32 eV) is the signature of metal Pt.The second and weaker doublet (at 72.40 and 75.70 eV)with the binding energy at 1.4 eV higher than Pt(0)can be attributed to the Pt(II) oxidation state (PtO and Pt(OH)2-like species)[32,33].It is notable that Pt

    in +4 oxidation state is present in Pt/C.Table 1 summarizes the relative intensities of Pt0, Pt2+and Pt4+in the catalysts, which can be estimated from their peak surface area.There is a significant difference between the relative intensities of Pt0in the catalysts.The chemical state of Pt is an important factor on the electrochemical activity.There are reports that metallic Pt is a superior catalyst to Pt in the +4 oxidation state, and Pt0has better electrocatalytic activity toward methanol electro-oxidation in comparison with Pt2+and Pt4+[34,35].

    Table 1.Atomic % of Different Valenced Pt for Different Catalysts

    As marked by the dashed lines in Fig.2a, the binding energy of Pt 4f7/2in the Pt/FeSnO(OH)5(71.0 eV) is negatively shifted almost 0.6 eV compared with the Pt/C (71.6 eV), which implies that the electronic structure of Pt was modified by the hydroxide support because of an enhanced interaction between the Pt and the support material,indicating a transfer of electrons from FeSnO(OH)5to Pt[36,37].The shift is mainly caused by the electronegativity difference between the transition element and Pt, leading to the charge transfer from the more electropositive element such as Fe to Pt[38,39].This notion can be further supported by a positive shift of the Fe 2p peaks shown in Fig.2b.

    Fig.2.(a) Pt 4f XPS spectra of Pt/FeSnO(OH)5 and Pt/C; (b) Fe 2p XPS spectra of Pt/FeSnO(OH)5

    As shown in Fig.2b, the Fe 2p XPS spectrum of Pt/FeSnO(OH)5is split into two parts, namely Fe 2p3/2and Fe 2p1/2, with an atomic ratio of about 2/1.Each part consists of a main peak and a “shake-up”satellite[40].The peaks at 712.4.0 eV (2p3/2) and 726.3 eV (2p1/2) are attributed to Fe3+species, while the second pair of peaks observed at 711.0 eV (2p3/2)and 725.0 eV (2p1/2) are related to Fe2+species[41].The shake-up satellite peaks at 734.0 eV (2p1/2) and 729.9 eV (2p1/2) confirm the species, respectively[42].Thus, there are mixed valence states of Fe3+/Fe2+in Pt/FeSnO(OH)5for the binding-energies of Fe 2p in Pt/FeSnO(OH)5to be positively shifted.

    The SEM and TEM images of the samples are displayed in Figs.3 and 4, respectively.It can be clearly seen from Fig.3a that the FeSnO(OH)5crystals are nanocubes with the size of about 200~500 nm.After etching, the morphology of FeSn-O(OH)5is maintained as shown in Fig.3b.However,it can be found from the TEM image (Figs.3a and 3b) that the FeSnO(OH)5nanocubes have been etched into hollow nanoboxes after being treated in the acid solution.Figs.3c and 3d show Pt particles have been dispersed on the FeSnO(OH)5nanoboxes and the carbon (Vulcan XC-72).The corresponding TEM images are displayed in Figs.4c and 4d,respectively, showing both Pt based complexes have been successfully synthesized.As shown in the corresponding selected area electron diffraction(SAED) pattern inserted in Fig.4c, the Pt-based catalysts possess the Pt fcc structure.The high-resolution TEM (HRTEM) image (Fig.4d) of Pt/FeSnO(OH)5exhibits the lattice fringes with the interplanar distance of 0.225 nm, corresponding to the (111) plane of the cubic Pt, and the average size of Pt nanoparticles in Pt/ FeSnO(OH)5is about 4 nm,while the Pt particles on the carbon shown in Fig.4f have a similar size and the lattice fringes of 0.226 nm, which can be also attributed to the (111) plane of the cubic Pt.Additionally, the element com-positions measured by EDX analysis (shown in Figs.4g and 4h) are in good matchup with the Pt/FeSnO(OH)5and Pt/C.

    Fig.3.SEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching, (c) Pt/FeSnO(OH)5 and (d) Pt/C, respectively

    Fig.4.TEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching and (c) Pt/FeSnO(OH)5 with the corresponding SAED patterns inserted and (e) Pt/C, respectively; HRTEM images of (d) Pt/FeSnO(OH)5 and (f) Pt/C, respectively; EDX patterns of (g) Pt/FeSnO(OH)5 and (h) Pt/C, respectively

    3.2 Electrochemical measurement

    Fig.5a presents the CV curves of the prepared samples, which has three typical regions described as the hydrogen region, the double layer region and the oxygen region.Their electrochemically active surface areas (ECSAs) are determined from the charge of the hydrogen adsorption-desorption (HAD)signatures, which are related to the dispersion and nanoparticle sizes of Pt.The ECSA value is estimated according to the following equation[43]:

    where [Pt] represents the platinum loaded in the electrode (g/cm2), QHis the charge for hydrogen desorption (mC/cm2), and 0.21 represents the charge required to oxidize a monolayer of adsorbed hydrogen on bright Pt (mC/cm2).The ECSAs for the catalysts determined by hydrogen desorption peaks are listed in Table 2.The ECSAs derived from the CO-stripping of these samples show similar values in Table 2, proving the validity of the ECSA data.The calculated ECSAHADvalues for Pt/FeSnO(OH)5and Pt/C are about 8.364 and 24.464 m2/gPt, respectively.

    In the CV curves for both catalysts, two peaks are observed.The more positive current peak in the forward scan (If) is ascribed to the electro-oxidation of methanol, while the anodic peak in the backward scan (Ib) is attributed to the removal of incompletely oxidized carbonaceous species mainly composed of CO species formed during the forward scan[44].Fig.5b displays the CV curves normalized by the loading mass of Pt on the electrode for different catalysts.As shown in Fig.5b, although the ECSAHADof Pt/FeSnO(OH)5is lower, its mass activity (1182.35 mA/mgPt) is obviously higher than that of Pt/C(594.57 mA/mgPt).The current densities normalized by ECSAHADare also compared in Fig.5c, showing the specific activity of Pt/C is 1.76 mA/cm2, which is much lower than that of Pt/FeSnO(OH)5(14.30 mA/cm2).These results indicate the excellent electrocatalytic activity of Pt/FeSnO(OH)5toward MOR.

    To compare the CO-resistance ability of the catalysts, the CO stripping experiment was carried out.Fig.5d shows the CO stripping voltammograms for different catalysts.In the first positive scan, CO adsorbed on the electrode surface limited the presence of hydrogen oxidation peaks, and the adsorbed CO was oxidized at more positive potentials subsequently.On the second positive scan, the reappearance of hydrogen peaks at negative potentials indicates the freedom of dissolved CO on the electrode surface[45].The onset potential and peak potential for the CO oxidation and ECSA estimate using the CO-stripping curves are listed in Table 2.The onset potential of Pt/FeSnO(OH)5catalyst is 59 mV more negative than that of the commercial Pt/C catalyst.The positive peak potential for CO oxidation on the Pt/FeSnO(OH)5(–0.338 V) is shifted negatively compared with the Pt/C electrode (–0.282 V).These results significantly indicate the favorable role of FeSnO(OH)5for CO-tolerance, which is in accordance with the mass activity in Fig.5b.

    Table 2.Results of CO Stripping with the Prepared Catalysts and ECSA from H Adsorption-desorption

    Fig.5.(a) CV curves of the catalysts; (b) mass-normalized CV curves and (c) ECSA-normalized CV curves of the catalysts; (d) electrochemical CO-stripping curves of the catalysts

    Fig.6a depicts the Nyquist plot of EIS for the electrodes modified with Pt/FeSnO(OH)5and Pt/C.Both catalysts show a typical characteristic semicircle at the high frequency region.The semicircle in the high frequency region is taken as a measure of the charge transfer resistance (Rct) between the aqueous solution and the modified electrode[46],showing that the Rctof Pt/FeSnO(OH)5is lower than that of Pt/C, suggesting the faster kinetics of methanol oxidation and the higher electrocatalytic activity of Pt/FeSnO(OH)5compared with Pt/C[47,48].

    Fig.6b shows the CA curves of Pt-based catalysts in a solution of 1 M KOH with 1 M methanol for 3600 s at –0.2 V vs.Ag/AgCl.Both catalysts showed an initial faster decay, which is attributed to a double layer capacitance effect[49].After the initial significant drop period, the current decreased slowly because the MOR byproducts such as COads,CH3OHadsand CHOadswere adsorbed on the active surface of the catalysts[50].Obviously, the current density on the Pt/FeSnO(OH)5catalyst is the highest during the 1 h measurement, displaying its excellent electrocatalytic activity.The better stability of Pt/C may be attributed to the stronger binding energy between Pt and the carbon compared with Pt/FeSnO(OH)5, which can be proved by the XPS analysis.

    Fig.6.(a) Nyquist plot of EIS of the catalysts.(b) CA curves of the catalysts

    The different performance of MOR between the Pt/FeSnO(OH)5and Pt/C can be explained by the following factors.The first factor is the different interaction between the Pt particles and the transition metal of the support.As shown in the XPS curves(Fig.2a), the binding energy of the 4f7/2in Pt/FeSnO(OH)5is negatively shifted 0.6 eV compared with Pt/C, indicating a stronger interaction between Pt and FeSnO(OH)5.The increase of electron charge transfer from the transition metal to Pt atom is the major factor for the weakening of CO?Pt bonding and intermediate adsorptive strength for Pt, leading to the enhancement of electrochemical performance[51,52].The second factor is based on the bifunctional mechanism of the support.The OHadsis formed at lower potential on Sn sites than on the Pt sites, thus CO and CO-like intermediates could be oxidized at low potential, resulting in the better electrochemical activity for Pt/FeSnO(OH)5compared with Pt/C[53].Thirdly, as shown in Table 1, the atomic percentage of Pt0in Pt/FeSnO(OH)5is higher than that in Pt/C, which is also responsible for the better electrocatalytic activity.The metallic Pt in zero oxidation state is beneficial to the electrocatalytic activity towards methanol electro-oxidation in comparison with Pt2+and Pt4+[34].Furthermore, the higher amount of metallic Pt in zero oxidation state in Pt/FeSnO(OH)5proved by XPS and the better electronic conductivity of Pt/FeSnO(OH)5confirmed by the EIS measurement are both in favor of the MOR performance.

    4 CONCLUSION

    In conclusion, FeSnO(OH)5nanoboxes have been synthesized and deposited with Pt nanoparticles as an electrode catalyst in DMFCs.The catalytic performance of the prepared Pt/FeSnO(OH)5toward MOR has been evaluated and compared with the commercial carbon supported Pt.The XRD, XPS, SEM,TEM and electrochemical experiments have been employed to explore the relationships between the crystal structure and the electrochemical properties.The characterizations show that the prepared Pt/FeSnO(OH)5catalyst obtains enhanced performance toward MOR compared with Pt/C, which can be attributed to the lower interaction between Pt and the FeSnO(OH)5support, the bifunctional effect of FeSnO(OH)5, the higher atomic percentage of Pt0in FeSnO(OH)5and the better electronic conductivity of FeSnO(OH)5.The study has revealed the effect of support on the electrochemical catalytic activity and shows that the Pt/FeSnO(OH)5is a promising anode catalyst in DMFCs.

    REFERENCES

    (1) Kim, Y.; Noh, Y.; Lim, E.J.; Lee, S.; Choi, S.M.; Kim, W.B.Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance.J.Mater.Chem.A2014, 2, 6976-6986.

    (2) Zhu, J.; Xiao, M.; Zhao, X.; Li, K.; Liu, C.; Xing, W.Nitrogen-doped carbon-graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation.Chem.Commun.2014, 50, 12201-12203.

    (3) Munjewar, S.S.; Thombre, S.B.; Mallick, R.K.Approaches to overcome the barrier issues of passive direct methanol fuel cell – review.Sustain.Energy Rev.2017, 67, 1087-1104.

    (4) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D.P.A review of anode catalysis in the direct methanol fuel cell.J.Power Sources2006, 155, 95-110.

    (5) Santos, M.C.L.D.; Dutra, R.M.; Ribeiro, V.A.; Spinacé, E.V.; Neto, A.O.Preparation of PtRu/C electrocatalysts by borohydride reduction for methanol oxidation in acidic and alkaline medium.Int.J.Electrochem.Sci.2017, 12, 3549-3560.

    (6) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy.2015, 40, 15652-15662.

    (7) Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M.M.; Mangeney, C.; Villain, F.; Fiévet, F.Acetate- and thiol-capped monodisperse ruthenium nanoparticles:? XPS, XAS, and HRTEM studies.Langmuir.2005, 21, 6788-6796.

    (8) Huang, H.J.; Wang, X.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells.J.Mater.Chem.A2014,2, 6266-6291.

    (9) Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X.Cover picture: a highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal.Angew.Chem.Int.Ed.2011, 50, 422-426.

    (10) Zhang, N.; Bu, L.; Guo, S.; Guo, J.; Huang, X.Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis.Nano Lett.2016, 16, 5037-5043.

    (11) Bavand, R.; Wei, Q.; Zhang, G.; Sun, S.; Yelon, A.; Sacher, E.PtRu alloy nanoparticles II.Chemical and electrochemical surface characterization for methanol oxidation.J.Phys.Chem.C2017, 121, 23120-23128.

    (12) Lv, Q.; Xiao, Y.; Yin, M.; Ge, J.; Xing, W.; Liu, C.Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation.Electrochim.Acta2014, 139, 61-68.

    (13) Liu, H.; Li, C.; Chen, D.; Cui, P.; Ye, F.; Yang, J.Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction.Sci.Rep.2017, 7, 11421.

    (14) Lu, X.Q.; Deng, Z.G.; Guo, C.; Wang, W.L.; Wei, S.X.; Ng, S.P.; Chen, X.F.; Ding, N.; Guo, W.Y.; Wu, C.M.L.Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition.ACS Appl.Mater.Interfaces2016, 8, 12194-12204.

    (15) Zhu, J.; Zheng, X.; Wang, J.; Wu, Z.X.; Han, L.L.; Lin, R.Q.; Xin, H.L.L.; Wang, D.L.Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation.J.Mater.Chem.A2015, 3, 22129-22135.

    (16) Su, N.; Hu, X.; Zhang, J.; Huang, H.; Cheng, J.; Yu, J.; Ge, C.Plasma-induced synthesis of Pt nanoparticles supported on TiO2nanotubes for enhanced methanol electro-oxidation.Appl.Surf.Sci.2017, 399, 403-410.

    (17) Wang, H.; Xue, Y.; Zhu, B.; Yang, J.; Wang, L.; Tan, X.CeO2nanowires stretch-embedded in reduced graphite oxide nanocomposite support for Pt nanoparticles as potential electrocatalyst for methanol oxidation reaction.Int.J.Hydrogen Energy2017, 42, 20549-20559.

    (18) Pan, K.Y.; Wei, D.H.Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires.Appl.Surf.Sci.2018, 427,1064-1070.

    (19) Yang, C.; Zhou, M.; Zhang, M.; Gao, L.Mitigating the degradation of carbon-supported Pt electrocatalysts by tungsten oxide nanoplates.Electrochim.Acta2016, 188, 529-536.

    (20) Ting, C.C.; Liu, C.H.; Tai, C.Y.; Hsu, S.C.; Chao, C.S.; Pan, F.M.The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism.J.Power Sources2015, 280 166-172.

    (21) Fan, H.; Cheng, M.; Wang, Z.; Wang, R.Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance.Nano.Res.2017,10, 187-198.

    (22) Chen, C.S.; Pan, F.M.Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2supports toward methanol oxidation.Appl.Catal.B:Environ.2009, 74, 663-669.

    (23) Tammam, R.H.; Fekry, A.M.; Saleh, M.M.Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles.Int.J.Hydrogen Energy2015, 40, 275-283.

    (24) Lee, M.J.; Kang, J.S.; Kang, Y.S.; Chung, D.Y.; Shin, H.; Ahn, C.Y.; Park, S.; Kim, M.J.; Kim, S.; Lee, K.S.; Sung, Y.E.Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system.ACS Catal.2016, 6, 2398-2407.

    (25) Huang, D.; Fu, X.; Long, J.; Jiang, X.; Chang, L.; Meng, S.; Chen, S.Hydrothermal synthesis of MSn(OH)6(M = Co, Cu, Fe, Mg, Mn, Zn) and their photocatalytic activity for the destruction of gaseous benzene.Chem.Eng.J.2015, 269,168-179.

    (26) Fu, X.; Wang, X.; Ding, Z.; Leung, D.Y.C.; Zhang, Z.; Long, J.; Zhang, W.; Li, Z.; Fu, X.Hydroxide ZnSn(OH)6: a promising new photocatalyst for benzene degradation.Appl.Catal.B: Environ.2009, 91, 67-72.

    (27) Huang, F.; Yuan, Z.; Zhan, H.; Zhou, Y.; Sun, J.A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries.Mater.Lett.2003, 57, 3341-3345.

    (28) Luo, B.; Xu, S.; Yan, X.; Xue, Q.Graphene nanosheets supported hollow Pt&CoSn(OH)6nanospheres as a catalyst for methanol electro-oxidation.J.Power Sources2012, 205, 239-243.

    (29) Kunitomo, H.; Ishitobi, H.; Nakagawa, N.Optimized CeO2content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells.J.Power Sources2015, 297, 400-407.

    (30) Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E.Handbook of X-ray photoelectron spectroscopy.Physical Electronics Division1979, p152-153.

    (31) Shyu, Z.J.; Otto, K.Identification of platinum phases on γ-alumina by XPS.Appl.Surf.Sci.1988, 32, 246-252.

    (32) Yang, J.; Deivaraj, T.C.; Too, H.; Lee, J.Y.An alternative phase-transfer method of preparing alkylamine-stabilized platinum nanoparticles.J.Phys.Chem.B2004, 108, 2181-2185.

    (33) Yang, J.; Lee, J.Y.; Deivaraj, T.C.; Too, H.An improved procedure for preparing smaller and nearly monodispersed thiol-stabilized platinum nanoparticles.Langmuir.2003, 19, 10361-10365.

    (34) Bisht, A.; Zhang, P.; Shivakumara, C.; Sharma, S.Pt-doped and Pt-supported La1–xSrxCoO3: comparative activity of Pt4+and Pt0toward the CO poisoning effect in formic acid and methanol electro-oxidation.J.Phys.Chem.C2015, 119, 14126-14134.

    (35) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    (36) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy2015, 40, 15652-15662.

    (37) Higgins, D.; Hoque, A.M.; Seo, H.M.; Reinecke, T.Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction.Adv.Funct.Mater.2014, 27, 4325-4336.

    (38) Flórez-Monta?o, J.; García, G.; Rodríguez, J.L.; Pastor, E.; Cappellari, P.; Planes, G.A.On the design of Pt based catalysts.Combining porous architecture with surface modification by Sn for electrocatalytic activity enhancement.J.Power Sources2015, 282, 34-44.

    (39) Park, K.; Choi, J.; Kwon, B.; Lee, S.; Sung, Y.; Ha, H.; Hong, S.; Kim, H.; Wieckowski, A.Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.J.Phys.Chem.B2002, 106, 1869-1877.

    (40) Kuivila, C.S.; Butt, J.B.; Stair, P.C.Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy.Appl.Surf.Sci.1988, 32, 99-121.

    (41) Yamashita, T.; Hayes, P.Analysis of XPS spectra of Fe2+and Fe3+ions oxide materials.Appl.Surf.Sci.2008, 254, 2441-2449.

    (42) Dedryvère, R.; Maccario, M.; Croguennec, L.; Le Cras, F.; Delmas, C.; Gonbeau, D.X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4materials.Chem.Mater.2008, 207, 164-7170.

    (43) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L.Comparison of high surface Pt/C catalysts by cyclic voltammetry.J.Power Sources2002, 105, 13-19.

    (44) Qin, Y.; Yang, H.; Zhang, X.; Li, P.; Ma, C.Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium.Int.J.Hydrogen Energy2010, 35, 7667-7674.

    (45) Chen, X.; Si, C.; Gao, Y.; Frenzel, J.; Sun, J.; Eggeler, G.; Zhang, Z.Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction.J.Power Sources2015, 273, 324-332.

    (46) Li, Z.; Zhang, L.; Huang, X.; Ye, L.; Lin, S.Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation.Electrochim.Acta2014, 121, 215-222.

    (47) Ruan, D.; Gao, F.; Gu, Z.Enhanced electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation.Electrochim.Acta2014, 147, 225-231.

    (48) Zhou, Z.H.; Li, W.S.; Fu, Z.; Xiang, X.D.Carbon nanotube-supported Pt-H x MoO3as electrocatalyst for methanol oxidation.Int.J.Hydrogen Energy2010, 35, 936-941.

    (49) Jiang, L.; Sun, G.; Zhao, X.; Zhou, Z.; Yan, S.; Tang, S.; Wang, G.; Zhou, B.; Xin, Q.Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells.Electrochim.Acta2005, 50, 2371-2376.

    (50) Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger, J.M.; Lamy, C.In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes.J.Electroanal.Chem.1998, 444, 41-53.

    (51) Wang, D.; Chou, H.; Lin, Y.; Lai, F.; Chen, C.; Lee, J.; Hwang, B.; Chen, C.Simple replacement reaction for the preparation of ternary Fe1–xPtRuxnanocrystals with superior catalytic activity in methanol oxidation reaction.J.Am.Chem.Soc.2012, 134, 10011-10020.

    (52) Fu, Q.; Li, W.X.; Yao, Y.; Liu, H.; Su, H.Y.; Ma, D.; Gu, X.K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X.Interface-confined ferrous centers for catalytic oxidation.Science2010, 328, 1141-1144.

    (53) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    老司机影院毛片| 国产精品一区二区免费欧美| 色播在线永久视频| 久久久久久人人人人人| 国产免费av片在线观看野外av| 免费观看人在逋| 欧美日韩福利视频一区二区| 国产精品 欧美亚洲| netflix在线观看网站| 亚洲精品中文字幕在线视频| 他把我摸到了高潮在线观看 | 亚洲国产欧美网| 天堂俺去俺来也www色官网| 久久国产精品男人的天堂亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 久久久久久久大尺度免费视频| 欧美午夜高清在线| 中亚洲国语对白在线视频| 少妇的丰满在线观看| 99国产精品99久久久久| 亚洲 国产 在线| 亚洲成人国产一区在线观看| 国产精品 国内视频| 一本—道久久a久久精品蜜桃钙片| 国产1区2区3区精品| 丰满饥渴人妻一区二区三| 国产免费av片在线观看野外av| 人成视频在线观看免费观看| 国产精品欧美亚洲77777| 免费日韩欧美在线观看| 国产xxxxx性猛交| 免费观看av网站的网址| 国产区一区二久久| 国产精品熟女久久久久浪| 国产日韩欧美亚洲二区| 黄色视频,在线免费观看| av福利片在线| 窝窝影院91人妻| 欧美亚洲日本最大视频资源| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 丁香六月欧美| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| 国产欧美日韩一区二区精品| 国产成人免费无遮挡视频| 热re99久久精品国产66热6| 一进一出好大好爽视频| 久久精品亚洲av国产电影网| 久久影院123| 久久国产精品影院| 欧美黄色片欧美黄色片| 一区在线观看完整版| 9色porny在线观看| 国产高清视频在线播放一区| 丝瓜视频免费看黄片| 老司机靠b影院| 国产男靠女视频免费网站| 久久中文看片网| 免费看十八禁软件| 欧美久久黑人一区二区| 国产无遮挡羞羞视频在线观看| 亚洲成人国产一区在线观看| 国产欧美日韩综合在线一区二区| 丰满少妇做爰视频| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 亚洲avbb在线观看| 一二三四在线观看免费中文在| 国产不卡一卡二| 69av精品久久久久久 | 考比视频在线观看| 欧美日韩视频精品一区| 亚洲精品av麻豆狂野| 欧美亚洲日本最大视频资源| 人人妻人人澡人人爽人人夜夜| 女警被强在线播放| 亚洲专区字幕在线| 天天影视国产精品| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| tube8黄色片| 亚洲欧美色中文字幕在线| 久久亚洲精品不卡| 国产精品久久久久久人妻精品电影 | 久热爱精品视频在线9| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| 一级毛片精品| 日韩制服丝袜自拍偷拍| 一个人免费在线观看的高清视频| 三级毛片av免费| 亚洲第一欧美日韩一区二区三区 | 大片免费播放器 马上看| 在线 av 中文字幕| 丝袜在线中文字幕| 久久狼人影院| 母亲3免费完整高清在线观看| 午夜成年电影在线免费观看| 悠悠久久av| 国产精品九九99| 99热国产这里只有精品6| 真人做人爱边吃奶动态| 男女午夜视频在线观看| 啪啪无遮挡十八禁网站| 亚洲精品久久午夜乱码| 一个人免费看片子| 黄片大片在线免费观看| av网站在线播放免费| 丝袜美足系列| 国产精品98久久久久久宅男小说| 亚洲成人免费电影在线观看| 国产日韩欧美亚洲二区| 人妻一区二区av| 纵有疾风起免费观看全集完整版| 别揉我奶头~嗯~啊~动态视频| 国产男女内射视频| 日本黄色视频三级网站网址 | 在线看a的网站| 亚洲成国产人片在线观看| 岛国在线观看网站| 一本一本久久a久久精品综合妖精| 亚洲色图 男人天堂 中文字幕| 免费在线观看日本一区| 丝袜喷水一区| 1024视频免费在线观看| 99国产精品99久久久久| 精品一品国产午夜福利视频| 国产黄频视频在线观看| 丁香六月欧美| 天天躁狠狠躁夜夜躁狠狠躁| cao死你这个sao货| 人人妻人人添人人爽欧美一区卜| 亚洲伊人色综图| 黄频高清免费视频| 高清在线国产一区| 久久久久久久大尺度免费视频| 91成年电影在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美性长视频在线观看| 天堂动漫精品| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 久久久精品免费免费高清| 久久免费观看电影| 成人精品一区二区免费| 男女无遮挡免费网站观看| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 久久狼人影院| 免费人妻精品一区二区三区视频| 一本久久精品| 国产伦理片在线播放av一区| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 国产不卡av网站在线观看| 后天国语完整版免费观看| 国产免费视频播放在线视频| 欧美av亚洲av综合av国产av| 在线观看免费日韩欧美大片| 久久精品国产综合久久久| 美女午夜性视频免费| 1024视频免费在线观看| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 最新的欧美精品一区二区| av国产精品久久久久影院| 极品少妇高潮喷水抽搐| 久久精品91无色码中文字幕| 大片免费播放器 马上看| 99re在线观看精品视频| 最黄视频免费看| 国产亚洲精品一区二区www | 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 人人澡人人妻人| 超碰成人久久| 亚洲伊人色综图| 日本a在线网址| 久久影院123| 日韩欧美国产一区二区入口| 亚洲av国产av综合av卡| 99国产精品99久久久久| 亚洲视频免费观看视频| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品中文字幕一二三四区 | 日韩三级视频一区二区三区| 大片电影免费在线观看免费| 不卡一级毛片| 亚洲黑人精品在线| 国产成人免费无遮挡视频| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 国产成人影院久久av| 午夜福利视频精品| 美女高潮喷水抽搐中文字幕| 婷婷丁香在线五月| 女人被躁到高潮嗷嗷叫费观| 国产福利在线免费观看视频| 日日摸夜夜添夜夜添小说| 国产一区有黄有色的免费视频| 十八禁人妻一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲av美国av| 久久久久视频综合| 精品国产亚洲在线| 在线看a的网站| 久久99热这里只频精品6学生| 亚洲成人免费av在线播放| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 超色免费av| 精品国产国语对白av| 一进一出好大好爽视频| 大码成人一级视频| 狠狠精品人妻久久久久久综合| 亚洲av电影在线进入| 亚洲天堂av无毛| 人人澡人人妻人| 成人特级黄色片久久久久久久 | 成人国语在线视频| 天堂俺去俺来也www色官网| 天天添夜夜摸| 亚洲欧美日韩高清在线视频 | 一边摸一边抽搐一进一小说 | av又黄又爽大尺度在线免费看| 丝袜美足系列| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| 最黄视频免费看| 青青草视频在线视频观看| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品第一综合不卡| 亚洲性夜色夜夜综合| 性少妇av在线| 高清欧美精品videossex| 欧美av亚洲av综合av国产av| 久久久精品免费免费高清| 国产成人精品在线电影| 精品熟女少妇八av免费久了| 我的亚洲天堂| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 十八禁人妻一区二区| 亚洲精品久久午夜乱码| a级片在线免费高清观看视频| 日韩大片免费观看网站| 99久久人妻综合| 大香蕉久久成人网| 精品福利观看| 男女免费视频国产| 一本久久精品| 人人妻人人澡人人爽人人夜夜| 搡老乐熟女国产| 丁香六月天网| 色婷婷av一区二区三区视频| 老熟妇仑乱视频hdxx| 国产精品 国内视频| 在线观看舔阴道视频| 欧美黄色片欧美黄色片| 国产高清videossex| 男女午夜视频在线观看| 三级毛片av免费| 亚洲熟女毛片儿| 叶爱在线成人免费视频播放| 91精品国产国语对白视频| 久久久精品免费免费高清| 国产区一区二久久| 自线自在国产av| 免费高清在线观看日韩| 亚洲免费av在线视频| av电影中文网址| 搡老岳熟女国产| 在线看a的网站| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 久久av网站| av福利片在线| 黑人巨大精品欧美一区二区mp4| 久久中文字幕一级| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 国产精品一区二区免费欧美| 宅男免费午夜| 91大片在线观看| 久久国产精品男人的天堂亚洲| 精品国产一区二区久久| 精品国产亚洲在线| 在线观看免费日韩欧美大片| 国产精品久久久久久精品电影小说| 俄罗斯特黄特色一大片| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 午夜免费鲁丝| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 国产精品免费一区二区三区在线 | 国产精品一区二区免费欧美| 亚洲第一青青草原| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三| 精品欧美一区二区三区在线| 亚洲欧美色中文字幕在线| 一区二区av电影网| 久久久久久久国产电影| 国产熟女午夜一区二区三区| 国产一区二区三区视频了| 1024视频免费在线观看| 亚洲专区国产一区二区| 日韩人妻精品一区2区三区| 日韩免费高清中文字幕av| 美女高潮到喷水免费观看| 9色porny在线观看| 美女高潮喷水抽搐中文字幕| 国产一区二区 视频在线| 国产主播在线观看一区二区| 在线av久久热| 精品国产亚洲在线| 老司机影院毛片| 亚洲欧洲日产国产| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 老熟妇乱子伦视频在线观看| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说| 肉色欧美久久久久久久蜜桃| 我要看黄色一级片免费的| 色94色欧美一区二区| 国精品久久久久久国模美| 高清视频免费观看一区二区| 国产成人av激情在线播放| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 欧美日本中文国产一区发布| 亚洲欧美日韩高清在线视频 | 亚洲欧美一区二区三区久久| 极品教师在线免费播放| 美国免费a级毛片| 国产av精品麻豆| 热re99久久国产66热| 日本黄色日本黄色录像| 青青草视频在线视频观看| 亚洲精品一二三| 国产精品欧美亚洲77777| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 国产高清激情床上av| 欧美成人免费av一区二区三区 | tube8黄色片| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 可以免费在线观看a视频的电影网站| 伊人久久大香线蕉亚洲五| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费 | 人人澡人人妻人| 少妇粗大呻吟视频| 国产有黄有色有爽视频| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 69av精品久久久久久 | 一本一本久久a久久精品综合妖精| 国产成人免费观看mmmm| 成人国产一区最新在线观看| 最黄视频免费看| 黄色 视频免费看| 日本av免费视频播放| 日本黄色视频三级网站网址 | 在线播放国产精品三级| 1024香蕉在线观看| 9色porny在线观看| 美女高潮喷水抽搐中文字幕| xxxhd国产人妻xxx| 19禁男女啪啪无遮挡网站| av国产精品久久久久影院| 中文字幕人妻丝袜一区二区| av国产精品久久久久影院| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 19禁男女啪啪无遮挡网站| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频| 看免费av毛片| 视频区欧美日本亚洲| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 啦啦啦在线免费观看视频4| 国产在线免费精品| 大片免费播放器 马上看| 精品久久久久久久毛片微露脸| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 国产成人精品久久二区二区免费| 极品教师在线免费播放| 日韩免费高清中文字幕av| 免费观看人在逋| 国产精品熟女久久久久浪| 最近最新中文字幕大全免费视频| 成年人午夜在线观看视频| 大型av网站在线播放| 精品福利观看| 国产成人影院久久av| 丰满饥渴人妻一区二区三| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密| 一区二区三区国产精品乱码| 99国产综合亚洲精品| 一本综合久久免费| 欧美在线一区亚洲| 热99国产精品久久久久久7| 国产福利在线免费观看视频| 手机成人av网站| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 欧美乱妇无乱码| 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 欧美精品高潮呻吟av久久| 91麻豆av在线| 欧美黑人精品巨大| 欧美久久黑人一区二区| 亚洲av日韩精品久久久久久密| 99久久99久久久精品蜜桃| 欧美激情高清一区二区三区| a级毛片黄视频| 久久精品91无色码中文字幕| 热re99久久精品国产66热6| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品免费视频内射| 汤姆久久久久久久影院中文字幕| 12—13女人毛片做爰片一| 国产麻豆69| 成人国产一区最新在线观看| 成人手机av| 精品国内亚洲2022精品成人 | www.精华液| 国产精品影院久久| 一区二区三区精品91| 国产亚洲精品一区二区www | 久久久久久久久久久久大奶| 一边摸一边抽搐一进一出视频| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 国产精品九九99| av国产精品久久久久影院| 99国产精品免费福利视频| 50天的宝宝边吃奶边哭怎么回事| 午夜福利,免费看| 正在播放国产对白刺激| 另类亚洲欧美激情| svipshipincom国产片| 一区福利在线观看| 老司机福利观看| 精品视频人人做人人爽| 狂野欧美激情性xxxx| videos熟女内射| 老司机午夜十八禁免费视频| 亚洲三区欧美一区| videosex国产| av国产精品久久久久影院| 一本一本久久a久久精品综合妖精| 国产成人av教育| 另类精品久久| a级毛片在线看网站| 成年版毛片免费区| 久久免费观看电影| 侵犯人妻中文字幕一二三四区| 久久久久国内视频| 日韩中文字幕欧美一区二区| 欧美成狂野欧美在线观看| 老汉色∧v一级毛片| 午夜精品久久久久久毛片777| 不卡一级毛片| 国产av又大| 999精品在线视频| 国产熟女午夜一区二区三区| 亚洲全国av大片| 日本一区二区免费在线视频| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 91成人精品电影| 99久久国产精品久久久| 一区二区三区激情视频| 一级片免费观看大全| 午夜久久久在线观看| 国产高清激情床上av| 一本色道久久久久久精品综合| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 久久精品亚洲熟妇少妇任你| 亚洲av美国av| 成人三级做爰电影| av欧美777| bbb黄色大片| 亚洲专区国产一区二区| 久久久久国内视频| 欧美国产精品va在线观看不卡| 国产又爽黄色视频| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲av第一区精品v没综合| 一边摸一边抽搐一进一出视频| 黑丝袜美女国产一区| 精品国产国语对白av| 亚洲男人天堂网一区| svipshipincom国产片| 欧美变态另类bdsm刘玥| 人妻久久中文字幕网| 91字幕亚洲| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| bbb黄色大片| 国产成人欧美| 亚洲国产av新网站| 午夜免费成人在线视频| 国产成人影院久久av| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 麻豆成人av在线观看| 黄片大片在线免费观看| 水蜜桃什么品种好| 在线看a的网站| 黑人操中国人逼视频| 国产在线免费精品| av天堂久久9| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| 9热在线视频观看99| 肉色欧美久久久久久久蜜桃| 欧美人与性动交α欧美软件| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 老汉色av国产亚洲站长工具| 国产av国产精品国产| 91精品三级在线观看| 国产av国产精品国产| 久久天堂一区二区三区四区| 久久ye,这里只有精品| 欧美精品高潮呻吟av久久| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻1区二区| 久久久久久久精品吃奶| 成年人午夜在线观看视频| 99热国产这里只有精品6| 久久精品国产亚洲av香蕉五月 | 大片免费播放器 马上看| 黄色视频不卡| 在线观看免费高清a一片| 精品少妇黑人巨大在线播放| 看免费av毛片| 欧美午夜高清在线| 午夜激情久久久久久久| 一区福利在线观看| 成年女人毛片免费观看观看9 | 少妇猛男粗大的猛烈进出视频| 免费高清在线观看日韩| 丰满饥渴人妻一区二区三| 亚洲精品自拍成人| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲高清精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲色图综合在线观看| 90打野战视频偷拍视频| 天堂俺去俺来也www色官网| 制服诱惑二区| 久久精品熟女亚洲av麻豆精品| av天堂久久9| 国产亚洲精品久久久久5区| 成年人午夜在线观看视频| 日韩有码中文字幕| 热99久久久久精品小说推荐| 一区二区三区乱码不卡18| 亚洲色图 男人天堂 中文字幕| 99国产极品粉嫩在线观看| 精品一区二区三区av网在线观看 | 欧美精品人与动牲交sv欧美| 精品国产超薄肉色丝袜足j| 精品国产一区二区久久| 91成人精品电影| av国产精品久久久久影院| 免费高清在线观看日韩| 超碰97精品在线观看| 精品国产一区二区久久| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 最新的欧美精品一区二区| 天天影视国产精品| 久久人妻av系列| cao死你这个sao货| 美女视频免费永久观看网站| 免费久久久久久久精品成人欧美视频| 国产精品自产拍在线观看55亚洲 | 国产亚洲一区二区精品| av福利片在线| 宅男免费午夜| 成年人午夜在线观看视频| 亚洲精品自拍成人| 天天影视国产精品| 久久影院123| 男女下面插进去视频免费观看| 亚洲五月色婷婷综合|