• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Catalytic Properties of Pt/FeSnO(OH)5 towards Methanol Oxidation①

    2018-11-22 01:58:46ZHANXia-DanZHANYing-XuDUChang-Chao,LIChang-RongYUHan,LINCong
    結構化學 2018年10期

    The Pt/FeSnO(OH)5has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)5nanoboxes and demonstrates excellent catalytic activity towards methanol oxidation reaction as an electrode catalyst in DMFCs.The Pt/FeSnO(OH)5catalyst exhibits a higher mass activity (1182.35 mA/mgPt) compared with the Pt/C (594.57 mA/mgPt) catalyst.The result shows that the as-prepared Pt/FeSnO(OH)5has a great application prospect as a high-performance electrocatalyst in DMFCs.

    1 INTRODUCTION

    Direct methanol fuel cells (DMFCs) with Pt as the catalyst feasibly convert the chemical energy stored in methanol directly into electric energy, which have shown potential applications such as electric vehicles and portable electronic devices due to its attractive features including low operating temperature, easy refueling, high energy density and simplicity of system among the different types of fuel cells[1-3].However, some serious shortcomings need to be overcome before commercialization of DMFCs, including the high cost of noble-metal, the decay of catalytic activity of Pt catalyst, the low catalytic activity due to the slow methanol oxidation reaction kinetics and the low stability of the catalysts in acidic media[4].

    Deferent methods are employed to overcome these defects.One of them is to switch the working media from acidic solution to alkaline solution,which possesses apparent advantages, such as enormously enhanced methanol oxidation reaction kinetics, lower overpotential for oxygen reduction reaction and more choices for catalysts towards MOR[5,6].Another method is to fabricate composite catalysts by combining Pt with supports, which show higher electro-catalytic activity and platinum utilization efficiency compared with unsupported catalysts because of their large surface area and high dispersion of Pt on the supports[7].Nowadays the carbonaceous materials are commonly used as the electrocatalyst supports of commercial fuel cells for their high conductivity and large surface areas.However, carbon corrosion is a hard problem for all carbon supports[8].Therefore, it is significant to search for non-carbonaceous supports.

    As for the decay of catalytic activity of the Pt catalyst, this problem can be owed to the following reasons including CO poisoning of Pt during the methanol oxidation reaction (MOR), the weak interactions between Pt and support materials, the low intrinsic activity of Pt, the exfoliation of Pt element and electrochemical corrosion of the support materials[9].The CO species, the oxidation intermediates of MOR, adsorbed on the surface of Pt nanoparticles would lead to very low power densities and the loss of electrochemically active surface areas (ECSAs) by hampering further adsorption of methanol[10], so it is necessary to remove CO from the surface of platinum at a relatively negative potential.To solve the CO-poisoning problem, one common strategy is to combine Pt with other non-precious transition metals such as Ru, Fe, Co,Sn and Zn[11-15]to form Pt alloy or metal oxides like TiO2, CeO2, V2O5and WO3[16-19]to fabricate Pt-based catalysts, which would improve the catalytic activity and durability as well as lower the cost of Pt-based catalysts.The Pt-based catalysts combined with metals or metal oxides own a better CO resistance via the bifunctional mechanism and the electronic effect[20-24].According to the bifunctional mechanism model, the supporting materials can effectively activate H2O to form oxygen-containing species of OH adspecies (OHads), resulting in the oxidation of neighboring CO adspecies (COads) into CO2at a relatively negative potential, thus alleviating the CO poisoning effect and providing more active Pt sites for methanol oxidation.The electronic effect is a result of the modification of electronic structure of the Pt surface, which weakens the CO?Pt bonding and intermediate adsorptive strength for Pt, thereby improving the kinetics of methanol and CO oxidation.

    Among the supports, the stannate hydroxides have caught the attention of researchers.MSn(OH)6(M =Co, Cu, Fe, Mg, Mn, Zn), which are a kind of special perovskite-structural materials, have been used as photocatalysts and electrode materials for Li-ion batteries[25-27].Furthermore, the researchers have reported that the CoSn(OH)6supported Pt exhibited a high electro-catalytic activity, good CO resistant ability and catalytic stability towards methanol oxidation in alkaline solution[28].However,the catalytic mechanism of stannate hydroxide supported catalyst has not been deeply discussed,and fabrication of higher performance electrocatalyst towards MOR is still a challenge.

    In this paper, we synthesized hollow FeSnO(OH)5nanocubes as the support of Pt catalyst for methanol electro-oxidation.L-ascorbic acid was used as the soft reductant to prepare Pt/FeSnO(OH)5.It was found that the activity and stability toward MOR of Pt/FeSnO(OH)5was improved more effectively compared with Pt/C (Vulcan XC-72).The CO-stripping data also confirmed the enhanced electro-catalytic performance of Pt/FeSnO(OH)5as an anodic catalyst.

    2 EXPERIMENTAL

    2.1 Preparation

    All chemical reagents were used as received without further purification.Stannic chloride pentahydrate (SnCl4·5H2O, AR), iron(II) sulfate heptahydrate (FeSO4·7H2O), sodium hydroxide (NaOH,AR), L-ascorbic acid and methanol (CH3OH, AR)were purchased from Sinopharm Chemical Reagent Co., Ltd (China).Chloroplatinic acid hexahydrate(H2PtCl6·6H2O, AR) were purchased from Aladdin Reagent.Nafion solution 5% (Dupont) and carbon vulcan XC-72 (Cabot) were used as received.

    In a typical synthesis, a solution of SnCl4·5H2O in deionized water (DI water) (0.5 M, 5 mL) was added to a solution of FeSO4·7H2O (0.5 M, 5mL) at room temperature with vigorous agitation, and a solution of NaOH (2 M, 10 mL) was added to the mixture slowly, which was stirred for 6 hours in a beaker at 60℃.The synthesized FeSnO(OH)5was collected by centrifugation and washed several times with DI water, and dried under vacuum at 60 ℃ for 6 h.Afterwards, 0.3 g prepared FeSnO(OH)5was added to 45 ml water, and then 15 ml HCl solution (1.0 M)was dropped into the suspension, stirring for 2.5 h at room temperature.The product was washed with DI water and absolute alcohol for several times, and dried in vacuum oven at 60 ℃ for 6 h to obtain FeSnO(OH)5nanoboxes.

    The complex catalyst was prepared by a sonochemical reaction in the L-ascorbic acid.Firstly, 0.5 ml H2PtCl6·6H2O (0.019 M) was added into 10 mL ice water rapidly under a strong agitation.Then, 10 mL L-ascorbic acid ice-water solution (0.1 M) was dropped slowly into the above mixture.0.005 g prepared FeSnO(OH)5was dropped into the above pale-yellow solution and stirred for 10 minutes.Subsequently, the solution was treated in an ultrasonic cleaning instrument for 1 h and then was deposited for 24 h.The obtained product was washed with DI water and absolute alcohol for several times and dried at 60 ℃ for 6 h in a vacuum oven, which was denoted as Pt/FeSnO(OH)5.For comparison, the Pt/C (Vulcan XC-72) electrocatalyst was synthesized using the carbon vulcan XC-72 as the precursor following the same procedure.

    2.2 Characterization

    The X-ray diffraction (XRD) measurements of the powder samples were performed in the reflection mode (CuKα radiation, l = 1.5418 ?) on a Rigaku Ultima III X-ray diffractometer.The field emission scanning electron microscopy (FESEM) images were obtained by Hitachi S4800 field emission scanning electron microscopy.The field emission transmission electron microscopy (FETEM) images were obtained by FEI Tecnai G2 F20 S-TWIN with a field emission gun operated at 200 kV.The X-ray photoelectron spectroscopy (XPS) measurements were performed with an ESCALab250-XI electron spectrometer from VG Scientific using a 300 W AlKα radiation.The base pressure was about 3 ×10-9mbar and the binding energies were corrected by adjusting the binding energy of the C1s peak to 284.8 eV from adventitious carbon.

    2.3 Electrochemical measurement

    The electrochemical measurements were performed on a CHI-660D electrochemical workstation with a conventional three-electrode cell.The catalyst ink was prepared by dispersing 5 mg prepared nanocomposite in a mixture containing 1 ml ethanol and 0.025 mL 5% Nafion solution under ultrasonication for 30 min.A glassy carbon electrode (3 mm in diameter) was used as the working electrode,which was carefully polished with a diamond pad/0.3 μm polishing suspension and rinsed with DI water and ethanol.After dropping 5 μL of the catalyst ink onto the electrode surface, the electrode was dried in air.A Pt wire and an Ag/AgCl electrode were used as the counter electrode and the reference electrode, respectively.The electrochemical impedance spectroscopy (EIS) was measured in a mixture of N2-purged 1 M methanol and 1 M KOH under open-circuit conduction.The EIS tests were conducted by sweeping the frequency from 100 KHz to 1 Hz under open circuit potential with 5 mV of amplitude.For the measurement of hydrogen adsorption/desorption reaction, the potential was cycled between –1 and 0.4 V at 50 mV/s in N2-purged 1 M KOH solution.The electrocatalytic properties for methanol oxidation of the catalysts were measured in a mixture of 1 M methanol and 1 M KOH.The chronoamperometry (CA) was recorded at –0.2 V for 3600 s in a mixture of 1 M methanol and 1 M KOH.

    The electrocatalytic activity for CO-stripping was obtained through the following steps: (i) CO gas was bubbled into a N2saturated 1 M KOH aqueous solution for 10 min; (ii) then N2was bubbled to remove the dissolved CO in the electrolyte, while the CO molecules adsorbed on the Pt surface were not affected by this treatment; (iii) finally, the cyclic voltammetric (CV) measurements were carried out in a N2saturated 1 M KOH over the potential range from –1 to +0.4 V at a scan rate of 50 mV/s.The ECSA derived from the CO-stripping was calculated using the following equation[29].

    where QCOis the measured charge for the CO stripping and WPtis the mass of Pt.The value 420 represents the charge density required to oxidize a monolayer of CO on Pt.

    3 RESULTS AND DISCUSSION

    3.1 Structure and morphology

    As shown in the XRD profiles (Fig.1a), all peaks of the prepared FeSnO(OH)5can be indexed to the diffractions of FeSnO(OH)5(JCPDS 74-1745), indicating there is no other phase.However, four new broadened peaks located at 39.8°, 46.2°, 67.5° and 81.3° appear in the pattern of the synthesized Pt/FeSnO(OH)5, corresponding to the diffractions of Pt (1 1 1), (2 0 0), (2 2 0) and (3 3 1) planes of the face-centered cubic (fcc) Pt (JCPDS 87-0640),respectively, indicating the target complex has been prepared.As shown in Fig.1b, the Pt/C is also indexed to the cubic Pt phase (JCPDS No.87-0640).

    Fig.1.XRD patterns of (a) the prepared FeSnO(OH)5, Pt/FeSnO(OH)5 and (b) Pt/C

    The XPS measurements were used to explore the electronic states and surface composition of the catalysts.As shown in Fig.2a, the two peaks corresponding to the Pt 4f7/2and Pt 4f5/2states with a 3.3 eV spacing and a 3:4 atomic ratio can be found[30,31].For Pt/FeSnO(OH)5, the most intense doublet (at 71.00 and 74.32 eV) is the signature of metal Pt.The second and weaker doublet (at 72.40 and 75.70 eV)with the binding energy at 1.4 eV higher than Pt(0)can be attributed to the Pt(II) oxidation state (PtO and Pt(OH)2-like species)[32,33].It is notable that Pt

    in +4 oxidation state is present in Pt/C.Table 1 summarizes the relative intensities of Pt0, Pt2+and Pt4+in the catalysts, which can be estimated from their peak surface area.There is a significant difference between the relative intensities of Pt0in the catalysts.The chemical state of Pt is an important factor on the electrochemical activity.There are reports that metallic Pt is a superior catalyst to Pt in the +4 oxidation state, and Pt0has better electrocatalytic activity toward methanol electro-oxidation in comparison with Pt2+and Pt4+[34,35].

    Table 1.Atomic % of Different Valenced Pt for Different Catalysts

    As marked by the dashed lines in Fig.2a, the binding energy of Pt 4f7/2in the Pt/FeSnO(OH)5(71.0 eV) is negatively shifted almost 0.6 eV compared with the Pt/C (71.6 eV), which implies that the electronic structure of Pt was modified by the hydroxide support because of an enhanced interaction between the Pt and the support material,indicating a transfer of electrons from FeSnO(OH)5to Pt[36,37].The shift is mainly caused by the electronegativity difference between the transition element and Pt, leading to the charge transfer from the more electropositive element such as Fe to Pt[38,39].This notion can be further supported by a positive shift of the Fe 2p peaks shown in Fig.2b.

    Fig.2.(a) Pt 4f XPS spectra of Pt/FeSnO(OH)5 and Pt/C; (b) Fe 2p XPS spectra of Pt/FeSnO(OH)5

    As shown in Fig.2b, the Fe 2p XPS spectrum of Pt/FeSnO(OH)5is split into two parts, namely Fe 2p3/2and Fe 2p1/2, with an atomic ratio of about 2/1.Each part consists of a main peak and a “shake-up”satellite[40].The peaks at 712.4.0 eV (2p3/2) and 726.3 eV (2p1/2) are attributed to Fe3+species, while the second pair of peaks observed at 711.0 eV (2p3/2)and 725.0 eV (2p1/2) are related to Fe2+species[41].The shake-up satellite peaks at 734.0 eV (2p1/2) and 729.9 eV (2p1/2) confirm the species, respectively[42].Thus, there are mixed valence states of Fe3+/Fe2+in Pt/FeSnO(OH)5for the binding-energies of Fe 2p in Pt/FeSnO(OH)5to be positively shifted.

    The SEM and TEM images of the samples are displayed in Figs.3 and 4, respectively.It can be clearly seen from Fig.3a that the FeSnO(OH)5crystals are nanocubes with the size of about 200~500 nm.After etching, the morphology of FeSn-O(OH)5is maintained as shown in Fig.3b.However,it can be found from the TEM image (Figs.3a and 3b) that the FeSnO(OH)5nanocubes have been etched into hollow nanoboxes after being treated in the acid solution.Figs.3c and 3d show Pt particles have been dispersed on the FeSnO(OH)5nanoboxes and the carbon (Vulcan XC-72).The corresponding TEM images are displayed in Figs.4c and 4d,respectively, showing both Pt based complexes have been successfully synthesized.As shown in the corresponding selected area electron diffraction(SAED) pattern inserted in Fig.4c, the Pt-based catalysts possess the Pt fcc structure.The high-resolution TEM (HRTEM) image (Fig.4d) of Pt/FeSnO(OH)5exhibits the lattice fringes with the interplanar distance of 0.225 nm, corresponding to the (111) plane of the cubic Pt, and the average size of Pt nanoparticles in Pt/ FeSnO(OH)5is about 4 nm,while the Pt particles on the carbon shown in Fig.4f have a similar size and the lattice fringes of 0.226 nm, which can be also attributed to the (111) plane of the cubic Pt.Additionally, the element com-positions measured by EDX analysis (shown in Figs.4g and 4h) are in good matchup with the Pt/FeSnO(OH)5and Pt/C.

    Fig.3.SEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching, (c) Pt/FeSnO(OH)5 and (d) Pt/C, respectively

    Fig.4.TEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching and (c) Pt/FeSnO(OH)5 with the corresponding SAED patterns inserted and (e) Pt/C, respectively; HRTEM images of (d) Pt/FeSnO(OH)5 and (f) Pt/C, respectively; EDX patterns of (g) Pt/FeSnO(OH)5 and (h) Pt/C, respectively

    3.2 Electrochemical measurement

    Fig.5a presents the CV curves of the prepared samples, which has three typical regions described as the hydrogen region, the double layer region and the oxygen region.Their electrochemically active surface areas (ECSAs) are determined from the charge of the hydrogen adsorption-desorption (HAD)signatures, which are related to the dispersion and nanoparticle sizes of Pt.The ECSA value is estimated according to the following equation[43]:

    where [Pt] represents the platinum loaded in the electrode (g/cm2), QHis the charge for hydrogen desorption (mC/cm2), and 0.21 represents the charge required to oxidize a monolayer of adsorbed hydrogen on bright Pt (mC/cm2).The ECSAs for the catalysts determined by hydrogen desorption peaks are listed in Table 2.The ECSAs derived from the CO-stripping of these samples show similar values in Table 2, proving the validity of the ECSA data.The calculated ECSAHADvalues for Pt/FeSnO(OH)5and Pt/C are about 8.364 and 24.464 m2/gPt, respectively.

    In the CV curves for both catalysts, two peaks are observed.The more positive current peak in the forward scan (If) is ascribed to the electro-oxidation of methanol, while the anodic peak in the backward scan (Ib) is attributed to the removal of incompletely oxidized carbonaceous species mainly composed of CO species formed during the forward scan[44].Fig.5b displays the CV curves normalized by the loading mass of Pt on the electrode for different catalysts.As shown in Fig.5b, although the ECSAHADof Pt/FeSnO(OH)5is lower, its mass activity (1182.35 mA/mgPt) is obviously higher than that of Pt/C(594.57 mA/mgPt).The current densities normalized by ECSAHADare also compared in Fig.5c, showing the specific activity of Pt/C is 1.76 mA/cm2, which is much lower than that of Pt/FeSnO(OH)5(14.30 mA/cm2).These results indicate the excellent electrocatalytic activity of Pt/FeSnO(OH)5toward MOR.

    To compare the CO-resistance ability of the catalysts, the CO stripping experiment was carried out.Fig.5d shows the CO stripping voltammograms for different catalysts.In the first positive scan, CO adsorbed on the electrode surface limited the presence of hydrogen oxidation peaks, and the adsorbed CO was oxidized at more positive potentials subsequently.On the second positive scan, the reappearance of hydrogen peaks at negative potentials indicates the freedom of dissolved CO on the electrode surface[45].The onset potential and peak potential for the CO oxidation and ECSA estimate using the CO-stripping curves are listed in Table 2.The onset potential of Pt/FeSnO(OH)5catalyst is 59 mV more negative than that of the commercial Pt/C catalyst.The positive peak potential for CO oxidation on the Pt/FeSnO(OH)5(–0.338 V) is shifted negatively compared with the Pt/C electrode (–0.282 V).These results significantly indicate the favorable role of FeSnO(OH)5for CO-tolerance, which is in accordance with the mass activity in Fig.5b.

    Table 2.Results of CO Stripping with the Prepared Catalysts and ECSA from H Adsorption-desorption

    Fig.5.(a) CV curves of the catalysts; (b) mass-normalized CV curves and (c) ECSA-normalized CV curves of the catalysts; (d) electrochemical CO-stripping curves of the catalysts

    Fig.6a depicts the Nyquist plot of EIS for the electrodes modified with Pt/FeSnO(OH)5and Pt/C.Both catalysts show a typical characteristic semicircle at the high frequency region.The semicircle in the high frequency region is taken as a measure of the charge transfer resistance (Rct) between the aqueous solution and the modified electrode[46],showing that the Rctof Pt/FeSnO(OH)5is lower than that of Pt/C, suggesting the faster kinetics of methanol oxidation and the higher electrocatalytic activity of Pt/FeSnO(OH)5compared with Pt/C[47,48].

    Fig.6b shows the CA curves of Pt-based catalysts in a solution of 1 M KOH with 1 M methanol for 3600 s at –0.2 V vs.Ag/AgCl.Both catalysts showed an initial faster decay, which is attributed to a double layer capacitance effect[49].After the initial significant drop period, the current decreased slowly because the MOR byproducts such as COads,CH3OHadsand CHOadswere adsorbed on the active surface of the catalysts[50].Obviously, the current density on the Pt/FeSnO(OH)5catalyst is the highest during the 1 h measurement, displaying its excellent electrocatalytic activity.The better stability of Pt/C may be attributed to the stronger binding energy between Pt and the carbon compared with Pt/FeSnO(OH)5, which can be proved by the XPS analysis.

    Fig.6.(a) Nyquist plot of EIS of the catalysts.(b) CA curves of the catalysts

    The different performance of MOR between the Pt/FeSnO(OH)5and Pt/C can be explained by the following factors.The first factor is the different interaction between the Pt particles and the transition metal of the support.As shown in the XPS curves(Fig.2a), the binding energy of the 4f7/2in Pt/FeSnO(OH)5is negatively shifted 0.6 eV compared with Pt/C, indicating a stronger interaction between Pt and FeSnO(OH)5.The increase of electron charge transfer from the transition metal to Pt atom is the major factor for the weakening of CO?Pt bonding and intermediate adsorptive strength for Pt, leading to the enhancement of electrochemical performance[51,52].The second factor is based on the bifunctional mechanism of the support.The OHadsis formed at lower potential on Sn sites than on the Pt sites, thus CO and CO-like intermediates could be oxidized at low potential, resulting in the better electrochemical activity for Pt/FeSnO(OH)5compared with Pt/C[53].Thirdly, as shown in Table 1, the atomic percentage of Pt0in Pt/FeSnO(OH)5is higher than that in Pt/C, which is also responsible for the better electrocatalytic activity.The metallic Pt in zero oxidation state is beneficial to the electrocatalytic activity towards methanol electro-oxidation in comparison with Pt2+and Pt4+[34].Furthermore, the higher amount of metallic Pt in zero oxidation state in Pt/FeSnO(OH)5proved by XPS and the better electronic conductivity of Pt/FeSnO(OH)5confirmed by the EIS measurement are both in favor of the MOR performance.

    4 CONCLUSION

    In conclusion, FeSnO(OH)5nanoboxes have been synthesized and deposited with Pt nanoparticles as an electrode catalyst in DMFCs.The catalytic performance of the prepared Pt/FeSnO(OH)5toward MOR has been evaluated and compared with the commercial carbon supported Pt.The XRD, XPS, SEM,TEM and electrochemical experiments have been employed to explore the relationships between the crystal structure and the electrochemical properties.The characterizations show that the prepared Pt/FeSnO(OH)5catalyst obtains enhanced performance toward MOR compared with Pt/C, which can be attributed to the lower interaction between Pt and the FeSnO(OH)5support, the bifunctional effect of FeSnO(OH)5, the higher atomic percentage of Pt0in FeSnO(OH)5and the better electronic conductivity of FeSnO(OH)5.The study has revealed the effect of support on the electrochemical catalytic activity and shows that the Pt/FeSnO(OH)5is a promising anode catalyst in DMFCs.

    REFERENCES

    (1) Kim, Y.; Noh, Y.; Lim, E.J.; Lee, S.; Choi, S.M.; Kim, W.B.Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance.J.Mater.Chem.A2014, 2, 6976-6986.

    (2) Zhu, J.; Xiao, M.; Zhao, X.; Li, K.; Liu, C.; Xing, W.Nitrogen-doped carbon-graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation.Chem.Commun.2014, 50, 12201-12203.

    (3) Munjewar, S.S.; Thombre, S.B.; Mallick, R.K.Approaches to overcome the barrier issues of passive direct methanol fuel cell – review.Sustain.Energy Rev.2017, 67, 1087-1104.

    (4) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D.P.A review of anode catalysis in the direct methanol fuel cell.J.Power Sources2006, 155, 95-110.

    (5) Santos, M.C.L.D.; Dutra, R.M.; Ribeiro, V.A.; Spinacé, E.V.; Neto, A.O.Preparation of PtRu/C electrocatalysts by borohydride reduction for methanol oxidation in acidic and alkaline medium.Int.J.Electrochem.Sci.2017, 12, 3549-3560.

    (6) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy.2015, 40, 15652-15662.

    (7) Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M.M.; Mangeney, C.; Villain, F.; Fiévet, F.Acetate- and thiol-capped monodisperse ruthenium nanoparticles:? XPS, XAS, and HRTEM studies.Langmuir.2005, 21, 6788-6796.

    (8) Huang, H.J.; Wang, X.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells.J.Mater.Chem.A2014,2, 6266-6291.

    (9) Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X.Cover picture: a highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal.Angew.Chem.Int.Ed.2011, 50, 422-426.

    (10) Zhang, N.; Bu, L.; Guo, S.; Guo, J.; Huang, X.Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis.Nano Lett.2016, 16, 5037-5043.

    (11) Bavand, R.; Wei, Q.; Zhang, G.; Sun, S.; Yelon, A.; Sacher, E.PtRu alloy nanoparticles II.Chemical and electrochemical surface characterization for methanol oxidation.J.Phys.Chem.C2017, 121, 23120-23128.

    (12) Lv, Q.; Xiao, Y.; Yin, M.; Ge, J.; Xing, W.; Liu, C.Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation.Electrochim.Acta2014, 139, 61-68.

    (13) Liu, H.; Li, C.; Chen, D.; Cui, P.; Ye, F.; Yang, J.Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction.Sci.Rep.2017, 7, 11421.

    (14) Lu, X.Q.; Deng, Z.G.; Guo, C.; Wang, W.L.; Wei, S.X.; Ng, S.P.; Chen, X.F.; Ding, N.; Guo, W.Y.; Wu, C.M.L.Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition.ACS Appl.Mater.Interfaces2016, 8, 12194-12204.

    (15) Zhu, J.; Zheng, X.; Wang, J.; Wu, Z.X.; Han, L.L.; Lin, R.Q.; Xin, H.L.L.; Wang, D.L.Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation.J.Mater.Chem.A2015, 3, 22129-22135.

    (16) Su, N.; Hu, X.; Zhang, J.; Huang, H.; Cheng, J.; Yu, J.; Ge, C.Plasma-induced synthesis of Pt nanoparticles supported on TiO2nanotubes for enhanced methanol electro-oxidation.Appl.Surf.Sci.2017, 399, 403-410.

    (17) Wang, H.; Xue, Y.; Zhu, B.; Yang, J.; Wang, L.; Tan, X.CeO2nanowires stretch-embedded in reduced graphite oxide nanocomposite support for Pt nanoparticles as potential electrocatalyst for methanol oxidation reaction.Int.J.Hydrogen Energy2017, 42, 20549-20559.

    (18) Pan, K.Y.; Wei, D.H.Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires.Appl.Surf.Sci.2018, 427,1064-1070.

    (19) Yang, C.; Zhou, M.; Zhang, M.; Gao, L.Mitigating the degradation of carbon-supported Pt electrocatalysts by tungsten oxide nanoplates.Electrochim.Acta2016, 188, 529-536.

    (20) Ting, C.C.; Liu, C.H.; Tai, C.Y.; Hsu, S.C.; Chao, C.S.; Pan, F.M.The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism.J.Power Sources2015, 280 166-172.

    (21) Fan, H.; Cheng, M.; Wang, Z.; Wang, R.Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance.Nano.Res.2017,10, 187-198.

    (22) Chen, C.S.; Pan, F.M.Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2supports toward methanol oxidation.Appl.Catal.B:Environ.2009, 74, 663-669.

    (23) Tammam, R.H.; Fekry, A.M.; Saleh, M.M.Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles.Int.J.Hydrogen Energy2015, 40, 275-283.

    (24) Lee, M.J.; Kang, J.S.; Kang, Y.S.; Chung, D.Y.; Shin, H.; Ahn, C.Y.; Park, S.; Kim, M.J.; Kim, S.; Lee, K.S.; Sung, Y.E.Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system.ACS Catal.2016, 6, 2398-2407.

    (25) Huang, D.; Fu, X.; Long, J.; Jiang, X.; Chang, L.; Meng, S.; Chen, S.Hydrothermal synthesis of MSn(OH)6(M = Co, Cu, Fe, Mg, Mn, Zn) and their photocatalytic activity for the destruction of gaseous benzene.Chem.Eng.J.2015, 269,168-179.

    (26) Fu, X.; Wang, X.; Ding, Z.; Leung, D.Y.C.; Zhang, Z.; Long, J.; Zhang, W.; Li, Z.; Fu, X.Hydroxide ZnSn(OH)6: a promising new photocatalyst for benzene degradation.Appl.Catal.B: Environ.2009, 91, 67-72.

    (27) Huang, F.; Yuan, Z.; Zhan, H.; Zhou, Y.; Sun, J.A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries.Mater.Lett.2003, 57, 3341-3345.

    (28) Luo, B.; Xu, S.; Yan, X.; Xue, Q.Graphene nanosheets supported hollow Pt&CoSn(OH)6nanospheres as a catalyst for methanol electro-oxidation.J.Power Sources2012, 205, 239-243.

    (29) Kunitomo, H.; Ishitobi, H.; Nakagawa, N.Optimized CeO2content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells.J.Power Sources2015, 297, 400-407.

    (30) Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E.Handbook of X-ray photoelectron spectroscopy.Physical Electronics Division1979, p152-153.

    (31) Shyu, Z.J.; Otto, K.Identification of platinum phases on γ-alumina by XPS.Appl.Surf.Sci.1988, 32, 246-252.

    (32) Yang, J.; Deivaraj, T.C.; Too, H.; Lee, J.Y.An alternative phase-transfer method of preparing alkylamine-stabilized platinum nanoparticles.J.Phys.Chem.B2004, 108, 2181-2185.

    (33) Yang, J.; Lee, J.Y.; Deivaraj, T.C.; Too, H.An improved procedure for preparing smaller and nearly monodispersed thiol-stabilized platinum nanoparticles.Langmuir.2003, 19, 10361-10365.

    (34) Bisht, A.; Zhang, P.; Shivakumara, C.; Sharma, S.Pt-doped and Pt-supported La1–xSrxCoO3: comparative activity of Pt4+and Pt0toward the CO poisoning effect in formic acid and methanol electro-oxidation.J.Phys.Chem.C2015, 119, 14126-14134.

    (35) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    (36) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy2015, 40, 15652-15662.

    (37) Higgins, D.; Hoque, A.M.; Seo, H.M.; Reinecke, T.Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction.Adv.Funct.Mater.2014, 27, 4325-4336.

    (38) Flórez-Monta?o, J.; García, G.; Rodríguez, J.L.; Pastor, E.; Cappellari, P.; Planes, G.A.On the design of Pt based catalysts.Combining porous architecture with surface modification by Sn for electrocatalytic activity enhancement.J.Power Sources2015, 282, 34-44.

    (39) Park, K.; Choi, J.; Kwon, B.; Lee, S.; Sung, Y.; Ha, H.; Hong, S.; Kim, H.; Wieckowski, A.Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.J.Phys.Chem.B2002, 106, 1869-1877.

    (40) Kuivila, C.S.; Butt, J.B.; Stair, P.C.Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy.Appl.Surf.Sci.1988, 32, 99-121.

    (41) Yamashita, T.; Hayes, P.Analysis of XPS spectra of Fe2+and Fe3+ions oxide materials.Appl.Surf.Sci.2008, 254, 2441-2449.

    (42) Dedryvère, R.; Maccario, M.; Croguennec, L.; Le Cras, F.; Delmas, C.; Gonbeau, D.X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4materials.Chem.Mater.2008, 207, 164-7170.

    (43) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L.Comparison of high surface Pt/C catalysts by cyclic voltammetry.J.Power Sources2002, 105, 13-19.

    (44) Qin, Y.; Yang, H.; Zhang, X.; Li, P.; Ma, C.Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium.Int.J.Hydrogen Energy2010, 35, 7667-7674.

    (45) Chen, X.; Si, C.; Gao, Y.; Frenzel, J.; Sun, J.; Eggeler, G.; Zhang, Z.Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction.J.Power Sources2015, 273, 324-332.

    (46) Li, Z.; Zhang, L.; Huang, X.; Ye, L.; Lin, S.Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation.Electrochim.Acta2014, 121, 215-222.

    (47) Ruan, D.; Gao, F.; Gu, Z.Enhanced electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation.Electrochim.Acta2014, 147, 225-231.

    (48) Zhou, Z.H.; Li, W.S.; Fu, Z.; Xiang, X.D.Carbon nanotube-supported Pt-H x MoO3as electrocatalyst for methanol oxidation.Int.J.Hydrogen Energy2010, 35, 936-941.

    (49) Jiang, L.; Sun, G.; Zhao, X.; Zhou, Z.; Yan, S.; Tang, S.; Wang, G.; Zhou, B.; Xin, Q.Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells.Electrochim.Acta2005, 50, 2371-2376.

    (50) Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger, J.M.; Lamy, C.In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes.J.Electroanal.Chem.1998, 444, 41-53.

    (51) Wang, D.; Chou, H.; Lin, Y.; Lai, F.; Chen, C.; Lee, J.; Hwang, B.; Chen, C.Simple replacement reaction for the preparation of ternary Fe1–xPtRuxnanocrystals with superior catalytic activity in methanol oxidation reaction.J.Am.Chem.Soc.2012, 134, 10011-10020.

    (52) Fu, Q.; Li, W.X.; Yao, Y.; Liu, H.; Su, H.Y.; Ma, D.; Gu, X.K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X.Interface-confined ferrous centers for catalytic oxidation.Science2010, 328, 1141-1144.

    (53) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    久久久久久久午夜电影| 身体一侧抽搐| 亚洲激情在线av| 国产精品久久久久久人妻精品电影| 很黄的视频免费| 免费一级毛片在线播放高清视频| 午夜福利高清视频| 亚洲av电影在线进入| 国产av又大| 精品第一国产精品| 成人av一区二区三区在线看| 亚洲 国产 在线| 久久中文看片网| 日韩av在线大香蕉| 精品一区二区三区四区五区乱码| 色播在线永久视频| 免费看a级黄色片| 亚洲中文av在线| 国产精品 国内视频| 成人三级做爰电影| 欧美日韩精品网址| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 国产视频内射| 国产亚洲精品一区二区www| 欧美+亚洲+日韩+国产| 亚洲精品美女久久久久99蜜臀| 免费看十八禁软件| 久久久久久久久免费视频了| 午夜福利高清视频| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 亚洲专区字幕在线| 中文字幕人成人乱码亚洲影| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 亚洲成av人片免费观看| 亚洲人成网站高清观看| 999精品在线视频| 宅男免费午夜| 亚洲精品久久国产高清桃花| 50天的宝宝边吃奶边哭怎么回事| 国产爱豆传媒在线观看 | 亚洲成av人片免费观看| 一级毛片高清免费大全| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区| bbb黄色大片| 国产精品电影一区二区三区| 国产av在哪里看| 听说在线观看完整版免费高清| 热99re8久久精品国产| 国产1区2区3区精品| 亚洲成人久久性| 哪里可以看免费的av片| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| 亚洲成国产人片在线观看| 搞女人的毛片| 一区二区日韩欧美中文字幕| 精品欧美国产一区二区三| 国产高清videossex| 不卡av一区二区三区| 一边摸一边做爽爽视频免费| 在线观看舔阴道视频| 国产激情欧美一区二区| 中文字幕最新亚洲高清| xxx96com| 中文在线观看免费www的网站 | 久9热在线精品视频| 淫秽高清视频在线观看| 国产黄a三级三级三级人| 亚洲精品在线观看二区| 好男人电影高清在线观看| 亚洲精品国产区一区二| 国产99白浆流出| 每晚都被弄得嗷嗷叫到高潮| 久久欧美精品欧美久久欧美| 日本a在线网址| 国产激情久久老熟女| 婷婷精品国产亚洲av| 他把我摸到了高潮在线观看| 可以在线观看的亚洲视频| 丁香六月欧美| 亚洲精品一区av在线观看| 少妇裸体淫交视频免费看高清 | 人人澡人人妻人| 色哟哟哟哟哟哟| 天堂√8在线中文| 可以在线观看的亚洲视频| 9191精品国产免费久久| 两个人免费观看高清视频| 麻豆av在线久日| 久久人妻av系列| 久久婷婷成人综合色麻豆| 美女高潮到喷水免费观看| 一进一出抽搐动态| 欧美激情久久久久久爽电影| 精品乱码久久久久久99久播| 女警被强在线播放| 一级毛片女人18水好多| 久久国产乱子伦精品免费另类| 满18在线观看网站| 午夜免费鲁丝| 亚洲成人精品中文字幕电影| 18禁裸乳无遮挡免费网站照片 | 欧美午夜高清在线| 中文字幕人妻熟女乱码| 99久久99久久久精品蜜桃| 亚洲国产毛片av蜜桃av| 日本精品一区二区三区蜜桃| 久久久久亚洲av毛片大全| 老汉色∧v一级毛片| 国产精品久久久久久亚洲av鲁大| 一二三四社区在线视频社区8| av视频在线观看入口| 精品久久久久久久久久久久久 | 久久精品91无色码中文字幕| 国产激情欧美一区二区| 日韩免费av在线播放| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 亚洲国产精品合色在线| 国产免费av片在线观看野外av| 国产亚洲av嫩草精品影院| 精品第一国产精品| 精品久久久久久,| 亚洲国产欧美一区二区综合| 男女那种视频在线观看| 波多野结衣高清无吗| 18禁美女被吸乳视频| 丰满人妻熟妇乱又伦精品不卡| 精品国产超薄肉色丝袜足j| 成人欧美大片| 妹子高潮喷水视频| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 日韩av在线大香蕉| 麻豆一二三区av精品| 成人三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 亚洲 国产 日韩一| 丁香欧美五月| 国产精华一区二区三区| 搞女人的毛片| 哪里可以看免费的av片| 亚洲精品国产一区二区精华液| 国产午夜福利久久久久久| a级毛片a级免费在线| 特大巨黑吊av在线直播 | 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 国产精品久久久久久精品电影 | 嫩草影视91久久| 最近最新中文字幕大全免费视频| 成人欧美大片| 日本五十路高清| 黄频高清免费视频| 国产精品久久电影中文字幕| 神马国产精品三级电影在线观看 | 美女扒开内裤让男人捅视频| 亚洲电影在线观看av| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 好男人电影高清在线观看| 满18在线观看网站| 热re99久久国产66热| 男人舔女人下体高潮全视频| 99热6这里只有精品| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜一区二区| 校园春色视频在线观看| 天天躁夜夜躁狠狠躁躁| 国产成人影院久久av| 亚洲av中文字字幕乱码综合 | 九色国产91popny在线| 婷婷精品国产亚洲av在线| 老鸭窝网址在线观看| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜 | 国产视频一区二区在线看| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 国产精品影院久久| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧洲综合997久久, | 国产精品免费一区二区三区在线| 成年免费大片在线观看| 12—13女人毛片做爰片一| 一夜夜www| 国产成人av激情在线播放| 亚洲自拍偷在线| 青草久久国产| 亚洲色图av天堂| 国产午夜精品久久久久久| 少妇的丰满在线观看| 欧美日韩黄片免| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 国语自产精品视频在线第100页| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 午夜福利高清视频| 欧美日韩亚洲综合一区二区三区_| 国产成人精品无人区| 精品一区二区三区视频在线观看免费| 男人舔奶头视频| 在线观看一区二区三区| 老鸭窝网址在线观看| 好男人在线观看高清免费视频 | 99久久久亚洲精品蜜臀av| 91字幕亚洲| 美女午夜性视频免费| 麻豆av在线久日| 色av中文字幕| 成人欧美大片| 一级片免费观看大全| 欧美日韩中文字幕国产精品一区二区三区| 色在线成人网| 欧美激情 高清一区二区三区| 亚洲无线在线观看| 国产真实乱freesex| 久久久久久亚洲精品国产蜜桃av| 日韩欧美国产在线观看| 国产成人精品久久二区二区免费| 精品福利观看| 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| 国产色视频综合| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| avwww免费| 欧美成人性av电影在线观看| 久久久久久久久中文| 宅男免费午夜| 国产精品 欧美亚洲| 国产av在哪里看| 欧美成狂野欧美在线观看| 欧美激情久久久久久爽电影| 日韩欧美免费精品| 9191精品国产免费久久| 亚洲中文av在线| 亚洲欧洲精品一区二区精品久久久| 日韩免费av在线播放| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 岛国视频午夜一区免费看| 中出人妻视频一区二区| 女人高潮潮喷娇喘18禁视频| 亚洲五月婷婷丁香| 黄色成人免费大全| 满18在线观看网站| 美国免费a级毛片| 国产欧美日韩精品亚洲av| 精品日产1卡2卡| ponron亚洲| 又大又爽又粗| 91大片在线观看| 18禁黄网站禁片免费观看直播| 久久久国产成人免费| 欧美日本视频| 黄色女人牲交| 成年免费大片在线观看| 在线观看www视频免费| 天堂√8在线中文| 十分钟在线观看高清视频www| 免费在线观看影片大全网站| 在线观看免费日韩欧美大片| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 搡老妇女老女人老熟妇| 欧美乱色亚洲激情| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| a级毛片a级免费在线| 精品久久久久久久久久免费视频| 欧美激情 高清一区二区三区| 中出人妻视频一区二区| 国内少妇人妻偷人精品xxx网站 | 成人av一区二区三区在线看| 69av精品久久久久久| av电影中文网址| 亚洲中文av在线| 国产精品一区二区免费欧美| 欧美激情 高清一区二区三区| 色综合欧美亚洲国产小说| 男人舔奶头视频| 国产欧美日韩一区二区精品| 999精品在线视频| 丝袜人妻中文字幕| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 一级a爱视频在线免费观看| 免费观看人在逋| 午夜日韩欧美国产| 久久久精品欧美日韩精品| 可以在线观看毛片的网站| 亚洲男人天堂网一区| 午夜成年电影在线免费观看| 国产不卡一卡二| av片东京热男人的天堂| 亚洲专区中文字幕在线| 久99久视频精品免费| 欧美日韩黄片免| 日韩高清综合在线| 黄网站色视频无遮挡免费观看| 老鸭窝网址在线观看| 欧美性长视频在线观看| 两个人视频免费观看高清| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲| 91九色精品人成在线观看| 美女高潮到喷水免费观看| 一级毛片女人18水好多| 啦啦啦 在线观看视频| 我的亚洲天堂| 变态另类丝袜制服| 国产精品电影一区二区三区| 美女高潮到喷水免费观看| 久久青草综合色| 日本精品一区二区三区蜜桃| 日韩大尺度精品在线看网址| 日韩三级视频一区二区三区| 国产精品野战在线观看| 色综合站精品国产| 黑人操中国人逼视频| 久久久久久久午夜电影| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 中文字幕av电影在线播放| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看 | 亚洲一码二码三码区别大吗| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 又黄又粗又硬又大视频| 欧美激情高清一区二区三区| 久久热在线av| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久久久电影| 亚洲熟女毛片儿| 日日干狠狠操夜夜爽| netflix在线观看网站| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷亚洲欧美| 久久久久久大精品| 黄色a级毛片大全视频| 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 国产99白浆流出| 国产伦人伦偷精品视频| 麻豆一二三区av精品| 欧美黑人精品巨大| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 亚洲五月天丁香| 99精品在免费线老司机午夜| 国产不卡一卡二| 非洲黑人性xxxx精品又粗又长| 女同久久另类99精品国产91| 99国产综合亚洲精品| 精品国内亚洲2022精品成人| 国产主播在线观看一区二区| 亚洲成人久久爱视频| 亚洲欧美精品综合一区二区三区| 久久久国产精品麻豆| 成熟少妇高潮喷水视频| 日本免费一区二区三区高清不卡| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添小说| 男女下面进入的视频免费午夜 | 午夜成年电影在线免费观看| 国产视频一区二区在线看| 露出奶头的视频| 国产精品 欧美亚洲| 亚洲国产高清在线一区二区三 | 亚洲成人久久爱视频| 无限看片的www在线观看| 国产91精品成人一区二区三区| 免费在线观看成人毛片| 亚洲色图av天堂| 色综合站精品国产| 99热这里只有精品一区 | 午夜精品在线福利| 欧美日本视频| 国产精品免费一区二区三区在线| 黄色片一级片一级黄色片| www日本在线高清视频| 长腿黑丝高跟| aaaaa片日本免费| 在线观看免费视频日本深夜| АⅤ资源中文在线天堂| 中出人妻视频一区二区| 亚洲国产精品合色在线| 国产一卡二卡三卡精品| bbb黄色大片| 亚洲一区中文字幕在线| 婷婷六月久久综合丁香| 香蕉国产在线看| 国产激情偷乱视频一区二区| 国产99白浆流出| 午夜亚洲福利在线播放| 黄色a级毛片大全视频| 国产又色又爽无遮挡免费看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 日日夜夜操网爽| 亚洲av电影在线进入| 熟妇人妻久久中文字幕3abv| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 亚洲成人精品中文字幕电影| 久久伊人香网站| 1024香蕉在线观看| 看免费av毛片| 久久中文字幕一级| 国产精品1区2区在线观看.| 午夜福利视频1000在线观看| 嫩草影视91久久| 久久精品国产99精品国产亚洲性色| 国产精品香港三级国产av潘金莲| 亚洲天堂国产精品一区在线| av有码第一页| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| 97超级碰碰碰精品色视频在线观看| 97人妻精品一区二区三区麻豆 | 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 色综合亚洲欧美另类图片| 高潮久久久久久久久久久不卡| 91成年电影在线观看| 欧美日韩一级在线毛片| 啦啦啦 在线观看视频| 精品乱码久久久久久99久播| 国产高清videossex| 色综合亚洲欧美另类图片| 午夜成年电影在线免费观看| 亚洲国产看品久久| 亚洲欧美激情综合另类| 亚洲精品中文字幕在线视频| 免费看十八禁软件| 美女国产高潮福利片在线看| 色播亚洲综合网| 亚洲电影在线观看av| 中文字幕人妻熟女乱码| 97人妻精品一区二区三区麻豆 | 欧美三级亚洲精品| 日韩一卡2卡3卡4卡2021年| 国产成人系列免费观看| 最近最新中文字幕大全电影3 | 午夜久久久久精精品| 中文字幕人妻丝袜一区二区| 女人爽到高潮嗷嗷叫在线视频| 啪啪无遮挡十八禁网站| 成人av一区二区三区在线看| 可以免费在线观看a视频的电影网站| 国产精品久久久久久精品电影 | av视频在线观看入口| 日本黄色视频三级网站网址| x7x7x7水蜜桃| 久久婷婷人人爽人人干人人爱| 精品国产乱子伦一区二区三区| av在线天堂中文字幕| 欧美精品亚洲一区二区| 日韩有码中文字幕| 亚洲国产毛片av蜜桃av| 男女那种视频在线观看| 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 99热6这里只有精品| av欧美777| 久久青草综合色| 日本免费a在线| 欧美成人午夜精品| 人人妻人人澡人人看| 午夜福利欧美成人| 欧美一级a爱片免费观看看 | 成熟少妇高潮喷水视频| 亚洲熟妇中文字幕五十中出| 免费在线观看视频国产中文字幕亚洲| 亚洲五月婷婷丁香| 午夜影院日韩av| 国产高清videossex| videosex国产| 亚洲免费av在线视频| 好男人电影高清在线观看| 国产亚洲欧美精品永久| 波多野结衣高清作品| 成人永久免费在线观看视频| 大香蕉久久成人网| 久久人人精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美在线一区二区| 欧美日韩精品网址| 国产极品粉嫩免费观看在线| 久久亚洲精品不卡| 成人精品一区二区免费| 久久天躁狠狠躁夜夜2o2o| 久久精品人妻少妇| 日本在线视频免费播放| 亚洲av电影在线进入| 一二三四在线观看免费中文在| 18禁黄网站禁片午夜丰满| 亚洲片人在线观看| 成人一区二区视频在线观看| 久久久久久久精品吃奶| 国产爱豆传媒在线观看 | av免费在线观看网站| 国产国语露脸激情在线看| 欧美黑人精品巨大| 看黄色毛片网站| 亚洲国产精品成人综合色| ponron亚洲| 国产成人啪精品午夜网站| 国产一区二区激情短视频| 欧美不卡视频在线免费观看 | 中文字幕av电影在线播放| cao死你这个sao货| 亚洲专区中文字幕在线| 国产精品 欧美亚洲| 视频区欧美日本亚洲| 久热爱精品视频在线9| 国内精品久久久久久久电影| 国产91精品成人一区二区三区| 91九色精品人成在线观看| 桃红色精品国产亚洲av| 人人妻人人澡欧美一区二区| 成人18禁在线播放| 国产精品精品国产色婷婷| 亚洲中文字幕日韩| 可以免费在线观看a视频的电影网站| 中文字幕人妻丝袜一区二区| 女性被躁到高潮视频| av福利片在线| 国产av一区二区精品久久| 国产亚洲精品综合一区在线观看 | 亚洲人成网站高清观看| 久久精品国产亚洲av高清一级| 成人av一区二区三区在线看| 法律面前人人平等表现在哪些方面| videosex国产| 熟女电影av网| 在线av久久热| 国产av不卡久久| 精品福利观看| 欧美色欧美亚洲另类二区| 免费在线观看完整版高清| 欧美性长视频在线观看| 可以在线观看的亚洲视频| 日韩欧美一区二区三区在线观看| 国产亚洲精品综合一区在线观看 | 高潮久久久久久久久久久不卡| 日日干狠狠操夜夜爽| 国产爱豆传媒在线观看 | 亚洲国产高清在线一区二区三 | 国产av在哪里看| 国产精品一区二区免费欧美| av视频在线观看入口| 自线自在国产av| 国产aⅴ精品一区二区三区波| 性色av乱码一区二区三区2| 日韩欧美 国产精品| 欧美国产日韩亚洲一区| 日韩欧美免费精品| 少妇粗大呻吟视频| 黄色丝袜av网址大全| 香蕉丝袜av| 悠悠久久av| 在线播放国产精品三级| 欧美日韩乱码在线| 日本免费一区二区三区高清不卡| 亚洲欧洲精品一区二区精品久久久| 制服丝袜大香蕉在线| 老熟妇仑乱视频hdxx| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久5区| 欧美一区二区精品小视频在线| 久久久久国产一级毛片高清牌| 在线永久观看黄色视频| 脱女人内裤的视频| 90打野战视频偷拍视频| 欧美性长视频在线观看| 国产精品久久视频播放| 12—13女人毛片做爰片一| e午夜精品久久久久久久| 久久婷婷人人爽人人干人人爱| 中文字幕久久专区| 香蕉丝袜av| 一边摸一边做爽爽视频免费| 操出白浆在线播放| 搡老岳熟女国产| 两个人看的免费小视频| 国产精品爽爽va在线观看网站 | 在线免费观看的www视频| 日日爽夜夜爽网站| 国产高清有码在线观看视频 | 成人国产综合亚洲| 制服诱惑二区| 婷婷精品国产亚洲av在线|