• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Catalytic Properties of Pt/FeSnO(OH)5 towards Methanol Oxidation①

    2018-11-22 01:58:46ZHANXia-DanZHANYing-XuDUChang-Chao,LIChang-RongYUHan,LINCong
    結構化學 2018年10期

    The Pt/FeSnO(OH)5has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)5nanoboxes and demonstrates excellent catalytic activity towards methanol oxidation reaction as an electrode catalyst in DMFCs.The Pt/FeSnO(OH)5catalyst exhibits a higher mass activity (1182.35 mA/mgPt) compared with the Pt/C (594.57 mA/mgPt) catalyst.The result shows that the as-prepared Pt/FeSnO(OH)5has a great application prospect as a high-performance electrocatalyst in DMFCs.

    1 INTRODUCTION

    Direct methanol fuel cells (DMFCs) with Pt as the catalyst feasibly convert the chemical energy stored in methanol directly into electric energy, which have shown potential applications such as electric vehicles and portable electronic devices due to its attractive features including low operating temperature, easy refueling, high energy density and simplicity of system among the different types of fuel cells[1-3].However, some serious shortcomings need to be overcome before commercialization of DMFCs, including the high cost of noble-metal, the decay of catalytic activity of Pt catalyst, the low catalytic activity due to the slow methanol oxidation reaction kinetics and the low stability of the catalysts in acidic media[4].

    Deferent methods are employed to overcome these defects.One of them is to switch the working media from acidic solution to alkaline solution,which possesses apparent advantages, such as enormously enhanced methanol oxidation reaction kinetics, lower overpotential for oxygen reduction reaction and more choices for catalysts towards MOR[5,6].Another method is to fabricate composite catalysts by combining Pt with supports, which show higher electro-catalytic activity and platinum utilization efficiency compared with unsupported catalysts because of their large surface area and high dispersion of Pt on the supports[7].Nowadays the carbonaceous materials are commonly used as the electrocatalyst supports of commercial fuel cells for their high conductivity and large surface areas.However, carbon corrosion is a hard problem for all carbon supports[8].Therefore, it is significant to search for non-carbonaceous supports.

    As for the decay of catalytic activity of the Pt catalyst, this problem can be owed to the following reasons including CO poisoning of Pt during the methanol oxidation reaction (MOR), the weak interactions between Pt and support materials, the low intrinsic activity of Pt, the exfoliation of Pt element and electrochemical corrosion of the support materials[9].The CO species, the oxidation intermediates of MOR, adsorbed on the surface of Pt nanoparticles would lead to very low power densities and the loss of electrochemically active surface areas (ECSAs) by hampering further adsorption of methanol[10], so it is necessary to remove CO from the surface of platinum at a relatively negative potential.To solve the CO-poisoning problem, one common strategy is to combine Pt with other non-precious transition metals such as Ru, Fe, Co,Sn and Zn[11-15]to form Pt alloy or metal oxides like TiO2, CeO2, V2O5and WO3[16-19]to fabricate Pt-based catalysts, which would improve the catalytic activity and durability as well as lower the cost of Pt-based catalysts.The Pt-based catalysts combined with metals or metal oxides own a better CO resistance via the bifunctional mechanism and the electronic effect[20-24].According to the bifunctional mechanism model, the supporting materials can effectively activate H2O to form oxygen-containing species of OH adspecies (OHads), resulting in the oxidation of neighboring CO adspecies (COads) into CO2at a relatively negative potential, thus alleviating the CO poisoning effect and providing more active Pt sites for methanol oxidation.The electronic effect is a result of the modification of electronic structure of the Pt surface, which weakens the CO?Pt bonding and intermediate adsorptive strength for Pt, thereby improving the kinetics of methanol and CO oxidation.

    Among the supports, the stannate hydroxides have caught the attention of researchers.MSn(OH)6(M =Co, Cu, Fe, Mg, Mn, Zn), which are a kind of special perovskite-structural materials, have been used as photocatalysts and electrode materials for Li-ion batteries[25-27].Furthermore, the researchers have reported that the CoSn(OH)6supported Pt exhibited a high electro-catalytic activity, good CO resistant ability and catalytic stability towards methanol oxidation in alkaline solution[28].However,the catalytic mechanism of stannate hydroxide supported catalyst has not been deeply discussed,and fabrication of higher performance electrocatalyst towards MOR is still a challenge.

    In this paper, we synthesized hollow FeSnO(OH)5nanocubes as the support of Pt catalyst for methanol electro-oxidation.L-ascorbic acid was used as the soft reductant to prepare Pt/FeSnO(OH)5.It was found that the activity and stability toward MOR of Pt/FeSnO(OH)5was improved more effectively compared with Pt/C (Vulcan XC-72).The CO-stripping data also confirmed the enhanced electro-catalytic performance of Pt/FeSnO(OH)5as an anodic catalyst.

    2 EXPERIMENTAL

    2.1 Preparation

    All chemical reagents were used as received without further purification.Stannic chloride pentahydrate (SnCl4·5H2O, AR), iron(II) sulfate heptahydrate (FeSO4·7H2O), sodium hydroxide (NaOH,AR), L-ascorbic acid and methanol (CH3OH, AR)were purchased from Sinopharm Chemical Reagent Co., Ltd (China).Chloroplatinic acid hexahydrate(H2PtCl6·6H2O, AR) were purchased from Aladdin Reagent.Nafion solution 5% (Dupont) and carbon vulcan XC-72 (Cabot) were used as received.

    In a typical synthesis, a solution of SnCl4·5H2O in deionized water (DI water) (0.5 M, 5 mL) was added to a solution of FeSO4·7H2O (0.5 M, 5mL) at room temperature with vigorous agitation, and a solution of NaOH (2 M, 10 mL) was added to the mixture slowly, which was stirred for 6 hours in a beaker at 60℃.The synthesized FeSnO(OH)5was collected by centrifugation and washed several times with DI water, and dried under vacuum at 60 ℃ for 6 h.Afterwards, 0.3 g prepared FeSnO(OH)5was added to 45 ml water, and then 15 ml HCl solution (1.0 M)was dropped into the suspension, stirring for 2.5 h at room temperature.The product was washed with DI water and absolute alcohol for several times, and dried in vacuum oven at 60 ℃ for 6 h to obtain FeSnO(OH)5nanoboxes.

    The complex catalyst was prepared by a sonochemical reaction in the L-ascorbic acid.Firstly, 0.5 ml H2PtCl6·6H2O (0.019 M) was added into 10 mL ice water rapidly under a strong agitation.Then, 10 mL L-ascorbic acid ice-water solution (0.1 M) was dropped slowly into the above mixture.0.005 g prepared FeSnO(OH)5was dropped into the above pale-yellow solution and stirred for 10 minutes.Subsequently, the solution was treated in an ultrasonic cleaning instrument for 1 h and then was deposited for 24 h.The obtained product was washed with DI water and absolute alcohol for several times and dried at 60 ℃ for 6 h in a vacuum oven, which was denoted as Pt/FeSnO(OH)5.For comparison, the Pt/C (Vulcan XC-72) electrocatalyst was synthesized using the carbon vulcan XC-72 as the precursor following the same procedure.

    2.2 Characterization

    The X-ray diffraction (XRD) measurements of the powder samples were performed in the reflection mode (CuKα radiation, l = 1.5418 ?) on a Rigaku Ultima III X-ray diffractometer.The field emission scanning electron microscopy (FESEM) images were obtained by Hitachi S4800 field emission scanning electron microscopy.The field emission transmission electron microscopy (FETEM) images were obtained by FEI Tecnai G2 F20 S-TWIN with a field emission gun operated at 200 kV.The X-ray photoelectron spectroscopy (XPS) measurements were performed with an ESCALab250-XI electron spectrometer from VG Scientific using a 300 W AlKα radiation.The base pressure was about 3 ×10-9mbar and the binding energies were corrected by adjusting the binding energy of the C1s peak to 284.8 eV from adventitious carbon.

    2.3 Electrochemical measurement

    The electrochemical measurements were performed on a CHI-660D electrochemical workstation with a conventional three-electrode cell.The catalyst ink was prepared by dispersing 5 mg prepared nanocomposite in a mixture containing 1 ml ethanol and 0.025 mL 5% Nafion solution under ultrasonication for 30 min.A glassy carbon electrode (3 mm in diameter) was used as the working electrode,which was carefully polished with a diamond pad/0.3 μm polishing suspension and rinsed with DI water and ethanol.After dropping 5 μL of the catalyst ink onto the electrode surface, the electrode was dried in air.A Pt wire and an Ag/AgCl electrode were used as the counter electrode and the reference electrode, respectively.The electrochemical impedance spectroscopy (EIS) was measured in a mixture of N2-purged 1 M methanol and 1 M KOH under open-circuit conduction.The EIS tests were conducted by sweeping the frequency from 100 KHz to 1 Hz under open circuit potential with 5 mV of amplitude.For the measurement of hydrogen adsorption/desorption reaction, the potential was cycled between –1 and 0.4 V at 50 mV/s in N2-purged 1 M KOH solution.The electrocatalytic properties for methanol oxidation of the catalysts were measured in a mixture of 1 M methanol and 1 M KOH.The chronoamperometry (CA) was recorded at –0.2 V for 3600 s in a mixture of 1 M methanol and 1 M KOH.

    The electrocatalytic activity for CO-stripping was obtained through the following steps: (i) CO gas was bubbled into a N2saturated 1 M KOH aqueous solution for 10 min; (ii) then N2was bubbled to remove the dissolved CO in the electrolyte, while the CO molecules adsorbed on the Pt surface were not affected by this treatment; (iii) finally, the cyclic voltammetric (CV) measurements were carried out in a N2saturated 1 M KOH over the potential range from –1 to +0.4 V at a scan rate of 50 mV/s.The ECSA derived from the CO-stripping was calculated using the following equation[29].

    where QCOis the measured charge for the CO stripping and WPtis the mass of Pt.The value 420 represents the charge density required to oxidize a monolayer of CO on Pt.

    3 RESULTS AND DISCUSSION

    3.1 Structure and morphology

    As shown in the XRD profiles (Fig.1a), all peaks of the prepared FeSnO(OH)5can be indexed to the diffractions of FeSnO(OH)5(JCPDS 74-1745), indicating there is no other phase.However, four new broadened peaks located at 39.8°, 46.2°, 67.5° and 81.3° appear in the pattern of the synthesized Pt/FeSnO(OH)5, corresponding to the diffractions of Pt (1 1 1), (2 0 0), (2 2 0) and (3 3 1) planes of the face-centered cubic (fcc) Pt (JCPDS 87-0640),respectively, indicating the target complex has been prepared.As shown in Fig.1b, the Pt/C is also indexed to the cubic Pt phase (JCPDS No.87-0640).

    Fig.1.XRD patterns of (a) the prepared FeSnO(OH)5, Pt/FeSnO(OH)5 and (b) Pt/C

    The XPS measurements were used to explore the electronic states and surface composition of the catalysts.As shown in Fig.2a, the two peaks corresponding to the Pt 4f7/2and Pt 4f5/2states with a 3.3 eV spacing and a 3:4 atomic ratio can be found[30,31].For Pt/FeSnO(OH)5, the most intense doublet (at 71.00 and 74.32 eV) is the signature of metal Pt.The second and weaker doublet (at 72.40 and 75.70 eV)with the binding energy at 1.4 eV higher than Pt(0)can be attributed to the Pt(II) oxidation state (PtO and Pt(OH)2-like species)[32,33].It is notable that Pt

    in +4 oxidation state is present in Pt/C.Table 1 summarizes the relative intensities of Pt0, Pt2+and Pt4+in the catalysts, which can be estimated from their peak surface area.There is a significant difference between the relative intensities of Pt0in the catalysts.The chemical state of Pt is an important factor on the electrochemical activity.There are reports that metallic Pt is a superior catalyst to Pt in the +4 oxidation state, and Pt0has better electrocatalytic activity toward methanol electro-oxidation in comparison with Pt2+and Pt4+[34,35].

    Table 1.Atomic % of Different Valenced Pt for Different Catalysts

    As marked by the dashed lines in Fig.2a, the binding energy of Pt 4f7/2in the Pt/FeSnO(OH)5(71.0 eV) is negatively shifted almost 0.6 eV compared with the Pt/C (71.6 eV), which implies that the electronic structure of Pt was modified by the hydroxide support because of an enhanced interaction between the Pt and the support material,indicating a transfer of electrons from FeSnO(OH)5to Pt[36,37].The shift is mainly caused by the electronegativity difference between the transition element and Pt, leading to the charge transfer from the more electropositive element such as Fe to Pt[38,39].This notion can be further supported by a positive shift of the Fe 2p peaks shown in Fig.2b.

    Fig.2.(a) Pt 4f XPS spectra of Pt/FeSnO(OH)5 and Pt/C; (b) Fe 2p XPS spectra of Pt/FeSnO(OH)5

    As shown in Fig.2b, the Fe 2p XPS spectrum of Pt/FeSnO(OH)5is split into two parts, namely Fe 2p3/2and Fe 2p1/2, with an atomic ratio of about 2/1.Each part consists of a main peak and a “shake-up”satellite[40].The peaks at 712.4.0 eV (2p3/2) and 726.3 eV (2p1/2) are attributed to Fe3+species, while the second pair of peaks observed at 711.0 eV (2p3/2)and 725.0 eV (2p1/2) are related to Fe2+species[41].The shake-up satellite peaks at 734.0 eV (2p1/2) and 729.9 eV (2p1/2) confirm the species, respectively[42].Thus, there are mixed valence states of Fe3+/Fe2+in Pt/FeSnO(OH)5for the binding-energies of Fe 2p in Pt/FeSnO(OH)5to be positively shifted.

    The SEM and TEM images of the samples are displayed in Figs.3 and 4, respectively.It can be clearly seen from Fig.3a that the FeSnO(OH)5crystals are nanocubes with the size of about 200~500 nm.After etching, the morphology of FeSn-O(OH)5is maintained as shown in Fig.3b.However,it can be found from the TEM image (Figs.3a and 3b) that the FeSnO(OH)5nanocubes have been etched into hollow nanoboxes after being treated in the acid solution.Figs.3c and 3d show Pt particles have been dispersed on the FeSnO(OH)5nanoboxes and the carbon (Vulcan XC-72).The corresponding TEM images are displayed in Figs.4c and 4d,respectively, showing both Pt based complexes have been successfully synthesized.As shown in the corresponding selected area electron diffraction(SAED) pattern inserted in Fig.4c, the Pt-based catalysts possess the Pt fcc structure.The high-resolution TEM (HRTEM) image (Fig.4d) of Pt/FeSnO(OH)5exhibits the lattice fringes with the interplanar distance of 0.225 nm, corresponding to the (111) plane of the cubic Pt, and the average size of Pt nanoparticles in Pt/ FeSnO(OH)5is about 4 nm,while the Pt particles on the carbon shown in Fig.4f have a similar size and the lattice fringes of 0.226 nm, which can be also attributed to the (111) plane of the cubic Pt.Additionally, the element com-positions measured by EDX analysis (shown in Figs.4g and 4h) are in good matchup with the Pt/FeSnO(OH)5and Pt/C.

    Fig.3.SEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching, (c) Pt/FeSnO(OH)5 and (d) Pt/C, respectively

    Fig.4.TEM images of (a) FeSnO(OH)5, (b) FeSnO(OH)5 after etching and (c) Pt/FeSnO(OH)5 with the corresponding SAED patterns inserted and (e) Pt/C, respectively; HRTEM images of (d) Pt/FeSnO(OH)5 and (f) Pt/C, respectively; EDX patterns of (g) Pt/FeSnO(OH)5 and (h) Pt/C, respectively

    3.2 Electrochemical measurement

    Fig.5a presents the CV curves of the prepared samples, which has three typical regions described as the hydrogen region, the double layer region and the oxygen region.Their electrochemically active surface areas (ECSAs) are determined from the charge of the hydrogen adsorption-desorption (HAD)signatures, which are related to the dispersion and nanoparticle sizes of Pt.The ECSA value is estimated according to the following equation[43]:

    where [Pt] represents the platinum loaded in the electrode (g/cm2), QHis the charge for hydrogen desorption (mC/cm2), and 0.21 represents the charge required to oxidize a monolayer of adsorbed hydrogen on bright Pt (mC/cm2).The ECSAs for the catalysts determined by hydrogen desorption peaks are listed in Table 2.The ECSAs derived from the CO-stripping of these samples show similar values in Table 2, proving the validity of the ECSA data.The calculated ECSAHADvalues for Pt/FeSnO(OH)5and Pt/C are about 8.364 and 24.464 m2/gPt, respectively.

    In the CV curves for both catalysts, two peaks are observed.The more positive current peak in the forward scan (If) is ascribed to the electro-oxidation of methanol, while the anodic peak in the backward scan (Ib) is attributed to the removal of incompletely oxidized carbonaceous species mainly composed of CO species formed during the forward scan[44].Fig.5b displays the CV curves normalized by the loading mass of Pt on the electrode for different catalysts.As shown in Fig.5b, although the ECSAHADof Pt/FeSnO(OH)5is lower, its mass activity (1182.35 mA/mgPt) is obviously higher than that of Pt/C(594.57 mA/mgPt).The current densities normalized by ECSAHADare also compared in Fig.5c, showing the specific activity of Pt/C is 1.76 mA/cm2, which is much lower than that of Pt/FeSnO(OH)5(14.30 mA/cm2).These results indicate the excellent electrocatalytic activity of Pt/FeSnO(OH)5toward MOR.

    To compare the CO-resistance ability of the catalysts, the CO stripping experiment was carried out.Fig.5d shows the CO stripping voltammograms for different catalysts.In the first positive scan, CO adsorbed on the electrode surface limited the presence of hydrogen oxidation peaks, and the adsorbed CO was oxidized at more positive potentials subsequently.On the second positive scan, the reappearance of hydrogen peaks at negative potentials indicates the freedom of dissolved CO on the electrode surface[45].The onset potential and peak potential for the CO oxidation and ECSA estimate using the CO-stripping curves are listed in Table 2.The onset potential of Pt/FeSnO(OH)5catalyst is 59 mV more negative than that of the commercial Pt/C catalyst.The positive peak potential for CO oxidation on the Pt/FeSnO(OH)5(–0.338 V) is shifted negatively compared with the Pt/C electrode (–0.282 V).These results significantly indicate the favorable role of FeSnO(OH)5for CO-tolerance, which is in accordance with the mass activity in Fig.5b.

    Table 2.Results of CO Stripping with the Prepared Catalysts and ECSA from H Adsorption-desorption

    Fig.5.(a) CV curves of the catalysts; (b) mass-normalized CV curves and (c) ECSA-normalized CV curves of the catalysts; (d) electrochemical CO-stripping curves of the catalysts

    Fig.6a depicts the Nyquist plot of EIS for the electrodes modified with Pt/FeSnO(OH)5and Pt/C.Both catalysts show a typical characteristic semicircle at the high frequency region.The semicircle in the high frequency region is taken as a measure of the charge transfer resistance (Rct) between the aqueous solution and the modified electrode[46],showing that the Rctof Pt/FeSnO(OH)5is lower than that of Pt/C, suggesting the faster kinetics of methanol oxidation and the higher electrocatalytic activity of Pt/FeSnO(OH)5compared with Pt/C[47,48].

    Fig.6b shows the CA curves of Pt-based catalysts in a solution of 1 M KOH with 1 M methanol for 3600 s at –0.2 V vs.Ag/AgCl.Both catalysts showed an initial faster decay, which is attributed to a double layer capacitance effect[49].After the initial significant drop period, the current decreased slowly because the MOR byproducts such as COads,CH3OHadsand CHOadswere adsorbed on the active surface of the catalysts[50].Obviously, the current density on the Pt/FeSnO(OH)5catalyst is the highest during the 1 h measurement, displaying its excellent electrocatalytic activity.The better stability of Pt/C may be attributed to the stronger binding energy between Pt and the carbon compared with Pt/FeSnO(OH)5, which can be proved by the XPS analysis.

    Fig.6.(a) Nyquist plot of EIS of the catalysts.(b) CA curves of the catalysts

    The different performance of MOR between the Pt/FeSnO(OH)5and Pt/C can be explained by the following factors.The first factor is the different interaction between the Pt particles and the transition metal of the support.As shown in the XPS curves(Fig.2a), the binding energy of the 4f7/2in Pt/FeSnO(OH)5is negatively shifted 0.6 eV compared with Pt/C, indicating a stronger interaction between Pt and FeSnO(OH)5.The increase of electron charge transfer from the transition metal to Pt atom is the major factor for the weakening of CO?Pt bonding and intermediate adsorptive strength for Pt, leading to the enhancement of electrochemical performance[51,52].The second factor is based on the bifunctional mechanism of the support.The OHadsis formed at lower potential on Sn sites than on the Pt sites, thus CO and CO-like intermediates could be oxidized at low potential, resulting in the better electrochemical activity for Pt/FeSnO(OH)5compared with Pt/C[53].Thirdly, as shown in Table 1, the atomic percentage of Pt0in Pt/FeSnO(OH)5is higher than that in Pt/C, which is also responsible for the better electrocatalytic activity.The metallic Pt in zero oxidation state is beneficial to the electrocatalytic activity towards methanol electro-oxidation in comparison with Pt2+and Pt4+[34].Furthermore, the higher amount of metallic Pt in zero oxidation state in Pt/FeSnO(OH)5proved by XPS and the better electronic conductivity of Pt/FeSnO(OH)5confirmed by the EIS measurement are both in favor of the MOR performance.

    4 CONCLUSION

    In conclusion, FeSnO(OH)5nanoboxes have been synthesized and deposited with Pt nanoparticles as an electrode catalyst in DMFCs.The catalytic performance of the prepared Pt/FeSnO(OH)5toward MOR has been evaluated and compared with the commercial carbon supported Pt.The XRD, XPS, SEM,TEM and electrochemical experiments have been employed to explore the relationships between the crystal structure and the electrochemical properties.The characterizations show that the prepared Pt/FeSnO(OH)5catalyst obtains enhanced performance toward MOR compared with Pt/C, which can be attributed to the lower interaction between Pt and the FeSnO(OH)5support, the bifunctional effect of FeSnO(OH)5, the higher atomic percentage of Pt0in FeSnO(OH)5and the better electronic conductivity of FeSnO(OH)5.The study has revealed the effect of support on the electrochemical catalytic activity and shows that the Pt/FeSnO(OH)5is a promising anode catalyst in DMFCs.

    REFERENCES

    (1) Kim, Y.; Noh, Y.; Lim, E.J.; Lee, S.; Choi, S.M.; Kim, W.B.Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance.J.Mater.Chem.A2014, 2, 6976-6986.

    (2) Zhu, J.; Xiao, M.; Zhao, X.; Li, K.; Liu, C.; Xing, W.Nitrogen-doped carbon-graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation.Chem.Commun.2014, 50, 12201-12203.

    (3) Munjewar, S.S.; Thombre, S.B.; Mallick, R.K.Approaches to overcome the barrier issues of passive direct methanol fuel cell – review.Sustain.Energy Rev.2017, 67, 1087-1104.

    (4) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D.P.A review of anode catalysis in the direct methanol fuel cell.J.Power Sources2006, 155, 95-110.

    (5) Santos, M.C.L.D.; Dutra, R.M.; Ribeiro, V.A.; Spinacé, E.V.; Neto, A.O.Preparation of PtRu/C electrocatalysts by borohydride reduction for methanol oxidation in acidic and alkaline medium.Int.J.Electrochem.Sci.2017, 12, 3549-3560.

    (6) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy.2015, 40, 15652-15662.

    (7) Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M.M.; Mangeney, C.; Villain, F.; Fiévet, F.Acetate- and thiol-capped monodisperse ruthenium nanoparticles:? XPS, XAS, and HRTEM studies.Langmuir.2005, 21, 6788-6796.

    (8) Huang, H.J.; Wang, X.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells.J.Mater.Chem.A2014,2, 6266-6291.

    (9) Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Li, R.; Cai, M.; Sun, X.Cover picture: a highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal.Angew.Chem.Int.Ed.2011, 50, 422-426.

    (10) Zhang, N.; Bu, L.; Guo, S.; Guo, J.; Huang, X.Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis.Nano Lett.2016, 16, 5037-5043.

    (11) Bavand, R.; Wei, Q.; Zhang, G.; Sun, S.; Yelon, A.; Sacher, E.PtRu alloy nanoparticles II.Chemical and electrochemical surface characterization for methanol oxidation.J.Phys.Chem.C2017, 121, 23120-23128.

    (12) Lv, Q.; Xiao, Y.; Yin, M.; Ge, J.; Xing, W.; Liu, C.Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation.Electrochim.Acta2014, 139, 61-68.

    (13) Liu, H.; Li, C.; Chen, D.; Cui, P.; Ye, F.; Yang, J.Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction.Sci.Rep.2017, 7, 11421.

    (14) Lu, X.Q.; Deng, Z.G.; Guo, C.; Wang, W.L.; Wei, S.X.; Ng, S.P.; Chen, X.F.; Ding, N.; Guo, W.Y.; Wu, C.M.L.Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition.ACS Appl.Mater.Interfaces2016, 8, 12194-12204.

    (15) Zhu, J.; Zheng, X.; Wang, J.; Wu, Z.X.; Han, L.L.; Lin, R.Q.; Xin, H.L.L.; Wang, D.L.Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation.J.Mater.Chem.A2015, 3, 22129-22135.

    (16) Su, N.; Hu, X.; Zhang, J.; Huang, H.; Cheng, J.; Yu, J.; Ge, C.Plasma-induced synthesis of Pt nanoparticles supported on TiO2nanotubes for enhanced methanol electro-oxidation.Appl.Surf.Sci.2017, 399, 403-410.

    (17) Wang, H.; Xue, Y.; Zhu, B.; Yang, J.; Wang, L.; Tan, X.CeO2nanowires stretch-embedded in reduced graphite oxide nanocomposite support for Pt nanoparticles as potential electrocatalyst for methanol oxidation reaction.Int.J.Hydrogen Energy2017, 42, 20549-20559.

    (18) Pan, K.Y.; Wei, D.H.Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires.Appl.Surf.Sci.2018, 427,1064-1070.

    (19) Yang, C.; Zhou, M.; Zhang, M.; Gao, L.Mitigating the degradation of carbon-supported Pt electrocatalysts by tungsten oxide nanoplates.Electrochim.Acta2016, 188, 529-536.

    (20) Ting, C.C.; Liu, C.H.; Tai, C.Y.; Hsu, S.C.; Chao, C.S.; Pan, F.M.The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism.J.Power Sources2015, 280 166-172.

    (21) Fan, H.; Cheng, M.; Wang, Z.; Wang, R.Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance.Nano.Res.2017,10, 187-198.

    (22) Chen, C.S.; Pan, F.M.Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2supports toward methanol oxidation.Appl.Catal.B:Environ.2009, 74, 663-669.

    (23) Tammam, R.H.; Fekry, A.M.; Saleh, M.M.Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles.Int.J.Hydrogen Energy2015, 40, 275-283.

    (24) Lee, M.J.; Kang, J.S.; Kang, Y.S.; Chung, D.Y.; Shin, H.; Ahn, C.Y.; Park, S.; Kim, M.J.; Kim, S.; Lee, K.S.; Sung, Y.E.Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system.ACS Catal.2016, 6, 2398-2407.

    (25) Huang, D.; Fu, X.; Long, J.; Jiang, X.; Chang, L.; Meng, S.; Chen, S.Hydrothermal synthesis of MSn(OH)6(M = Co, Cu, Fe, Mg, Mn, Zn) and their photocatalytic activity for the destruction of gaseous benzene.Chem.Eng.J.2015, 269,168-179.

    (26) Fu, X.; Wang, X.; Ding, Z.; Leung, D.Y.C.; Zhang, Z.; Long, J.; Zhang, W.; Li, Z.; Fu, X.Hydroxide ZnSn(OH)6: a promising new photocatalyst for benzene degradation.Appl.Catal.B: Environ.2009, 91, 67-72.

    (27) Huang, F.; Yuan, Z.; Zhan, H.; Zhou, Y.; Sun, J.A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries.Mater.Lett.2003, 57, 3341-3345.

    (28) Luo, B.; Xu, S.; Yan, X.; Xue, Q.Graphene nanosheets supported hollow Pt&CoSn(OH)6nanospheres as a catalyst for methanol electro-oxidation.J.Power Sources2012, 205, 239-243.

    (29) Kunitomo, H.; Ishitobi, H.; Nakagawa, N.Optimized CeO2content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells.J.Power Sources2015, 297, 400-407.

    (30) Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E.Handbook of X-ray photoelectron spectroscopy.Physical Electronics Division1979, p152-153.

    (31) Shyu, Z.J.; Otto, K.Identification of platinum phases on γ-alumina by XPS.Appl.Surf.Sci.1988, 32, 246-252.

    (32) Yang, J.; Deivaraj, T.C.; Too, H.; Lee, J.Y.An alternative phase-transfer method of preparing alkylamine-stabilized platinum nanoparticles.J.Phys.Chem.B2004, 108, 2181-2185.

    (33) Yang, J.; Lee, J.Y.; Deivaraj, T.C.; Too, H.An improved procedure for preparing smaller and nearly monodispersed thiol-stabilized platinum nanoparticles.Langmuir.2003, 19, 10361-10365.

    (34) Bisht, A.; Zhang, P.; Shivakumara, C.; Sharma, S.Pt-doped and Pt-supported La1–xSrxCoO3: comparative activity of Pt4+and Pt0toward the CO poisoning effect in formic acid and methanol electro-oxidation.J.Phys.Chem.C2015, 119, 14126-14134.

    (35) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    (36) Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q.Microwave-assisted synthesis of double-shell PtRu/TiO2catalyst towards methanol electro-oxidation.Int.J.Hydrogen Energy2015, 40, 15652-15662.

    (37) Higgins, D.; Hoque, A.M.; Seo, H.M.; Reinecke, T.Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction.Adv.Funct.Mater.2014, 27, 4325-4336.

    (38) Flórez-Monta?o, J.; García, G.; Rodríguez, J.L.; Pastor, E.; Cappellari, P.; Planes, G.A.On the design of Pt based catalysts.Combining porous architecture with surface modification by Sn for electrocatalytic activity enhancement.J.Power Sources2015, 282, 34-44.

    (39) Park, K.; Choi, J.; Kwon, B.; Lee, S.; Sung, Y.; Ha, H.; Hong, S.; Kim, H.; Wieckowski, A.Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.J.Phys.Chem.B2002, 106, 1869-1877.

    (40) Kuivila, C.S.; Butt, J.B.; Stair, P.C.Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy.Appl.Surf.Sci.1988, 32, 99-121.

    (41) Yamashita, T.; Hayes, P.Analysis of XPS spectra of Fe2+and Fe3+ions oxide materials.Appl.Surf.Sci.2008, 254, 2441-2449.

    (42) Dedryvère, R.; Maccario, M.; Croguennec, L.; Le Cras, F.; Delmas, C.; Gonbeau, D.X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4materials.Chem.Mater.2008, 207, 164-7170.

    (43) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L.Comparison of high surface Pt/C catalysts by cyclic voltammetry.J.Power Sources2002, 105, 13-19.

    (44) Qin, Y.; Yang, H.; Zhang, X.; Li, P.; Ma, C.Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium.Int.J.Hydrogen Energy2010, 35, 7667-7674.

    (45) Chen, X.; Si, C.; Gao, Y.; Frenzel, J.; Sun, J.; Eggeler, G.; Zhang, Z.Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction.J.Power Sources2015, 273, 324-332.

    (46) Li, Z.; Zhang, L.; Huang, X.; Ye, L.; Lin, S.Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation.Electrochim.Acta2014, 121, 215-222.

    (47) Ruan, D.; Gao, F.; Gu, Z.Enhanced electrochemical properties of surface roughed Pt nanowire electrocatalyst for methanol oxidation.Electrochim.Acta2014, 147, 225-231.

    (48) Zhou, Z.H.; Li, W.S.; Fu, Z.; Xiang, X.D.Carbon nanotube-supported Pt-H x MoO3as electrocatalyst for methanol oxidation.Int.J.Hydrogen Energy2010, 35, 936-941.

    (49) Jiang, L.; Sun, G.; Zhao, X.; Zhou, Z.; Yan, S.; Tang, S.; Wang, G.; Zhou, B.; Xin, Q.Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells.Electrochim.Acta2005, 50, 2371-2376.

    (50) Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F.; Leger, J.M.; Lamy, C.In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes.J.Electroanal.Chem.1998, 444, 41-53.

    (51) Wang, D.; Chou, H.; Lin, Y.; Lai, F.; Chen, C.; Lee, J.; Hwang, B.; Chen, C.Simple replacement reaction for the preparation of ternary Fe1–xPtRuxnanocrystals with superior catalytic activity in methanol oxidation reaction.J.Am.Chem.Soc.2012, 134, 10011-10020.

    (52) Fu, Q.; Li, W.X.; Yao, Y.; Liu, H.; Su, H.Y.; Ma, D.; Gu, X.K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X.Interface-confined ferrous centers for catalytic oxidation.Science2010, 328, 1141-1144.

    (53) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J.L.; Delichatsios, M.; Ukleja, S.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J.Phys.Chem.C2010, 114, 19459-19466.

    日日摸夜夜添夜夜添小说| 亚洲激情在线av| 亚洲午夜理论影院| 男人狂女人下面高潮的视频| 国产精品爽爽va在线观看网站| 永久网站在线| 男人和女人高潮做爰伦理| 天堂√8在线中文| 又粗又爽又猛毛片免费看| 亚洲午夜理论影院| 久久久久精品国产欧美久久久| 午夜精品在线福利| 成人无遮挡网站| 久久精品影院6| 日本五十路高清| 波野结衣二区三区在线| 亚洲在线观看片| 精品久久久久久成人av| 别揉我奶头~嗯~啊~动态视频| 最近中文字幕高清免费大全6 | 乱人视频在线观看| 久久亚洲精品不卡| 人妻制服诱惑在线中文字幕| 特大巨黑吊av在线直播| 成年人黄色毛片网站| 亚洲av电影在线进入| 亚洲综合色惰| 久久欧美精品欧美久久欧美| 亚洲一区二区三区不卡视频| 日本在线视频免费播放| 国产成人av教育| а√天堂www在线а√下载| 哪里可以看免费的av片| 久久人人精品亚洲av| 婷婷亚洲欧美| 中文字幕av在线有码专区| 亚洲自拍偷在线| 99久久久亚洲精品蜜臀av| 亚洲国产日韩欧美精品在线观看| 免费在线观看成人毛片| 国模一区二区三区四区视频| 国产精品精品国产色婷婷| 国产三级黄色录像| 丰满人妻一区二区三区视频av| 日韩欧美一区二区三区在线观看| 免费电影在线观看免费观看| 淫秽高清视频在线观看| 国产亚洲欧美在线一区二区| 高清日韩中文字幕在线| avwww免费| 最好的美女福利视频网| 欧美日韩瑟瑟在线播放| 久久国产精品人妻蜜桃| 亚洲男人的天堂狠狠| 99久国产av精品| 成人鲁丝片一二三区免费| 一边摸一边抽搐一进一小说| 天天躁日日操中文字幕| 超碰av人人做人人爽久久| 国产精品精品国产色婷婷| 欧美成人a在线观看| 亚洲av免费高清在线观看| bbb黄色大片| 成熟少妇高潮喷水视频| 国产在线精品亚洲第一网站| 18+在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 精品不卡国产一区二区三区| 成人特级黄色片久久久久久久| 亚洲国产高清在线一区二区三| 日韩免费av在线播放| 日本五十路高清| 国产伦精品一区二区三区视频9| 听说在线观看完整版免费高清| 国产精品久久久久久人妻精品电影| 亚洲成av人片免费观看| 成人亚洲精品av一区二区| 窝窝影院91人妻| www.www免费av| 国产亚洲欧美在线一区二区| 九九热线精品视视频播放| 欧美性猛交黑人性爽| 国内毛片毛片毛片毛片毛片| 欧美成人性av电影在线观看| 亚洲av熟女| 国模一区二区三区四区视频| 最后的刺客免费高清国语| 国产成人av教育| 亚洲久久久久久中文字幕| 久久久久免费精品人妻一区二区| 亚洲中文字幕日韩| 午夜福利18| 免费电影在线观看免费观看| 亚洲国产精品成人综合色| 一进一出抽搐动态| 高清在线国产一区| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 悠悠久久av| 亚洲精品成人久久久久久| 黄片小视频在线播放| 99国产综合亚洲精品| 毛片一级片免费看久久久久 | 一级a爱片免费观看的视频| 精品久久久久久久久亚洲 | 男女下面进入的视频免费午夜| 搡女人真爽免费视频火全软件 | 国产美女午夜福利| 色综合欧美亚洲国产小说| 国产精品久久电影中文字幕| 国产大屁股一区二区在线视频| 免费一级毛片在线播放高清视频| 国产亚洲精品综合一区在线观看| 国产探花极品一区二区| 韩国av一区二区三区四区| 午夜日韩欧美国产| 99久久99久久久精品蜜桃| 欧美最黄视频在线播放免费| 在线播放无遮挡| 精品久久久久久久人妻蜜臀av| 午夜免费男女啪啪视频观看 | 亚洲国产精品sss在线观看| 国产一区二区在线观看日韩| 热99在线观看视频| www.色视频.com| 国产主播在线观看一区二区| 久久久久久久久大av| 少妇的逼好多水| а√天堂www在线а√下载| 91久久精品国产一区二区成人| 久久性视频一级片| 老司机午夜福利在线观看视频| 国产探花在线观看一区二区| 少妇熟女aⅴ在线视频| av在线蜜桃| 自拍偷自拍亚洲精品老妇| 久久国产乱子伦精品免费另类| 亚洲美女视频黄频| 91麻豆精品激情在线观看国产| 露出奶头的视频| 男女之事视频高清在线观看| 日韩欧美精品免费久久 | 国产蜜桃级精品一区二区三区| 午夜福利在线观看免费完整高清在 | 变态另类丝袜制服| 露出奶头的视频| 日韩av在线大香蕉| 亚洲精品久久国产高清桃花| 99精品久久久久人妻精品| 久久久国产成人免费| 国产人妻一区二区三区在| 国产成人欧美在线观看| 久久精品国产亚洲av天美| 久久人妻av系列| 色5月婷婷丁香| 又紧又爽又黄一区二区| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 亚洲精品亚洲一区二区| 成人三级黄色视频| 91麻豆精品激情在线观看国产| 国产精品三级大全| av视频在线观看入口| 国产精品久久视频播放| 国产真实乱freesex| 桃色一区二区三区在线观看| 久久伊人香网站| 真实男女啪啪啪动态图| 国产探花极品一区二区| 亚洲成人久久性| 午夜影院日韩av| 色噜噜av男人的天堂激情| 五月玫瑰六月丁香| 色精品久久人妻99蜜桃| 日韩有码中文字幕| 国产伦精品一区二区三区四那| 1000部很黄的大片| 精品午夜福利在线看| 一本久久中文字幕| www.熟女人妻精品国产| 成人高潮视频无遮挡免费网站| 国产精品影院久久| 亚洲国产欧美人成| 在现免费观看毛片| www.熟女人妻精品国产| 国产黄片美女视频| 久久精品久久久久久噜噜老黄 | 成年版毛片免费区| 人人妻,人人澡人人爽秒播| 琪琪午夜伦伦电影理论片6080| 青草久久国产| 99热这里只有精品一区| 少妇高潮的动态图| 午夜福利欧美成人| 老鸭窝网址在线观看| 乱码一卡2卡4卡精品| 亚洲经典国产精华液单 | 免费看日本二区| 欧美高清成人免费视频www| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 欧美丝袜亚洲另类 | 午夜久久久久精精品| 精品福利观看| av国产免费在线观看| 偷拍熟女少妇极品色| 国产成人av教育| 天堂av国产一区二区熟女人妻| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产亚洲av涩爱 | 国产精品久久久久久久电影| 男女做爰动态图高潮gif福利片| 精品免费久久久久久久清纯| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇熟女久久| 能在线免费观看的黄片| 99热精品在线国产| 国产免费一级a男人的天堂| 国产91精品成人一区二区三区| 国产一区二区在线观看日韩| 我要搜黄色片| 首页视频小说图片口味搜索| 好看av亚洲va欧美ⅴa在| 久久久久亚洲av毛片大全| 噜噜噜噜噜久久久久久91| 美女 人体艺术 gogo| 国产精品电影一区二区三区| 1000部很黄的大片| 天堂√8在线中文| 十八禁人妻一区二区| 国产又黄又爽又无遮挡在线| 在线a可以看的网站| 他把我摸到了高潮在线观看| 18美女黄网站色大片免费观看| 国产久久久一区二区三区| 伦理电影大哥的女人| 精品乱码久久久久久99久播| 国产人妻一区二区三区在| 国产成+人综合+亚洲专区| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 日本黄色片子视频| 国产探花极品一区二区| 丁香欧美五月| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 网址你懂的国产日韩在线| 啪啪无遮挡十八禁网站| 久久99热6这里只有精品| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 在线观看美女被高潮喷水网站 | 啦啦啦韩国在线观看视频| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区| 久久久色成人| 欧美潮喷喷水| 久久热精品热| 舔av片在线| 极品教师在线视频| 99久久九九国产精品国产免费| 热99在线观看视频| 久久午夜福利片| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 真人一进一出gif抽搐免费| 久久人人爽人人爽人人片va | 国产精品嫩草影院av在线观看 | 欧美精品国产亚洲| 亚洲人与动物交配视频| 亚洲国产日韩欧美精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 看片在线看免费视频| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看 | 国产精华一区二区三区| 国产av麻豆久久久久久久| 97人妻精品一区二区三区麻豆| 亚洲精品影视一区二区三区av| 久久久精品大字幕| 国产男靠女视频免费网站| 欧美又色又爽又黄视频| 成人av一区二区三区在线看| or卡值多少钱| 人妻久久中文字幕网| 色哟哟哟哟哟哟| av在线天堂中文字幕| 欧美成人免费av一区二区三区| 黄色配什么色好看| 国产91精品成人一区二区三区| 成人性生交大片免费视频hd| 一个人看视频在线观看www免费| 热99在线观看视频| 国产成人aa在线观看| 在线十欧美十亚洲十日本专区| 精品一区二区免费观看| 可以在线观看的亚洲视频| 在线十欧美十亚洲十日本专区| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 婷婷亚洲欧美| 在线免费观看的www视频| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| 久久精品国产清高在天天线| 免费观看的影片在线观看| 9191精品国产免费久久| av欧美777| 精品熟女少妇八av免费久了| 欧美日韩国产亚洲二区| 久久精品国产清高在天天线| xxxwww97欧美| 欧美日韩综合久久久久久 | 此物有八面人人有两片| 亚洲五月天丁香| 小蜜桃在线观看免费完整版高清| 自拍偷自拍亚洲精品老妇| 岛国在线免费视频观看| 别揉我奶头 嗯啊视频| ponron亚洲| 亚洲av熟女| 怎么达到女性高潮| 日韩欧美精品v在线| a在线观看视频网站| 午夜视频国产福利| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 一区福利在线观看| 啪啪无遮挡十八禁网站| 免费人成在线观看视频色| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 黄色女人牲交| 欧美色欧美亚洲另类二区| 免费av不卡在线播放| 国产三级黄色录像| 亚洲不卡免费看| 中文字幕av成人在线电影| 亚洲av熟女| 赤兔流量卡办理| 色综合亚洲欧美另类图片| 非洲黑人性xxxx精品又粗又长| 国产白丝娇喘喷水9色精品| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 久久香蕉精品热| 欧美性感艳星| 国产aⅴ精品一区二区三区波| 日本五十路高清| 国产精品嫩草影院av在线观看 | av黄色大香蕉| 成人国产一区最新在线观看| 中国美女看黄片| 久久精品国产亚洲av涩爱 | 91久久精品国产一区二区成人| 观看免费一级毛片| 久久久久久九九精品二区国产| 国产黄色小视频在线观看| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 一区二区三区高清视频在线| 在线观看美女被高潮喷水网站 | 国产色婷婷99| 免费av不卡在线播放| 91麻豆精品激情在线观看国产| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久成人| 亚洲综合色惰| 在现免费观看毛片| 在线播放无遮挡| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 天堂√8在线中文| 欧美色欧美亚洲另类二区| 熟妇人妻久久中文字幕3abv| 国内揄拍国产精品人妻在线| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区av网在线观看| 色哟哟哟哟哟哟| 亚洲国产欧美人成| 成年免费大片在线观看| 亚洲欧美日韩东京热| 99久久精品热视频| 男人的好看免费观看在线视频| 国产成人a区在线观看| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区在线臀色熟女| 国产69精品久久久久777片| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三| 久久九九热精品免费| 国产精品电影一区二区三区| 午夜福利在线在线| 狠狠狠狠99中文字幕| 精品久久久久久久久久久久久| 九九在线视频观看精品| 国产av不卡久久| 日韩 亚洲 欧美在线| 国产精品国产高清国产av| 长腿黑丝高跟| 欧美黄色淫秽网站| 国产精品亚洲一级av第二区| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区| 少妇人妻精品综合一区二区 | 午夜福利在线观看吧| 国内精品久久久久精免费| 欧美又色又爽又黄视频| 日本a在线网址| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 亚洲在线观看片| 色在线成人网| 精品久久久久久久末码| 脱女人内裤的视频| 午夜福利18| 男插女下体视频免费在线播放| aaaaa片日本免费| 午夜福利在线观看吧| 免费av观看视频| 我的女老师完整版在线观看| 一进一出抽搐动态| 日本免费一区二区三区高清不卡| 欧美性感艳星| 成人精品一区二区免费| 综合色av麻豆| 中文资源天堂在线| 听说在线观看完整版免费高清| 亚洲三级黄色毛片| 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看| 男女做爰动态图高潮gif福利片| 精品日产1卡2卡| av在线观看视频网站免费| 成年免费大片在线观看| 精华霜和精华液先用哪个| 亚洲不卡免费看| 丰满的人妻完整版| 国产探花在线观看一区二区| 国产精品女同一区二区软件 | www.色视频.com| 国产又黄又爽又无遮挡在线| 国产国拍精品亚洲av在线观看| 午夜视频国产福利| 性色av乱码一区二区三区2| 人妻制服诱惑在线中文字幕| 啪啪无遮挡十八禁网站| 午夜福利在线观看免费完整高清在 | 69av精品久久久久久| 午夜日韩欧美国产| 欧美一区二区亚洲| 国产黄片美女视频| 午夜精品在线福利| 亚洲精品在线观看二区| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 亚洲三级黄色毛片| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 国产三级中文精品| 性欧美人与动物交配| 草草在线视频免费看| 99久久成人亚洲精品观看| 国产精品一区二区三区四区久久| 91在线观看av| 中文字幕熟女人妻在线| 欧美乱色亚洲激情| 亚洲精品久久国产高清桃花| 日韩免费av在线播放| 国产精品亚洲av一区麻豆| 久久这里只有精品中国| 中文字幕久久专区| 我要搜黄色片| 国产精品亚洲一级av第二区| 一进一出抽搐动态| av欧美777| 精品久久久久久久久久免费视频| 成人特级av手机在线观看| 久久精品国产亚洲av涩爱 | 日本黄大片高清| 精品无人区乱码1区二区| 五月伊人婷婷丁香| 国产精品一区二区免费欧美| 中文字幕熟女人妻在线| 一级黄色大片毛片| 一进一出抽搐动态| 久久亚洲精品不卡| 国产精品电影一区二区三区| 一个人免费在线观看电影| 三级男女做爰猛烈吃奶摸视频| 精品一区二区三区视频在线| 日韩欧美精品v在线| 老女人水多毛片| 成人特级av手机在线观看| 国产精品国产高清国产av| 毛片女人毛片| 最好的美女福利视频网| 高清在线国产一区| 琪琪午夜伦伦电影理论片6080| 免费看光身美女| 高清毛片免费观看视频网站| 神马国产精品三级电影在线观看| 亚洲人成网站在线播| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 一区二区三区免费毛片| 国产乱人视频| 精品99又大又爽又粗少妇毛片 | 成人av在线播放网站| 午夜福利18| 真实男女啪啪啪动态图| 听说在线观看完整版免费高清| 又紧又爽又黄一区二区| 狂野欧美白嫩少妇大欣赏| 午夜福利欧美成人| 日韩大尺度精品在线看网址| 观看美女的网站| 色哟哟哟哟哟哟| 美女高潮的动态| 香蕉av资源在线| 中文字幕高清在线视频| 毛片一级片免费看久久久久 | 搡老岳熟女国产| 真实男女啪啪啪动态图| 制服丝袜大香蕉在线| 国产精品久久久久久久电影| xxxwww97欧美| 久久精品国产清高在天天线| 在线播放无遮挡| www.www免费av| 神马国产精品三级电影在线观看| 又爽又黄a免费视频| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| 别揉我奶头~嗯~啊~动态视频| 丁香欧美五月| 高潮久久久久久久久久久不卡| 在线观看美女被高潮喷水网站 | 夜夜爽天天搞| 精品人妻偷拍中文字幕| 蜜桃久久精品国产亚洲av| 国产黄a三级三级三级人| 757午夜福利合集在线观看| 真人一进一出gif抽搐免费| 久久国产乱子免费精品| 久久久精品大字幕| 69人妻影院| 午夜福利在线观看免费完整高清在 | 每晚都被弄得嗷嗷叫到高潮| 91麻豆av在线| 变态另类丝袜制服| 欧美不卡视频在线免费观看| 1024手机看黄色片| 3wmmmm亚洲av在线观看| 国产探花在线观看一区二区| 老鸭窝网址在线观看| av天堂在线播放| 国产aⅴ精品一区二区三区波| 国产精品精品国产色婷婷| 亚洲成人免费电影在线观看| 最新在线观看一区二区三区| 88av欧美| 白带黄色成豆腐渣| 少妇人妻精品综合一区二区 | 国产精品久久电影中文字幕| 国产亚洲欧美在线一区二区| 波野结衣二区三区在线| 国产中年淑女户外野战色| 欧美午夜高清在线| 一本综合久久免费| 午夜精品久久久久久毛片777| 在线观看一区二区三区| 麻豆一二三区av精品| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区 | 有码 亚洲区| 精品福利观看| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片| 欧美乱色亚洲激情| 国产人妻一区二区三区在| 久久这里只有精品中国| 日日摸夜夜添夜夜添av毛片 | 中文字幕久久专区| 日本 欧美在线| 亚洲精品一区av在线观看| 日本一本二区三区精品| 免费人成视频x8x8入口观看| 欧美+亚洲+日韩+国产| 十八禁国产超污无遮挡网站| 日本a在线网址| 久久热精品热| 级片在线观看| 两个人视频免费观看高清| 一区二区三区高清视频在线| 国产久久久一区二区三区| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 极品教师在线视频| 久久久久久久午夜电影| 久久香蕉精品热| 成年女人毛片免费观看观看9|