• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Crystal Structure and Magnetic Properties of the New Quaternary Thiophosphate Rb2FeP2S6①

    2018-11-22 01:58:46SUYongFeiJIANGXiaoMingZENGHuiYiLIUBinWenLINYangJieGUOGuoCong
    結(jié)構(gòu)化學(xué) 2018年10期

    SU Yong-Fei JIANG Xiao-Ming ZENG Hui-Yi LIU Bin-Wen LIN Yang-Jie GUO Guo-Cong

    (State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China)

    A new quaternary thiophosphate Rb2FeP2S6was synthesized by the alkali metal halide flux method.Its structure features 1-D infinite1∞[FeP2S6]2-chains and counter cations Rb+.It shows a band gap of 2.03 eV.The nearest intra-chain Fe2+cations are antiferromagnetically coupled with each other, and there are weak ferromagnetic-like interactions between neighboring1∞[FeP2S6]2-chains, resulting in two successive magnetic phase transitions.

    1INTRODUCTION

    Metal thiophosphates[1]possess interesting properties,such as ion migration,nonlinear optical(NLO)behavior,phase transition,ferroelectricity,and magnetism[2].The diversity of their properties has structural origins,i.e.,various phosphorus-sulfur polyanions(PaSb)n–including(PS4)3–[3],(P2S6)4–[4],(P2S7)4–[5],(P3S10)5–[5c],and(P4S13)6–[6]can be formed in such type of compounds,as well as different assembling types and dimensions[5c,6,7].The A-MP-S(A=alkali metal,M=transition metal)type compounds are an important subgroup of metal thiophosphates and have received broad attention recently.For instance,LiZnPS4is a potential midinfrared nonlinear optical(NLO)material[8];Onedimensional AZrPS6(A=K,Rb,Cs)exhibits room temperature light emission[9];and 3-DLi2FeP2S6[10]and ATi2(PS4)3(A=Li,Na)[11]are promising electrode materials for high-energy density batteries.The high electropositive alkali metals in the A-M-P-S type compounds usually form strong ionic bonds with the surrounding anions,leading to low dimensional structures,which is particularly meaningful for the magnetic properties[7a,7c].Compounds containing 1-D magnetic chains in their structures,such as Li2(Li1-xFex)N[12],Co(H2L)(H2O)[13],Mn2Fe and Mn2Ni[14],(NEt4)[Mn2(5-MeOsalen)2Fe(CN)6][15],have attrac-ted much attention due to their high uniaxial magne-tic anisotropy and quantum tunneling relaxation,which may have potential applications in information storage and molecular spintronics[16].

    During the exploration of low-dimensional magnetic compounds in the A-M-P-S system,we have gained a new quaternary thiophosphate,namely,Rb2FeP2S6(1),through the alkali metal halide flux reactions.It features 1-D infinite1∞[FeP2S6]2-chains,in which the Fe2+cations are antiferromagnetically coupled with each other,and there are weak ferromagnetic-like interactions between different1∞[FeP2S6]2-chains,resulting in two magnetic phase transitions.Here we report its synthesis,structure,electronic and magnetic properties,and theoretical calculations of its electronic structure and magnetic coupling constants were also performed.

    2EXPERIMENTAL

    2.1 Spectral measurements

    The optical diffuse-reflectance spectrum of1(Fig.1)was measured using a Perkin Elmer Lambda 900 UV-vis spectrophotometer equipped with an integrating sphere attachment and BaSO4as the reference.The absorption spectrum was calculated from the reflection spectrum using the Kubelka-Munk formula:α/S=(1 – R)2/2R[17],in which α is the absorption coefficient,S is the scattering coefficient,and R is the reflectance.

    Fig.1.UV-Vis diffuse reflectance spectrum of 1 and its absorption spectrum(inset)

    2.2 Synthesis of Rb2FeP2S6

    All reagents including iron powder(99.5%),sulfur powder(99.5%),phosphorus powder(99.5%)and RbCl powder(99.5%)were from Aladdin Chemistry Co.Ltd.and were used as received without further purification.For synthesizing the title compound,a stoichiometric mixture of the starting materials Fe,P,S and RbCl with the molar ratio of 3:5:14:15 was loaded into quartz tubes and then flame-sealed under vacuum of about 10-4Torr.The tubes were placed in a temperature-controlled muffle furnace,heated to 300oC in 5 hours and kept at that temperature for 10 hours,heated to 700oC in 5 hours and kept at that temperature for 10 hours,then increased to 1000oC in 10 hours and kept for 3 days,finally cooled down to 400oC in 200 hours before switching off the furnace.The products were washed with distilled water and dried with ethanol.Yellow crystals of1with a yield of 30%were obtained.The compound is stable in the air and water.

    2.3 Crystal data and structure determination

    Single-crystal XRD data of1were collected by a Rigaku Pilatus CCD diffractometer using a graphite-monochrmated MoKa radiation(λ=0.71073 ?)at 293(2)K.The intensity data sets were measured using an ω-scan technique in the range of 3.3°<θ<25.49°for1at 293(2)K and reduced using the CrystalClear package[18].The structure determination was carried out by direct methods,and the refinements were performed using the full-matrix leastsquares method on F2with anisotropic thermal parameters for all atoms.For compound1,a total of 4091 reflections were recorded and 1023 were unique(Rint=0.0326),among which 858(–7≤h≤7, –14≤k≤11,–10≤l≤7)were observed.Compound1cry-stallizes in monoclinic,space group P21/c with a=6.042(3),b=12.338(6),c=9.045(4)?,β =124.25(2)o,V=557.3(5)?3,Z=2,F(000)=452,Dc=2.867 g·cm-3and μ =11.376 mm-1,(Δρ)max=0.542,(Δρ)min= –0.468 e/?-3.Final Ra/wRb(I>2σ(I))=0.0254/0.0550,R/wR(all data)=0.0349/0.0574(aR=||Fo|–|Fc||/|Fo|,bwR2=[w(Fo2–Fc2)2]/[w(Fo2)2]1/2).

    2.4 Computation procedure

    Theoretical calculations including band structure and magnetic properties based on the method of density-functional theory(DFT)[19]were performed by using the Vienna ab initio simulation package[20].Spin-polarized DFT calculations employing the projector augmented wave method adopt a plane-wave energy cutoff of 500 eV and a 4×2×3 Monkhorst-Pack grid of Brillouin-zone k-point sampling.The LDA plus on-site repulsion U method LDA+U[21]was employed to properly describe the electron correlation associated with the Fe 3d states with U of 3.0 eV.It’s worth noting here that the value of U doesn’t significantly affect the calculation results,as can be seen from the fact that the calculated band gaps are almost the same for1when using different U.The calculated band gaps are 1.95,2.00 and 2.10 eV for U=3.0,4.0 and 5.0 eV,respectively.

    3 RESULTSAND DISCUSSION

    3.1 Crystal structure

    The title compound crystallizes in space group P21/c.Its asymmetric unit contains crystallographically independent two Rb,one Fe,one P and three S positions,among which the Fe atom was coordinated by six S atoms to form a distorted octahedral FeS6unit(Fig.2).Two neighboring phosphorus atoms each possess tetrahedral coordination of one P and three S atoms,joining into pairs by P–P bond.Each pair is surrounded by six S atoms,forming a distorted P2S6octahedron.All octahedral FeS6and P2S6units with a molar ratio of 1:1 share two opposite faces with each other to form infinite one-dimensional1∞[FeP2S62-]chains extending along the a direction,between which the counter cations Rb+are embedded.The Fe–S and P–S bond lengths in1(Table 1)range from 2.5530 to 2.5980 ? and from 2.0173 to 2.0214 ?,respectively,which lie in the normal ranges for Fe–S and P–S bond lengths in known iron thiophosphates[22].

    Fig.2. (a)Structural framework of 1 showing isolated[FeP2S6]nn-chains along the a direction.(b)A1∞[FeP2S62-]octahedral chain viewed perpendicularly to its longitudinal direction.(c)Octahedral P2S6and FeS6units

    Table 1.Selected Bond Lengths(?)for 1

    3.2 Magnetic property

    The variable-temperature magnetic susceptibilities of compound1were measured in the range of 2~300 K under the external magnetic field of 1000 Oe(Fig.3).The cm·T value per Fe2+(d6)unit at room temperature is 3.33 emu·K·mol?1,which is close to the spin only value of 3.0 emu·K·mol?1for uncoupled high spin Fe2+(S=2)in the octahedral coordination geometry.With decreasing temperature,thecmvalue of Fe2+increases gradually and receives the highest peak of 0.044 emu·mol?1at~27 K.After that,thecmvalue starts to decrease at a high speed and reaches its lowest point with the value about 0.032 emu·mol-1at 9 K,indicating the presence of antiferromagnetic coupling between the nearest intrachain neighboring Fe2+centers with the transition temperature of~27 K.Then it increases again to a value of 0.038 emu·mol-1at 2.0 K,implying the ferromagnetic-like coupling between neighboring1∞[FeP2S62-]chains.The magnetic susceptibility of Fe2+conforms well to the Curie-Weiss law in the high temperature range of~50~300 K and gives the negative Weiss constants(?)–48 K for Fe2+,and Curie constants 3.71 emu·K·mol-1for Fe2+,further demonstrating the presence of antiferromagnetic alignments between the nearest intrachain neighboring spin centers in compound1.

    Fig.3.(a)Variable-temperature χm(left)and χmT(right)curves.(b)Variable-temperature 1/χmcurve

    3.3 Theoretical calculation

    In order to get further insights into the magnetic properties of1,the band structures and density of states(DOS)of complex1were calculated based on density-functional theory(DFT),and the magnetic exchange coupling constants in1were calculated through the energy-mapping method[23].The electronic structure of ferromagnetic state for1is calculated and presented in Fig.4a,which exhibits that ferromagnetic state is insulated with indirect band gap.The calculated bandgap of1is 1.95 eV,which is close to the experimental values of 2.03 eV.The calculated spin magnetic moment per Fe2+is 3.58,which can be gotten from the difference between the integration of DOS of up and down spin,and they are consistent with the pictures of high-spin Fe2+(d6,S=2)in1.

    The bands can be assigned according to the total and partial densities of states(DOS,Fig.4b).The band just above the Fermi level(or the bottom of conduction band)is predominately derived from unoccupied Fe-dstates.The band just below the Fermi level is composed of S-p states,mixed with a small amount of Fe-d states.Therefore,the optical absorption of1is mainly ascribed to the charge transitions from S-p and Fe-d states to Fe-d states.

    Fig.4a).Band structures of up-spin(red line)and down-spin(blue line)for the ferromagnetic state of 1 along the high symmetry k-points:Z(0,0,0.5),G(0,0,0),Y(0,0.5,0),A(–0.5,0.5,0),B(–0.5,0,0),D(–0.5,0,0.5),E(–0.5,0.5,0.5),C(0,0.5,0.5).b)Total and partial DOS for the Rb,Fe,P and S atoms in 1.The Fermi level is set at 0 eV for the band structures and DOS.The calculated band gap of 1 is 1.95 eV

    Fig.5.Six ordered spin states employed to extract the spin exchange parametersJa,JbandJc.For simplicity,only the magnetic cations Fe2+are shown.The spin-up and spin-down magnetic sites are represented by blue and red spheres,respectively.The yellow and green lines represent magnetic coupling between the same and opposite spins,respectively

    The magnetic exchange parameters including one between the nearest intrachain neighboring Fe2+ions labeled byJaand two other ones between the nearest interchain neighboring Fe2+ions labeled by JbandJccan be evaluated by examining six ordered spin states,namely,the FM and AFM1-5 states,among which two redundant spin states are added to check the consistency of calculation.The six ordered spin states are defined in Fig.5 in terms of 2×1×1 supercell.The total spin exchange interaction energies of the six ordered spin states are expressed in terms of the Hamiltonian:

    where H0is related to non-spin variables and is the same for all the sixspin states.Jij=Ja,b,cis the spin exchange parameter for the spin exchange interaction between the spin sites i and j,andandare the spin angular momentum at the spin sites i and j,respectively.The energy expressions of the six ordered spin states obtained per 2×1×1 supercell(S=2 for Fe2+)can be expressed as:

    E(FM)=E0+S2(2Ja+2Jb+Jc)

    E(AF1)=E0+S2(Jc)

    E(AF2)=E0+S2(–Jc)

    E(AF3)=E0+S2(–2Ja+2Jb–Jc)

    E(AF4)=E0+S2(2Ja– 2Jb–Jc)

    E(AF5)=E0+S2(–2Ja– 2Jb+Jc)

    Table 2.Relative Energies in meV of the Six Ordered Spin States of 1 Determined from LDA+U Calculations

    Table 2 summarizes the relative energies of the six ordered magnetic states determined from LDA+U calculations.When the relative energies of these spin states are mapped onto the corresponding energies determined from the spin Hamiltonian,the values ofJa,Jb,andJccan be obtained.The calculatedJais 1.4 meV while bothJbandJcare close to 0,indicating the intrachain spin exchangesJaare antiferromagnetic,and the interchain interactions are very weak,which are consistent with the experimental results.

    4 CONCLUSION

    In summary,a new quaternary thiophosphate Rb2FeP2S6was obtained via high-temperature solidstate reactions.Its structure is constructed by 1-D infinite1∞[FeP2S6]2-chains and countercations Rb+.The optical diffuse reflectance spectrum reveals its band gap of 2.03 eV.Variable-temperature magnetic susceptibility measurements indicate the antiferromagnetic coupling between the neighboring Fe2+centers and the ferromagnetic-like interchain coupling.Electronic structure and DOS calculations show that complex1exhibits an indirect band gap of 1.95 eV for the ferromagnetic state and its optical absorptions are mainly ascribed to the charge transitions from S-p and Fe-d states to the Fe-d states.Magnetic coupling constant of the intrachain Fe2+?Fe2+pair was derived to be 1.4 meV by LDA+U calculations and energy-mapping analysis.

    REFERENCES

    (1) (a)Grasso,V.;Silipigni,L.Low-dimensional materials:the MPX3family,physical features and potential future applications.Riv.Nuovo Cimento2002,25,1–102.(b)Mesbah,A.;Prakash,J.;Beard,J.C.;Lebegue,S.;Malliakas,C.D.;Ibers,J.A.Syntheses,crystal structures,optical and theoretical studies of the actinide thiophosphates SrU(PS4)2,BaU(PS4)2,and SrTh(PS4)2.Inorg.Chem.2015,54,2970–2975.(c)Klawitter,Y.;Bensch,W.;Wickleder,C.Synthesis,crystal structure,and vibrational and optical spectroscopy of the first quaternary alkaline-earth rare earth thiophosphates Ba3Ln2[P4S16](Ln=Gd?Er).Chem.Mater.2006,18,187?197.(d)Colombet,P.;Leblanc,A.;Danot,M.;Rouxel,J.Structural aspects and magnetic-properties of the lamellar compound Cu0.50Cr0.50PS3.J.Solid State Chem.1982,41,174?184.(e)Gutzmann,A.;Naether,C.;Bensch,W.Synthesis,crystal structure and optical properties of A3Zr2P5S18(A=Rb,Cs):the first quaternary zirconium thiophosphates.Solid State Sci.2004,6,205?211.(f)Hanko,J.A.;Sayettat,J.;Jobic,S.;Brec,R.;Kanatzidis,M.G.A2CuP3S9(A=K,Rb),Cs2Cu2P2S6,and K3CuP2S7:new phases from the dissolution of copper in molten polythiophosphate fluxes.Chem.Mater.1998,10,3040?3049.(g)Pfitzner,A.;Reiser,S.Refinement of the crystal structures of Cu3PS4and Cu3SbS4and a comment on normal tetrahedral structures.Z.Kristallogr.2002,217,51?54.(h)Marzik,J.V.;Hsieh,A.K.;Dwight,K.;Wold,A.Photoelectronic properties of Cu3PS4and Cu3PS3Se single crystals.J.Solid State Chem.1983,49,43?50.(i)Gieck,C.;Tremel,W.Interlocking inorganic screw helices:synthesis,structure,and magnetism of the novel framework uranium orthothiophoshates A11U7(PS4)13(A=K,Rb).Chem.Eur.J.2002,8,2980?2987.(j)Bron,P.;Johansson,S.;Zick,K.;Schmedt auf der Günne,J.;Dehnen,S.;Roling,B.Li10SnP2S12:an affordable lithium superionic conductor.J.Am.Chem.Soc.2013,135,15694?15697.(h)Kwon,O.;Hirayama,M.;Suzuki,K.;Kato,Y.;Saito,T.;Yonemura,M.;Kanno,R.Synthesis,structure,and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2?δS12.J.Mater.Chem.A2015,3,438?446.

    (2) (a)Adams,S.;Rao,R.P.Structural requirements for fast lithium ion migration in Li10GeP2S12.J.Mater.Chem.2012,22,7687–7691.(b)Brinkmann,C.;Eckert,H.;Wilmer,D.;Vogel,M.;Schmedt auf der Günne,J.;Hoffbauer,W.;Rau,F.;Pfitzner,A.Re-entrant phase transition of the crystalline ion conductor Ag7P3S11.Solid State Sci.2004,6,1077–1088.(c)Misuryaev,T.V.;Murzina,T.V.;Aktsipetrova,O.A.;Sherstyukb,N.E.;Cajipe,V.B.;Bourdonc,X.Second harmonic generation in the lamellar ferrielectric CuInP2S6.Solid State Commun.2000,115,605–608.(d)Zhou,M.L.;Kang,L.;Yao,J.Y.;Lin,Z.S.;Wu,Y.C.;Chen,C.T.Midinfrared nonlinear optical thiophosphates from LiZnPS4to AgZnPS4:a combined experimental and theoretical study.Inorg.Chem.2016,55,3724–3726.(e)Gave,M.A.;Mahanti,S.D.;Breshears,J.D.;Kanatzidis,M.G.On the lamellar compounds CuBiP2Se6,AgBiP2Se6and AgBiP2S6.Antiferroelectric phase transitions due to cooperative Cu+and Bi3+ion motion.Inorg.Chem.2005,44,5293–5303.(f)Ryf,R.;Montemezzani,G.;Gunter,P.;Grabar,A.A.;Stoika,I.M.;Vysochanskii,Y.M.High-frame-rate joint Fourier-transform correlator based on Sn2P2S6crystal.Opt.Lett.2001,26,1666–1668.(g)Durand,E.;Ouvrard,G.;Evain,M.;Brec,R.Split model description of the copper site distribution in the new layered 2D CuIVIIIP2S6phase.Inorg.Chem.1990,29,4916–4920.(h)Carpentier,C.D.;Nitsche,R.Ferroelectricity in Sn2P2S6.Mater.Res.Bull.1974,9,1097–1100.(i)Flerova,S.A.;Bochkov,O.E.;Kudzin,A.Y.;Krochmal,Y.D.Influence of magnetic field on the ferroelectric properties of Sn2P2S6crystals.Ferroelectrics1982,45,131–134.(j)Barsamian,T.K.;Khasanov,S.S.;Shekhtman,V.S.;Vysochanskii,Y.M.;Slivka,V.Y.Incommensurate phase in proper ferroelectric Sn2P2Se6.Ferroelectrics1986,67,47–54.(k)Rogach,Y.D.;Savchenko,E.A.;Sandjiev,D.N.;Protsenko,N.P.;Rodin,A.I.Film structures based on the ferroelectric-semiconductor Sn2P2S6.Ferroelectrics1988,83,179–185.(l)Valevichius,V.;Samulionis,V.;Skritskij,V.Orientational dependence of ultrasonic velocity near the phase transition in Sn2P2S6single crystals.Ferroelectrics1988,79,225–228.(m)Menzel,F.;Brockner,W.;Carrillo-Cabrera,W.;Von Schnering,H.G.Crystal structure and vibrational spectrum of dipotassium manganese(II)hexathiodiphosphate(IV),K2Mn[P2S6].Z.Anorg.Allg.Chem.1994,620,1081–1086.(n)Elder,S.H.;Van der Lee A.;Brec,R.;Canadell,E.KNiPS4:a new thiophosphate with one-and two-dimensional structural arrangements.J.Solid State Chem.1995,116,107–112.(o)Dong,Y.K.;Lee K.S.;Yun,H.S.;Hur,N.H.Synthesis,structure,and magnetic properties of one-dimensional thiophoshates,A2NiP2S6(A=Rb,Cs).J.Korean Chem.Soc.2001,45,242–246.(p)McCarthy,T.J.;Kanatzidis,M.G.Synthesis in molten alkali metal polyselenophosphate fluxes:a new family of transition metal selenophosphate compounds,A2MP2Se6(A=K,Rb,Cs;M=Mn,Fe)and A2M'2P2Se6(A=K,Cs;M'=Cu,Ag).Inorg.Chem.1995,34,1257–1267.

    (3) (a)Coste,S.;Hanko,J.;Bujoli-Doeuff,M.;Louarn,G.;Evain,M.;Brec,R.;Kanatzidis,M.G.NaPdPS4and RbPdPS4:systems with infinite straight1∞[PdPS4]?chains soluble in polar solvents and the structure of cubic RbPdPS4{Rb0.33P0.4S2.23Ox}.J.Solid State Chem.2003,175,133–145.(b)Zhu,Z.;Chu,I.H.;Ong,S.P.Li3Y(PS4)2and Li5PS4Cl2:new lithium superionic conductors predicted from silver thiophosphates using efficiently tiered ab initio molecular dynamics simulations.Chem.Mater.2017,29,2474–2484.(c)Fan,Y.H.;Zeng,H.Y.;Jiang,X.M.;Zhang,M.J.;Liu,B.W.;Guo,G.C.;Huang,J.S.Thiophosphates containing Ag+and lone-pair cations with interchiral double helix show both ionic conductivity and phase transition.Inorg.Chem.2017,56,962–973.(d)Neuhausen,C.;Rocker,F.;Tremel,W.Modular metal chalcogenide chemistry:secondary building blocks as a basis of the silicate-type framework structure of CsLiU(PS4)2.Z.Anorg.Allg.Chem.2012,638,405–410.(e)Mesbah,A.;Prakash,J.;Beard,J.C.;Lebègue,S.;Malliakas,C.D.;Ibers,J.A.Syntheses,crystal structures,optical and theoretical studies of the actinide thiophosphates SrU(PS4)2,BaU(PS4)2,and SrTh(PS4)2.Inorg.Chem.2015,54,2970–2975.(f)Alahmari,F.;Davaasuren,B.;Khanderi,J.;Rothenberger,A.Synthesis and characterization of the rubidium thiophosphate Rb6(PS5)(P2S10)and the rubidium silver thiophosphates Rb2AgPS4,RbAg5(PS4)2and Rb3Ag9(PS4)4.Z.Anorg.Allg.Chem.2016,642,361–367.

    (4)(a)Fan,Y.H.;Jiang,X.M.;Liu,B.W.;Li,S.F.;Guo,W.H.;Zeng,H.Y.;Huang,J.S.Phase transition and second harmonic generati on in thiophosphates Ag2Cd(P2S6)and AgCd3(PS4)S2containing two second-order Jahn-Teller distorted cations.Inorg.Chem.2016,56,114–124.(b)Komm,T.;Schleid,T.Three alkali-metal erbium thiophosphates:from the layered structure of KEr[P2S7]to the three-dimensional cross-linkagein NaEr[P2S6]und Cs3Er5[PS4]6.Z.Anorg.Allg.Chem.2006,632,42–48.(c)Wu,Y.;Bensch,W.Syntheses,crystal structures and spectroscopic properties of Ag2Nb[P2S6][S2]and KAg2[PS4].J.Solid State Chem.2009,182,471–478.(d)Golden,E.M.;Basun,S.A.Evans,D.R.;Grabar,A.A.;Stoika,I.M.;Giles,N.C.;Halliburton,L.E.Sn vacancies in photorefractive Sn2P2S6crystals:an electron paramagnetic resonance study of an optically active hole trap.J.Appl.Phys.2016,120,133101.

    (5) (a)Kim,K.;Na,J.;Yun,H.The two-dimensional thiophosphate CsCrP2S7.Acta Crystallogr.Sect.E:Struct.Rep.Online2010,66,i65–i65.(b)Babo,J.M.;Jouffret,L.;Lin,J.;Villa,E.M.;Albrecht-Schmitt,T.E.Synthesis,structure,and spectroscopy of two ternary uranium(IV)thiophosphates:UP2S9and UP2S7containing P2S92–and P2S72–ligands.Inorg.Chem.2013,52,7747–7751.(c)Hess,R.F.;Gordon,P.L.;Tait,C.D.;Abney,K.D.;Dorhout,P.K.Synthesis and structural characterization of the first quaternary plutonium thiophosphates:K3Pu(PS4)2and APuP2S7(A=K,Rb,Cs).J.Am.Chem.Soc.2002,124,1327–1333.(d)Hanko,J.A.;Sayettat,J.;Jobic,S.;Brec,R.;Kanatzidis,M.G.A2CuP3S9(A=K,Rb),Cs2Cu2P2S6,and K3CuP2S7:new phases from the dissolution of copper in molten polythiophosphate fluxes.Chem.Mater.1998,10,3040–3049.

    (6) Wu,Y.;Bensch,W.Rb3Ti3(P4S13)(PS4)3and Cs2Ti2(P2S8)(PS4)2:two polar titanium thiophosphates with complex one-dimensional tunnels.Inorg.Chem.2007,46,6170–6177.

    (7) (a)Brec,R.Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3.Solid State Ionics1986,22,3–30.(b)Carrillo-Cabrera,W.;Sassmannshausen,J.;Von Schnering,H.G.;Menzel,F.;Brockner,W.Synthesis,crystal structure,magnetism and vibrational spectrum of dipotassium iron(II)hexathiodiphosphate(IV),K2Fe[P2S6].Z.Anorg.Allg.Chem.1994,620,489–494.

    (8) Jorgens,S.;Johrendt,D.;Mewis,A.Motifs of closest packings:the compounds Zn3(PS4)2and LiZnPS4.Z.Anorg.Allg.Chem.2002,628,1765–1769.

    (9) Banerjee,S.;Szarko,J.M.;Yuhas,B.D.;Malliakas,C.D.;Chen,L.X.;Kanatzidis,M.G.Room temperature light emission from the low-dimensional semiconductorsAZrPS6(A=K,Rb,Cs).J.Am.Chem.Soc.2010,132,5348–5350.

    (10) Takada,K.;Michiue,Y.;Inada,T.;Kajiyama,A.;Kouguchi,M.;Kondo,S.;Tabuchi,M.Lithium iron thio-phosphate:a new 3 V sulfide cathode.Solid State Ionics2003,159,257–263.

    (11) (a)Shin,B.R.;Jung,Y.S.All-solid-state rechargeable lithium batteries using LiTi2(PS4)3cathode with Li2S-P2S5solid electrolyte.J.Electrochem.Soc.2014,161,A154-A159.(b)Kim,Y.;Arumugam,N.;Goodenough,J.B.3D Framework structure of a new lithium thiophosphate,LiTi2(PS4)3, as lithium insertion hosts.Chem.Mater.2007,20,470–474.

    (12) Jesche,A.;Ke,L.;Jacobs,J.L.;Harmon,B.;Houk,R.S.;Canfield,P.C.Alternating magnetic anisotropy of Li2(Li1?xTx)N(T=Mn,Fe,Co,and Ni).Phys.Rev.B.2015,91,180403.

    (13) (a)Palii,A.V.;Ostrovsky,S.M.;Klokishner,S.I.;Reu,O.S.;Sun,Z.M.;Prosvirin,A.V.;Dunbar,K.R.Origin of the single chain magnet behavior of the Co(H2L)(H2O)compound with a 1D structure.J.Phys.Chem.A2006,110,14003–14012.

    (14) Lutz,P.;Aguilà,D.;Mondal,A.;Pinkowicz,D.;Marx,R.;Neugebauer,P.;Fak,B.;Ollivier,J.;Clerac,R.;Van Slageren,J.Elementary excitations in single-chain magnets.Phys.Rev.B2017,96,094415.

    (15) Ferbinteanu,M.;Miyasaka,H.;Wernsdorfer,W.;Nakata,K.;Sugiura,K.I.;Yamashita,M.;Clérac,R.Single-chain magnet(NEt4)[Mn2(5-MeOsalen)2Fe(CN)6]made of Mn(III)-Fe(III)-Mn(III)trinuclear single-molecule magnet with an S(T)=9/2 spin ground state.J.Am.Chem.Soc.2005,127,3090–3099.

    (16) (a)Zhang,W.X.;Ishikawa,R.;Breedlove,B.;Yamashita,M.Single-chain magnets:beyond the Glauber model.RSC Adv.2013,3,3772–3798.(b)Sun,H.L.;Wang,Z.M.;Gao,S.Strategies towards single-chain magnets.Coord.Chem.Rev.2010,254,1081–1100.(c)Bogani,L.;Vindigni,A.;Sessoli R.;Gatteschi,D.Single chain magnets:where to from here?J.Mater.Chem.2008,18,4750–4758.

    (17) Korum,G.Reflectance Spectroscopy.Springer:New York1969.

    (18) CrystalClear,Version 1.3.5.;Rigaku Corp.:Tokyo2002.

    (19) (a)Hohenberg,P.;Kohn,W.Inhomogeneous electron gas.Phys.Rev.1964,136,B864.(b)Kohn,W.;Sham,L.J.Self-consistent equations including exchange and correlation effects.Phys.Rev.1965,140,A1133–A1138.

    (20) (a)Kresse,G.;Furthmüller,J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput.Mat.Sci.1996,6,15–50.(b)Kresse,G.;Furthmüller,J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B1996,54,11169.

    (21) Liechtenstein,A.I.;Anisimov,V.I.;Zaanen,J.Density-functional theory and strong interactions:orbital ordering in Mott-Hubbard insulators.Phys.Rev.B1995,52,R5467.

    (22) (a)Klingen,W.;Eulenberger,G.;Hahn,H.über Hexachalkogeno-hypodiphosphate vom Typ M2P2X6.Naturwissenschaften1970,57,88–88.(b)Ouvrard,G.;Brec,R.;Rouxel,J.Structural determination of some MPS3layered phases(M=Mn,Fe,Co,Ni and Cd).Mater.Res.Bull.1985,20,1181–1189.(c)Rao,R.R.;Raychaudhuri,A.K.Magnetic studies of a mixed antiferromagnetic system Fe1?xNixPS3.J.Phys.Chem.Solids1992,53,577–583.

    (23) Xiang,H.;Lee,C.;Koo,H.J.;Gong,X.;Whangbo,M.H.Magnetic properties and energy-mapping analysis.Dalton Trans.2013,42,823–853.

    国产乱人偷精品视频| 国产精品欧美亚洲77777| 黑人欧美特级aaaaaa片| 人妻人人澡人人爽人人| 9191精品国产免费久久| 国产成人免费无遮挡视频| 国产 精品1| 男女午夜视频在线观看 | 国产国语露脸激情在线看| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 免费黄色在线免费观看| 成人综合一区亚洲| 看十八女毛片水多多多| 国产精品一国产av| 狂野欧美激情性xxxx在线观看| 国产亚洲精品久久久com| 婷婷色av中文字幕| 国产av一区二区精品久久| 久久久久久久久久久免费av| 99香蕉大伊视频| 久久久久人妻精品一区果冻| 亚洲欧美中文字幕日韩二区| 自线自在国产av| 十八禁网站网址无遮挡| 亚洲精品日韩在线中文字幕| 亚洲综合色网址| 久久精品国产综合久久久 | 日韩制服骚丝袜av| 视频中文字幕在线观看| 秋霞在线观看毛片| 日韩视频在线欧美| 国产熟女欧美一区二区| 欧美bdsm另类| 黄片播放在线免费| 亚洲国产色片| 久久久a久久爽久久v久久| 黄色配什么色好看| 一区二区三区乱码不卡18| 亚洲久久久国产精品| 国产视频首页在线观看| www.熟女人妻精品国产 | 日本-黄色视频高清免费观看| 一级,二级,三级黄色视频| 少妇人妻 视频| 国产亚洲最大av| 免费大片18禁| 男人爽女人下面视频在线观看| 久久久久久人人人人人| 又黄又爽又刺激的免费视频.| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 人妻一区二区av| 久久免费观看电影| 亚洲综合色网址| 一本久久精品| 亚洲av在线观看美女高潮| 免费看光身美女| 亚洲精品视频女| 最近最新中文字幕免费大全7| 啦啦啦中文免费视频观看日本| 又黄又粗又硬又大视频| 老司机影院成人| 内地一区二区视频在线| 国产亚洲精品第一综合不卡 | av卡一久久| 热re99久久精品国产66热6| h视频一区二区三区| 狠狠婷婷综合久久久久久88av| 久久久久精品久久久久真实原创| 观看美女的网站| 韩国高清视频一区二区三区| 日韩在线高清观看一区二区三区| 18在线观看网站| 丰满乱子伦码专区| 国产精品99久久99久久久不卡 | 在线观看www视频免费| 久久毛片免费看一区二区三区| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91| 最近手机中文字幕大全| 男女午夜视频在线观看 | 亚洲国产色片| 精品一区二区三卡| 亚洲欧美一区二区三区黑人 | 中文字幕精品免费在线观看视频 | 久久久精品94久久精品| 国产精品99久久99久久久不卡 | 高清毛片免费看| www.av在线官网国产| 欧美人与性动交α欧美精品济南到 | 看免费成人av毛片| 美女主播在线视频| 久久精品久久精品一区二区三区| 999精品在线视频| 97超碰精品成人国产| 亚洲一区二区三区欧美精品| 激情五月婷婷亚洲| 少妇 在线观看| 赤兔流量卡办理| 中文天堂在线官网| 少妇的逼好多水| 欧美 亚洲 国产 日韩一| 国产日韩欧美亚洲二区| 国产精品一区二区在线观看99| 日韩中字成人| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影| 国产在线视频一区二区| 91aial.com中文字幕在线观看| 青青草视频在线视频观看| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 蜜臀久久99精品久久宅男| 中国国产av一级| 日韩 亚洲 欧美在线| 精品人妻在线不人妻| 久久免费观看电影| 两个人看的免费小视频| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 免费播放大片免费观看视频在线观看| 美女福利国产在线| 国产乱人偷精品视频| 最近中文字幕2019免费版| 少妇的丰满在线观看| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 母亲3免费完整高清在线观看 | 校园人妻丝袜中文字幕| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产最新在线播放| 在线观看一区二区三区激情| 国产免费一级a男人的天堂| 日韩av免费高清视频| 国产 精品1| 国产午夜精品一二区理论片| 街头女战士在线观看网站| 日本av手机在线免费观看| 九九爱精品视频在线观看| 国产男女超爽视频在线观看| 爱豆传媒免费全集在线观看| 熟女人妻精品中文字幕| 亚洲欧美成人精品一区二区| 男人操女人黄网站| 少妇猛男粗大的猛烈进出视频| 韩国精品一区二区三区 | 国产乱来视频区| 欧美人与善性xxx| 国产一区二区在线观看日韩| 久久精品国产综合久久久 | 91久久精品国产一区二区三区| 一区二区三区乱码不卡18| 妹子高潮喷水视频| 女的被弄到高潮叫床怎么办| 国产高清三级在线| 欧美变态另类bdsm刘玥| 国产一区有黄有色的免费视频| 91精品三级在线观看| 亚洲欧美成人精品一区二区| 欧美+日韩+精品| 黄色一级大片看看| 久久人妻熟女aⅴ| 国产精品成人在线| 日韩大片免费观看网站| 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 久久精品久久久久久久性| 伊人久久国产一区二区| 80岁老熟妇乱子伦牲交| 黄色一级大片看看| 国产黄色免费在线视频| 大码成人一级视频| 亚洲国产最新在线播放| 超碰97精品在线观看| 国产精品久久久av美女十八| 美女中出高潮动态图| 在线观看免费视频网站a站| videosex国产| 亚洲av电影在线进入| 99视频精品全部免费 在线| 婷婷色麻豆天堂久久| 精品久久久久久电影网| 久久久久人妻精品一区果冻| 两个人看的免费小视频| 天堂8中文在线网| 在线观看免费高清a一片| 久久韩国三级中文字幕| 国产乱来视频区| 人妻 亚洲 视频| 亚洲第一区二区三区不卡| 国产国语露脸激情在线看| 好男人视频免费观看在线| 欧美97在线视频| 只有这里有精品99| 丰满少妇做爰视频| 国产精品国产av在线观看| 久久久久精品久久久久真实原创| 曰老女人黄片| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 一二三四在线观看免费中文在 | 18禁裸乳无遮挡动漫免费视频| 王馨瑶露胸无遮挡在线观看| 另类精品久久| 内地一区二区视频在线| 亚洲,欧美精品.| a级毛片在线看网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与性动交α欧美软件 | 搡女人真爽免费视频火全软件| av国产精品久久久久影院| 免费看av在线观看网站| 尾随美女入室| 天天躁夜夜躁狠狠久久av| 大香蕉久久成人网| 午夜久久久在线观看| 国内精品宾馆在线| 免费看光身美女| 亚洲av福利一区| 久久99热6这里只有精品| 国产免费现黄频在线看| 国产精品欧美亚洲77777| 成年av动漫网址| 午夜福利网站1000一区二区三区| 免费观看性生交大片5| 国产一区有黄有色的免费视频| 黄片无遮挡物在线观看| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 18在线观看网站| 激情五月婷婷亚洲| 春色校园在线视频观看| 三上悠亚av全集在线观看| 伊人久久国产一区二区| 天堂中文最新版在线下载| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 2022亚洲国产成人精品| 亚洲高清免费不卡视频| 蜜桃在线观看..| 日韩制服骚丝袜av| 99热全是精品| 国产成人精品久久久久久| 成人影院久久| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| 99久国产av精品国产电影| 在线天堂中文资源库| 午夜久久久在线观看| 韩国精品一区二区三区 | 九色亚洲精品在线播放| 人人妻人人澡人人爽人人夜夜| 免费av中文字幕在线| av在线app专区| av在线观看视频网站免费| 亚洲综合精品二区| 亚洲久久久国产精品| 2018国产大陆天天弄谢| 丝瓜视频免费看黄片| 国产极品天堂在线| 欧美人与性动交α欧美软件 | 国产亚洲精品久久久com| 久久久久久久久久成人| 高清av免费在线| 男人舔女人的私密视频| av播播在线观看一区| 国产片特级美女逼逼视频| 国产在线免费精品| 男女国产视频网站| 巨乳人妻的诱惑在线观看| 人人妻人人澡人人看| 最近的中文字幕免费完整| 在线天堂最新版资源| 色视频在线一区二区三区| 在线观看免费视频网站a站| 亚洲国产精品专区欧美| 免费看av在线观看网站| 日韩一本色道免费dvd| 久久午夜福利片| 日韩在线高清观看一区二区三区| 亚洲精品色激情综合| 国产一级毛片在线| 久久99一区二区三区| 亚洲 欧美一区二区三区| 日韩一区二区视频免费看| 日本vs欧美在线观看视频| 啦啦啦啦在线视频资源| 一级片免费观看大全| 精品少妇内射三级| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 免费黄网站久久成人精品| 亚洲精品视频女| 热99国产精品久久久久久7| 国产淫语在线视频| 日韩av不卡免费在线播放| 精品一区在线观看国产| 少妇 在线观看| 亚洲欧美色中文字幕在线| 欧美日韩综合久久久久久| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| 日韩av不卡免费在线播放| 久久综合国产亚洲精品| 久久久久国产精品人妻一区二区| 久久精品国产鲁丝片午夜精品| 黄色配什么色好看| 国产精品秋霞免费鲁丝片| 最后的刺客免费高清国语| 国产高清三级在线| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久久久免| 丝袜人妻中文字幕| 亚洲人与动物交配视频| 亚洲精品aⅴ在线观看| 成人无遮挡网站| 十八禁网站网址无遮挡| 久久影院123| 青春草视频在线免费观看| 亚洲国产精品专区欧美| 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久国产电影| 免费观看a级毛片全部| 一二三四在线观看免费中文在 | av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 一级片'在线观看视频| 伊人久久国产一区二区| 日本wwww免费看| 国产成人欧美| 大香蕉久久成人网| 欧美成人午夜精品| 亚洲精品乱码久久久久久按摩| 中文乱码字字幕精品一区二区三区| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 亚洲国产日韩一区二区| xxxhd国产人妻xxx| 久久av网站| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 爱豆传媒免费全集在线观看| 又黄又爽又刺激的免费视频.| 亚洲综合色惰| 99久久人妻综合| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 视频在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 大话2 男鬼变身卡| www日本在线高清视频| 久久人妻熟女aⅴ| 一本久久精品| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 亚洲欧美清纯卡通| 精品熟女少妇av免费看| 婷婷色综合www| 国产熟女欧美一区二区| 最近手机中文字幕大全| 中文字幕人妻丝袜制服| 国产精品久久久久成人av| 黑丝袜美女国产一区| 亚洲婷婷狠狠爱综合网| 国产日韩一区二区三区精品不卡| 久久毛片免费看一区二区三区| 日本猛色少妇xxxxx猛交久久| 欧美精品高潮呻吟av久久| 亚洲一级一片aⅴ在线观看| 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 亚洲美女搞黄在线观看| 国产国语露脸激情在线看| 久久久久久久国产电影| 草草在线视频免费看| 日韩制服丝袜自拍偷拍| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 日韩中字成人| 黑人巨大精品欧美一区二区蜜桃 | 国产乱人偷精品视频| 精品一区二区三区四区五区乱码 | 日本黄色日本黄色录像| 久久青草综合色| 国产欧美亚洲国产| 久久 成人 亚洲| 在线天堂中文资源库| 亚洲欧美日韩卡通动漫| 女性生殖器流出的白浆| 丰满少妇做爰视频| 日本-黄色视频高清免费观看| 2021少妇久久久久久久久久久| 精品熟女少妇av免费看| 下体分泌物呈黄色| 在线看a的网站| 日韩免费高清中文字幕av| 久久女婷五月综合色啪小说| 午夜91福利影院| 九九在线视频观看精品| 我要看黄色一级片免费的| 亚洲欧美精品自产自拍| 熟女人妻精品中文字幕| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 女性被躁到高潮视频| 天天操日日干夜夜撸| 久久久久精品性色| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 国产精品一二三区在线看| 国产黄频视频在线观看| 免费日韩欧美在线观看| 亚洲成色77777| 欧美性感艳星| 久久精品熟女亚洲av麻豆精品| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 青春草亚洲视频在线观看| 久久狼人影院| 国产一区二区三区av在线| 五月天丁香电影| 大香蕉久久网| 久久久久视频综合| 久久精品久久久久久久性| 伊人亚洲综合成人网| 午夜福利影视在线免费观看| 捣出白浆h1v1| 伦理电影免费视频| 97在线人人人人妻| 国产精品成人在线| 欧美xxxx性猛交bbbb| 亚洲人成77777在线视频| 中文字幕最新亚洲高清| 男人添女人高潮全过程视频| 亚洲av男天堂| 久久久久久人人人人人| 亚洲精品视频女| 国内精品宾馆在线| 国产av精品麻豆| 亚洲精品久久午夜乱码| 久久久久久久久久久免费av| 99久久精品国产国产毛片| 日本免费在线观看一区| 99久国产av精品国产电影| 日韩一本色道免费dvd| 国产精品一二三区在线看| 日韩伦理黄色片| 丝袜喷水一区| 交换朋友夫妻互换小说| 欧美xxxx性猛交bbbb| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| av卡一久久| 寂寞人妻少妇视频99o| 久久久久精品性色| 国产一区二区三区av在线| 18禁观看日本| 在线观看三级黄色| 国产成人一区二区在线| 丝袜美足系列| 在线看a的网站| 99热这里只有是精品在线观看| 最新中文字幕久久久久| 成人综合一区亚洲| 黑人猛操日本美女一级片| 亚洲性久久影院| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 亚洲国产欧美在线一区| 视频中文字幕在线观看| 飞空精品影院首页| 女性生殖器流出的白浆| 观看av在线不卡| 久久人人爽av亚洲精品天堂| 欧美国产精品va在线观看不卡| 美国免费a级毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本色播在线视频| 制服人妻中文乱码| 久久久久国产精品人妻一区二区| 美女中出高潮动态图| 久久99精品国语久久久| 免费久久久久久久精品成人欧美视频 | 天堂俺去俺来也www色官网| 亚洲在久久综合| 国产欧美另类精品又又久久亚洲欧美| 美国免费a级毛片| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 青春草亚洲视频在线观看| 国产亚洲精品久久久com| 青春草视频在线免费观看| 男人操女人黄网站| 日日爽夜夜爽网站| 男女国产视频网站| 咕卡用的链子| 国产又爽黄色视频| 美女脱内裤让男人舔精品视频| 亚洲一级一片aⅴ在线观看| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品古装| 国产伦理片在线播放av一区| 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图| 水蜜桃什么品种好| 久久久久久久久久久免费av| 男女高潮啪啪啪动态图| 丝袜脚勾引网站| 人体艺术视频欧美日本| xxx大片免费视频| 男人舔女人的私密视频| www.av在线官网国产| 我的女老师完整版在线观看| 午夜福利视频精品| 久久精品国产a三级三级三级| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 久久久精品区二区三区| 欧美老熟妇乱子伦牲交| 香蕉国产在线看| 免费观看性生交大片5| 丝袜在线中文字幕| 国产探花极品一区二区| 日韩中字成人| 午夜福利视频精品| 国产午夜精品一二区理论片| 亚洲国产av新网站| 在线观看免费高清a一片| 亚洲美女搞黄在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲美女视频黄频| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 久久久久视频综合| av不卡在线播放| 18+在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影| 国产精品.久久久| 国产成人免费观看mmmm| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 久久综合国产亚洲精品| 天天躁夜夜躁狠狠躁躁| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 国产1区2区3区精品| 久久人人97超碰香蕉20202| 在线精品无人区一区二区三| 美女主播在线视频| 国产1区2区3区精品| 免费在线观看完整版高清| 黄片无遮挡物在线观看| 9色porny在线观看| 精品99又大又爽又粗少妇毛片| 伦精品一区二区三区| 2018国产大陆天天弄谢| 国产乱来视频区| 性高湖久久久久久久久免费观看| 亚洲国产精品专区欧美| 国精品久久久久久国模美| 考比视频在线观看| 日本色播在线视频| 欧美日韩国产mv在线观看视频| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 99热全是精品| 国产成人精品在线电影| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 亚洲中文av在线| 日韩不卡一区二区三区视频在线| 国产1区2区3区精品| 日韩精品免费视频一区二区三区 | 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 黄网站色视频无遮挡免费观看| 免费高清在线观看日韩| 成人手机av| 少妇人妻精品综合一区二区| 久久av网站| 一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 狠狠婷婷综合久久久久久88av| 黑人猛操日本美女一级片| 亚洲美女搞黄在线观看| 女性生殖器流出的白浆| 欧美日韩视频高清一区二区三区二| 久久久久久久大尺度免费视频| 最近中文字幕2019免费版| 精品午夜福利在线看| 丝袜脚勾引网站| 亚洲av欧美aⅴ国产| 日日爽夜夜爽网站| 考比视频在线观看| 日本-黄色视频高清免费观看| 亚洲综合精品二区| 久久这里有精品视频免费| 69精品国产乱码久久久| a级毛片黄视频| 男女免费视频国产|