• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Crystal Structure and Magnetic Properties of the New Quaternary Thiophosphate Rb2FeP2S6①

    2018-11-22 01:58:46SUYongFeiJIANGXiaoMingZENGHuiYiLIUBinWenLINYangJieGUOGuoCong
    結(jié)構(gòu)化學(xué) 2018年10期

    SU Yong-Fei JIANG Xiao-Ming ZENG Hui-Yi LIU Bin-Wen LIN Yang-Jie GUO Guo-Cong

    (State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China)

    A new quaternary thiophosphate Rb2FeP2S6was synthesized by the alkali metal halide flux method.Its structure features 1-D infinite1∞[FeP2S6]2-chains and counter cations Rb+.It shows a band gap of 2.03 eV.The nearest intra-chain Fe2+cations are antiferromagnetically coupled with each other, and there are weak ferromagnetic-like interactions between neighboring1∞[FeP2S6]2-chains, resulting in two successive magnetic phase transitions.

    1INTRODUCTION

    Metal thiophosphates[1]possess interesting properties,such as ion migration,nonlinear optical(NLO)behavior,phase transition,ferroelectricity,and magnetism[2].The diversity of their properties has structural origins,i.e.,various phosphorus-sulfur polyanions(PaSb)n–including(PS4)3–[3],(P2S6)4–[4],(P2S7)4–[5],(P3S10)5–[5c],and(P4S13)6–[6]can be formed in such type of compounds,as well as different assembling types and dimensions[5c,6,7].The A-MP-S(A=alkali metal,M=transition metal)type compounds are an important subgroup of metal thiophosphates and have received broad attention recently.For instance,LiZnPS4is a potential midinfrared nonlinear optical(NLO)material[8];Onedimensional AZrPS6(A=K,Rb,Cs)exhibits room temperature light emission[9];and 3-DLi2FeP2S6[10]and ATi2(PS4)3(A=Li,Na)[11]are promising electrode materials for high-energy density batteries.The high electropositive alkali metals in the A-M-P-S type compounds usually form strong ionic bonds with the surrounding anions,leading to low dimensional structures,which is particularly meaningful for the magnetic properties[7a,7c].Compounds containing 1-D magnetic chains in their structures,such as Li2(Li1-xFex)N[12],Co(H2L)(H2O)[13],Mn2Fe and Mn2Ni[14],(NEt4)[Mn2(5-MeOsalen)2Fe(CN)6][15],have attrac-ted much attention due to their high uniaxial magne-tic anisotropy and quantum tunneling relaxation,which may have potential applications in information storage and molecular spintronics[16].

    During the exploration of low-dimensional magnetic compounds in the A-M-P-S system,we have gained a new quaternary thiophosphate,namely,Rb2FeP2S6(1),through the alkali metal halide flux reactions.It features 1-D infinite1∞[FeP2S6]2-chains,in which the Fe2+cations are antiferromagnetically coupled with each other,and there are weak ferromagnetic-like interactions between different1∞[FeP2S6]2-chains,resulting in two magnetic phase transitions.Here we report its synthesis,structure,electronic and magnetic properties,and theoretical calculations of its electronic structure and magnetic coupling constants were also performed.

    2EXPERIMENTAL

    2.1 Spectral measurements

    The optical diffuse-reflectance spectrum of1(Fig.1)was measured using a Perkin Elmer Lambda 900 UV-vis spectrophotometer equipped with an integrating sphere attachment and BaSO4as the reference.The absorption spectrum was calculated from the reflection spectrum using the Kubelka-Munk formula:α/S=(1 – R)2/2R[17],in which α is the absorption coefficient,S is the scattering coefficient,and R is the reflectance.

    Fig.1.UV-Vis diffuse reflectance spectrum of 1 and its absorption spectrum(inset)

    2.2 Synthesis of Rb2FeP2S6

    All reagents including iron powder(99.5%),sulfur powder(99.5%),phosphorus powder(99.5%)and RbCl powder(99.5%)were from Aladdin Chemistry Co.Ltd.and were used as received without further purification.For synthesizing the title compound,a stoichiometric mixture of the starting materials Fe,P,S and RbCl with the molar ratio of 3:5:14:15 was loaded into quartz tubes and then flame-sealed under vacuum of about 10-4Torr.The tubes were placed in a temperature-controlled muffle furnace,heated to 300oC in 5 hours and kept at that temperature for 10 hours,heated to 700oC in 5 hours and kept at that temperature for 10 hours,then increased to 1000oC in 10 hours and kept for 3 days,finally cooled down to 400oC in 200 hours before switching off the furnace.The products were washed with distilled water and dried with ethanol.Yellow crystals of1with a yield of 30%were obtained.The compound is stable in the air and water.

    2.3 Crystal data and structure determination

    Single-crystal XRD data of1were collected by a Rigaku Pilatus CCD diffractometer using a graphite-monochrmated MoKa radiation(λ=0.71073 ?)at 293(2)K.The intensity data sets were measured using an ω-scan technique in the range of 3.3°<θ<25.49°for1at 293(2)K and reduced using the CrystalClear package[18].The structure determination was carried out by direct methods,and the refinements were performed using the full-matrix leastsquares method on F2with anisotropic thermal parameters for all atoms.For compound1,a total of 4091 reflections were recorded and 1023 were unique(Rint=0.0326),among which 858(–7≤h≤7, –14≤k≤11,–10≤l≤7)were observed.Compound1cry-stallizes in monoclinic,space group P21/c with a=6.042(3),b=12.338(6),c=9.045(4)?,β =124.25(2)o,V=557.3(5)?3,Z=2,F(000)=452,Dc=2.867 g·cm-3and μ =11.376 mm-1,(Δρ)max=0.542,(Δρ)min= –0.468 e/?-3.Final Ra/wRb(I>2σ(I))=0.0254/0.0550,R/wR(all data)=0.0349/0.0574(aR=||Fo|–|Fc||/|Fo|,bwR2=[w(Fo2–Fc2)2]/[w(Fo2)2]1/2).

    2.4 Computation procedure

    Theoretical calculations including band structure and magnetic properties based on the method of density-functional theory(DFT)[19]were performed by using the Vienna ab initio simulation package[20].Spin-polarized DFT calculations employing the projector augmented wave method adopt a plane-wave energy cutoff of 500 eV and a 4×2×3 Monkhorst-Pack grid of Brillouin-zone k-point sampling.The LDA plus on-site repulsion U method LDA+U[21]was employed to properly describe the electron correlation associated with the Fe 3d states with U of 3.0 eV.It’s worth noting here that the value of U doesn’t significantly affect the calculation results,as can be seen from the fact that the calculated band gaps are almost the same for1when using different U.The calculated band gaps are 1.95,2.00 and 2.10 eV for U=3.0,4.0 and 5.0 eV,respectively.

    3 RESULTSAND DISCUSSION

    3.1 Crystal structure

    The title compound crystallizes in space group P21/c.Its asymmetric unit contains crystallographically independent two Rb,one Fe,one P and three S positions,among which the Fe atom was coordinated by six S atoms to form a distorted octahedral FeS6unit(Fig.2).Two neighboring phosphorus atoms each possess tetrahedral coordination of one P and three S atoms,joining into pairs by P–P bond.Each pair is surrounded by six S atoms,forming a distorted P2S6octahedron.All octahedral FeS6and P2S6units with a molar ratio of 1:1 share two opposite faces with each other to form infinite one-dimensional1∞[FeP2S62-]chains extending along the a direction,between which the counter cations Rb+are embedded.The Fe–S and P–S bond lengths in1(Table 1)range from 2.5530 to 2.5980 ? and from 2.0173 to 2.0214 ?,respectively,which lie in the normal ranges for Fe–S and P–S bond lengths in known iron thiophosphates[22].

    Fig.2. (a)Structural framework of 1 showing isolated[FeP2S6]nn-chains along the a direction.(b)A1∞[FeP2S62-]octahedral chain viewed perpendicularly to its longitudinal direction.(c)Octahedral P2S6and FeS6units

    Table 1.Selected Bond Lengths(?)for 1

    3.2 Magnetic property

    The variable-temperature magnetic susceptibilities of compound1were measured in the range of 2~300 K under the external magnetic field of 1000 Oe(Fig.3).The cm·T value per Fe2+(d6)unit at room temperature is 3.33 emu·K·mol?1,which is close to the spin only value of 3.0 emu·K·mol?1for uncoupled high spin Fe2+(S=2)in the octahedral coordination geometry.With decreasing temperature,thecmvalue of Fe2+increases gradually and receives the highest peak of 0.044 emu·mol?1at~27 K.After that,thecmvalue starts to decrease at a high speed and reaches its lowest point with the value about 0.032 emu·mol-1at 9 K,indicating the presence of antiferromagnetic coupling between the nearest intrachain neighboring Fe2+centers with the transition temperature of~27 K.Then it increases again to a value of 0.038 emu·mol-1at 2.0 K,implying the ferromagnetic-like coupling between neighboring1∞[FeP2S62-]chains.The magnetic susceptibility of Fe2+conforms well to the Curie-Weiss law in the high temperature range of~50~300 K and gives the negative Weiss constants(?)–48 K for Fe2+,and Curie constants 3.71 emu·K·mol-1for Fe2+,further demonstrating the presence of antiferromagnetic alignments between the nearest intrachain neighboring spin centers in compound1.

    Fig.3.(a)Variable-temperature χm(left)and χmT(right)curves.(b)Variable-temperature 1/χmcurve

    3.3 Theoretical calculation

    In order to get further insights into the magnetic properties of1,the band structures and density of states(DOS)of complex1were calculated based on density-functional theory(DFT),and the magnetic exchange coupling constants in1were calculated through the energy-mapping method[23].The electronic structure of ferromagnetic state for1is calculated and presented in Fig.4a,which exhibits that ferromagnetic state is insulated with indirect band gap.The calculated bandgap of1is 1.95 eV,which is close to the experimental values of 2.03 eV.The calculated spin magnetic moment per Fe2+is 3.58,which can be gotten from the difference between the integration of DOS of up and down spin,and they are consistent with the pictures of high-spin Fe2+(d6,S=2)in1.

    The bands can be assigned according to the total and partial densities of states(DOS,Fig.4b).The band just above the Fermi level(or the bottom of conduction band)is predominately derived from unoccupied Fe-dstates.The band just below the Fermi level is composed of S-p states,mixed with a small amount of Fe-d states.Therefore,the optical absorption of1is mainly ascribed to the charge transitions from S-p and Fe-d states to Fe-d states.

    Fig.4a).Band structures of up-spin(red line)and down-spin(blue line)for the ferromagnetic state of 1 along the high symmetry k-points:Z(0,0,0.5),G(0,0,0),Y(0,0.5,0),A(–0.5,0.5,0),B(–0.5,0,0),D(–0.5,0,0.5),E(–0.5,0.5,0.5),C(0,0.5,0.5).b)Total and partial DOS for the Rb,Fe,P and S atoms in 1.The Fermi level is set at 0 eV for the band structures and DOS.The calculated band gap of 1 is 1.95 eV

    Fig.5.Six ordered spin states employed to extract the spin exchange parametersJa,JbandJc.For simplicity,only the magnetic cations Fe2+are shown.The spin-up and spin-down magnetic sites are represented by blue and red spheres,respectively.The yellow and green lines represent magnetic coupling between the same and opposite spins,respectively

    The magnetic exchange parameters including one between the nearest intrachain neighboring Fe2+ions labeled byJaand two other ones between the nearest interchain neighboring Fe2+ions labeled by JbandJccan be evaluated by examining six ordered spin states,namely,the FM and AFM1-5 states,among which two redundant spin states are added to check the consistency of calculation.The six ordered spin states are defined in Fig.5 in terms of 2×1×1 supercell.The total spin exchange interaction energies of the six ordered spin states are expressed in terms of the Hamiltonian:

    where H0is related to non-spin variables and is the same for all the sixspin states.Jij=Ja,b,cis the spin exchange parameter for the spin exchange interaction between the spin sites i and j,andandare the spin angular momentum at the spin sites i and j,respectively.The energy expressions of the six ordered spin states obtained per 2×1×1 supercell(S=2 for Fe2+)can be expressed as:

    E(FM)=E0+S2(2Ja+2Jb+Jc)

    E(AF1)=E0+S2(Jc)

    E(AF2)=E0+S2(–Jc)

    E(AF3)=E0+S2(–2Ja+2Jb–Jc)

    E(AF4)=E0+S2(2Ja– 2Jb–Jc)

    E(AF5)=E0+S2(–2Ja– 2Jb+Jc)

    Table 2.Relative Energies in meV of the Six Ordered Spin States of 1 Determined from LDA+U Calculations

    Table 2 summarizes the relative energies of the six ordered magnetic states determined from LDA+U calculations.When the relative energies of these spin states are mapped onto the corresponding energies determined from the spin Hamiltonian,the values ofJa,Jb,andJccan be obtained.The calculatedJais 1.4 meV while bothJbandJcare close to 0,indicating the intrachain spin exchangesJaare antiferromagnetic,and the interchain interactions are very weak,which are consistent with the experimental results.

    4 CONCLUSION

    In summary,a new quaternary thiophosphate Rb2FeP2S6was obtained via high-temperature solidstate reactions.Its structure is constructed by 1-D infinite1∞[FeP2S6]2-chains and countercations Rb+.The optical diffuse reflectance spectrum reveals its band gap of 2.03 eV.Variable-temperature magnetic susceptibility measurements indicate the antiferromagnetic coupling between the neighboring Fe2+centers and the ferromagnetic-like interchain coupling.Electronic structure and DOS calculations show that complex1exhibits an indirect band gap of 1.95 eV for the ferromagnetic state and its optical absorptions are mainly ascribed to the charge transitions from S-p and Fe-d states to the Fe-d states.Magnetic coupling constant of the intrachain Fe2+?Fe2+pair was derived to be 1.4 meV by LDA+U calculations and energy-mapping analysis.

    REFERENCES

    (1) (a)Grasso,V.;Silipigni,L.Low-dimensional materials:the MPX3family,physical features and potential future applications.Riv.Nuovo Cimento2002,25,1–102.(b)Mesbah,A.;Prakash,J.;Beard,J.C.;Lebegue,S.;Malliakas,C.D.;Ibers,J.A.Syntheses,crystal structures,optical and theoretical studies of the actinide thiophosphates SrU(PS4)2,BaU(PS4)2,and SrTh(PS4)2.Inorg.Chem.2015,54,2970–2975.(c)Klawitter,Y.;Bensch,W.;Wickleder,C.Synthesis,crystal structure,and vibrational and optical spectroscopy of the first quaternary alkaline-earth rare earth thiophosphates Ba3Ln2[P4S16](Ln=Gd?Er).Chem.Mater.2006,18,187?197.(d)Colombet,P.;Leblanc,A.;Danot,M.;Rouxel,J.Structural aspects and magnetic-properties of the lamellar compound Cu0.50Cr0.50PS3.J.Solid State Chem.1982,41,174?184.(e)Gutzmann,A.;Naether,C.;Bensch,W.Synthesis,crystal structure and optical properties of A3Zr2P5S18(A=Rb,Cs):the first quaternary zirconium thiophosphates.Solid State Sci.2004,6,205?211.(f)Hanko,J.A.;Sayettat,J.;Jobic,S.;Brec,R.;Kanatzidis,M.G.A2CuP3S9(A=K,Rb),Cs2Cu2P2S6,and K3CuP2S7:new phases from the dissolution of copper in molten polythiophosphate fluxes.Chem.Mater.1998,10,3040?3049.(g)Pfitzner,A.;Reiser,S.Refinement of the crystal structures of Cu3PS4and Cu3SbS4and a comment on normal tetrahedral structures.Z.Kristallogr.2002,217,51?54.(h)Marzik,J.V.;Hsieh,A.K.;Dwight,K.;Wold,A.Photoelectronic properties of Cu3PS4and Cu3PS3Se single crystals.J.Solid State Chem.1983,49,43?50.(i)Gieck,C.;Tremel,W.Interlocking inorganic screw helices:synthesis,structure,and magnetism of the novel framework uranium orthothiophoshates A11U7(PS4)13(A=K,Rb).Chem.Eur.J.2002,8,2980?2987.(j)Bron,P.;Johansson,S.;Zick,K.;Schmedt auf der Günne,J.;Dehnen,S.;Roling,B.Li10SnP2S12:an affordable lithium superionic conductor.J.Am.Chem.Soc.2013,135,15694?15697.(h)Kwon,O.;Hirayama,M.;Suzuki,K.;Kato,Y.;Saito,T.;Yonemura,M.;Kanno,R.Synthesis,structure,and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2?δS12.J.Mater.Chem.A2015,3,438?446.

    (2) (a)Adams,S.;Rao,R.P.Structural requirements for fast lithium ion migration in Li10GeP2S12.J.Mater.Chem.2012,22,7687–7691.(b)Brinkmann,C.;Eckert,H.;Wilmer,D.;Vogel,M.;Schmedt auf der Günne,J.;Hoffbauer,W.;Rau,F.;Pfitzner,A.Re-entrant phase transition of the crystalline ion conductor Ag7P3S11.Solid State Sci.2004,6,1077–1088.(c)Misuryaev,T.V.;Murzina,T.V.;Aktsipetrova,O.A.;Sherstyukb,N.E.;Cajipe,V.B.;Bourdonc,X.Second harmonic generation in the lamellar ferrielectric CuInP2S6.Solid State Commun.2000,115,605–608.(d)Zhou,M.L.;Kang,L.;Yao,J.Y.;Lin,Z.S.;Wu,Y.C.;Chen,C.T.Midinfrared nonlinear optical thiophosphates from LiZnPS4to AgZnPS4:a combined experimental and theoretical study.Inorg.Chem.2016,55,3724–3726.(e)Gave,M.A.;Mahanti,S.D.;Breshears,J.D.;Kanatzidis,M.G.On the lamellar compounds CuBiP2Se6,AgBiP2Se6and AgBiP2S6.Antiferroelectric phase transitions due to cooperative Cu+and Bi3+ion motion.Inorg.Chem.2005,44,5293–5303.(f)Ryf,R.;Montemezzani,G.;Gunter,P.;Grabar,A.A.;Stoika,I.M.;Vysochanskii,Y.M.High-frame-rate joint Fourier-transform correlator based on Sn2P2S6crystal.Opt.Lett.2001,26,1666–1668.(g)Durand,E.;Ouvrard,G.;Evain,M.;Brec,R.Split model description of the copper site distribution in the new layered 2D CuIVIIIP2S6phase.Inorg.Chem.1990,29,4916–4920.(h)Carpentier,C.D.;Nitsche,R.Ferroelectricity in Sn2P2S6.Mater.Res.Bull.1974,9,1097–1100.(i)Flerova,S.A.;Bochkov,O.E.;Kudzin,A.Y.;Krochmal,Y.D.Influence of magnetic field on the ferroelectric properties of Sn2P2S6crystals.Ferroelectrics1982,45,131–134.(j)Barsamian,T.K.;Khasanov,S.S.;Shekhtman,V.S.;Vysochanskii,Y.M.;Slivka,V.Y.Incommensurate phase in proper ferroelectric Sn2P2Se6.Ferroelectrics1986,67,47–54.(k)Rogach,Y.D.;Savchenko,E.A.;Sandjiev,D.N.;Protsenko,N.P.;Rodin,A.I.Film structures based on the ferroelectric-semiconductor Sn2P2S6.Ferroelectrics1988,83,179–185.(l)Valevichius,V.;Samulionis,V.;Skritskij,V.Orientational dependence of ultrasonic velocity near the phase transition in Sn2P2S6single crystals.Ferroelectrics1988,79,225–228.(m)Menzel,F.;Brockner,W.;Carrillo-Cabrera,W.;Von Schnering,H.G.Crystal structure and vibrational spectrum of dipotassium manganese(II)hexathiodiphosphate(IV),K2Mn[P2S6].Z.Anorg.Allg.Chem.1994,620,1081–1086.(n)Elder,S.H.;Van der Lee A.;Brec,R.;Canadell,E.KNiPS4:a new thiophosphate with one-and two-dimensional structural arrangements.J.Solid State Chem.1995,116,107–112.(o)Dong,Y.K.;Lee K.S.;Yun,H.S.;Hur,N.H.Synthesis,structure,and magnetic properties of one-dimensional thiophoshates,A2NiP2S6(A=Rb,Cs).J.Korean Chem.Soc.2001,45,242–246.(p)McCarthy,T.J.;Kanatzidis,M.G.Synthesis in molten alkali metal polyselenophosphate fluxes:a new family of transition metal selenophosphate compounds,A2MP2Se6(A=K,Rb,Cs;M=Mn,Fe)and A2M'2P2Se6(A=K,Cs;M'=Cu,Ag).Inorg.Chem.1995,34,1257–1267.

    (3) (a)Coste,S.;Hanko,J.;Bujoli-Doeuff,M.;Louarn,G.;Evain,M.;Brec,R.;Kanatzidis,M.G.NaPdPS4and RbPdPS4:systems with infinite straight1∞[PdPS4]?chains soluble in polar solvents and the structure of cubic RbPdPS4{Rb0.33P0.4S2.23Ox}.J.Solid State Chem.2003,175,133–145.(b)Zhu,Z.;Chu,I.H.;Ong,S.P.Li3Y(PS4)2and Li5PS4Cl2:new lithium superionic conductors predicted from silver thiophosphates using efficiently tiered ab initio molecular dynamics simulations.Chem.Mater.2017,29,2474–2484.(c)Fan,Y.H.;Zeng,H.Y.;Jiang,X.M.;Zhang,M.J.;Liu,B.W.;Guo,G.C.;Huang,J.S.Thiophosphates containing Ag+and lone-pair cations with interchiral double helix show both ionic conductivity and phase transition.Inorg.Chem.2017,56,962–973.(d)Neuhausen,C.;Rocker,F.;Tremel,W.Modular metal chalcogenide chemistry:secondary building blocks as a basis of the silicate-type framework structure of CsLiU(PS4)2.Z.Anorg.Allg.Chem.2012,638,405–410.(e)Mesbah,A.;Prakash,J.;Beard,J.C.;Lebègue,S.;Malliakas,C.D.;Ibers,J.A.Syntheses,crystal structures,optical and theoretical studies of the actinide thiophosphates SrU(PS4)2,BaU(PS4)2,and SrTh(PS4)2.Inorg.Chem.2015,54,2970–2975.(f)Alahmari,F.;Davaasuren,B.;Khanderi,J.;Rothenberger,A.Synthesis and characterization of the rubidium thiophosphate Rb6(PS5)(P2S10)and the rubidium silver thiophosphates Rb2AgPS4,RbAg5(PS4)2and Rb3Ag9(PS4)4.Z.Anorg.Allg.Chem.2016,642,361–367.

    (4)(a)Fan,Y.H.;Jiang,X.M.;Liu,B.W.;Li,S.F.;Guo,W.H.;Zeng,H.Y.;Huang,J.S.Phase transition and second harmonic generati on in thiophosphates Ag2Cd(P2S6)and AgCd3(PS4)S2containing two second-order Jahn-Teller distorted cations.Inorg.Chem.2016,56,114–124.(b)Komm,T.;Schleid,T.Three alkali-metal erbium thiophosphates:from the layered structure of KEr[P2S7]to the three-dimensional cross-linkagein NaEr[P2S6]und Cs3Er5[PS4]6.Z.Anorg.Allg.Chem.2006,632,42–48.(c)Wu,Y.;Bensch,W.Syntheses,crystal structures and spectroscopic properties of Ag2Nb[P2S6][S2]and KAg2[PS4].J.Solid State Chem.2009,182,471–478.(d)Golden,E.M.;Basun,S.A.Evans,D.R.;Grabar,A.A.;Stoika,I.M.;Giles,N.C.;Halliburton,L.E.Sn vacancies in photorefractive Sn2P2S6crystals:an electron paramagnetic resonance study of an optically active hole trap.J.Appl.Phys.2016,120,133101.

    (5) (a)Kim,K.;Na,J.;Yun,H.The two-dimensional thiophosphate CsCrP2S7.Acta Crystallogr.Sect.E:Struct.Rep.Online2010,66,i65–i65.(b)Babo,J.M.;Jouffret,L.;Lin,J.;Villa,E.M.;Albrecht-Schmitt,T.E.Synthesis,structure,and spectroscopy of two ternary uranium(IV)thiophosphates:UP2S9and UP2S7containing P2S92–and P2S72–ligands.Inorg.Chem.2013,52,7747–7751.(c)Hess,R.F.;Gordon,P.L.;Tait,C.D.;Abney,K.D.;Dorhout,P.K.Synthesis and structural characterization of the first quaternary plutonium thiophosphates:K3Pu(PS4)2and APuP2S7(A=K,Rb,Cs).J.Am.Chem.Soc.2002,124,1327–1333.(d)Hanko,J.A.;Sayettat,J.;Jobic,S.;Brec,R.;Kanatzidis,M.G.A2CuP3S9(A=K,Rb),Cs2Cu2P2S6,and K3CuP2S7:new phases from the dissolution of copper in molten polythiophosphate fluxes.Chem.Mater.1998,10,3040–3049.

    (6) Wu,Y.;Bensch,W.Rb3Ti3(P4S13)(PS4)3and Cs2Ti2(P2S8)(PS4)2:two polar titanium thiophosphates with complex one-dimensional tunnels.Inorg.Chem.2007,46,6170–6177.

    (7) (a)Brec,R.Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3.Solid State Ionics1986,22,3–30.(b)Carrillo-Cabrera,W.;Sassmannshausen,J.;Von Schnering,H.G.;Menzel,F.;Brockner,W.Synthesis,crystal structure,magnetism and vibrational spectrum of dipotassium iron(II)hexathiodiphosphate(IV),K2Fe[P2S6].Z.Anorg.Allg.Chem.1994,620,489–494.

    (8) Jorgens,S.;Johrendt,D.;Mewis,A.Motifs of closest packings:the compounds Zn3(PS4)2and LiZnPS4.Z.Anorg.Allg.Chem.2002,628,1765–1769.

    (9) Banerjee,S.;Szarko,J.M.;Yuhas,B.D.;Malliakas,C.D.;Chen,L.X.;Kanatzidis,M.G.Room temperature light emission from the low-dimensional semiconductorsAZrPS6(A=K,Rb,Cs).J.Am.Chem.Soc.2010,132,5348–5350.

    (10) Takada,K.;Michiue,Y.;Inada,T.;Kajiyama,A.;Kouguchi,M.;Kondo,S.;Tabuchi,M.Lithium iron thio-phosphate:a new 3 V sulfide cathode.Solid State Ionics2003,159,257–263.

    (11) (a)Shin,B.R.;Jung,Y.S.All-solid-state rechargeable lithium batteries using LiTi2(PS4)3cathode with Li2S-P2S5solid electrolyte.J.Electrochem.Soc.2014,161,A154-A159.(b)Kim,Y.;Arumugam,N.;Goodenough,J.B.3D Framework structure of a new lithium thiophosphate,LiTi2(PS4)3, as lithium insertion hosts.Chem.Mater.2007,20,470–474.

    (12) Jesche,A.;Ke,L.;Jacobs,J.L.;Harmon,B.;Houk,R.S.;Canfield,P.C.Alternating magnetic anisotropy of Li2(Li1?xTx)N(T=Mn,Fe,Co,and Ni).Phys.Rev.B.2015,91,180403.

    (13) (a)Palii,A.V.;Ostrovsky,S.M.;Klokishner,S.I.;Reu,O.S.;Sun,Z.M.;Prosvirin,A.V.;Dunbar,K.R.Origin of the single chain magnet behavior of the Co(H2L)(H2O)compound with a 1D structure.J.Phys.Chem.A2006,110,14003–14012.

    (14) Lutz,P.;Aguilà,D.;Mondal,A.;Pinkowicz,D.;Marx,R.;Neugebauer,P.;Fak,B.;Ollivier,J.;Clerac,R.;Van Slageren,J.Elementary excitations in single-chain magnets.Phys.Rev.B2017,96,094415.

    (15) Ferbinteanu,M.;Miyasaka,H.;Wernsdorfer,W.;Nakata,K.;Sugiura,K.I.;Yamashita,M.;Clérac,R.Single-chain magnet(NEt4)[Mn2(5-MeOsalen)2Fe(CN)6]made of Mn(III)-Fe(III)-Mn(III)trinuclear single-molecule magnet with an S(T)=9/2 spin ground state.J.Am.Chem.Soc.2005,127,3090–3099.

    (16) (a)Zhang,W.X.;Ishikawa,R.;Breedlove,B.;Yamashita,M.Single-chain magnets:beyond the Glauber model.RSC Adv.2013,3,3772–3798.(b)Sun,H.L.;Wang,Z.M.;Gao,S.Strategies towards single-chain magnets.Coord.Chem.Rev.2010,254,1081–1100.(c)Bogani,L.;Vindigni,A.;Sessoli R.;Gatteschi,D.Single chain magnets:where to from here?J.Mater.Chem.2008,18,4750–4758.

    (17) Korum,G.Reflectance Spectroscopy.Springer:New York1969.

    (18) CrystalClear,Version 1.3.5.;Rigaku Corp.:Tokyo2002.

    (19) (a)Hohenberg,P.;Kohn,W.Inhomogeneous electron gas.Phys.Rev.1964,136,B864.(b)Kohn,W.;Sham,L.J.Self-consistent equations including exchange and correlation effects.Phys.Rev.1965,140,A1133–A1138.

    (20) (a)Kresse,G.;Furthmüller,J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput.Mat.Sci.1996,6,15–50.(b)Kresse,G.;Furthmüller,J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B1996,54,11169.

    (21) Liechtenstein,A.I.;Anisimov,V.I.;Zaanen,J.Density-functional theory and strong interactions:orbital ordering in Mott-Hubbard insulators.Phys.Rev.B1995,52,R5467.

    (22) (a)Klingen,W.;Eulenberger,G.;Hahn,H.über Hexachalkogeno-hypodiphosphate vom Typ M2P2X6.Naturwissenschaften1970,57,88–88.(b)Ouvrard,G.;Brec,R.;Rouxel,J.Structural determination of some MPS3layered phases(M=Mn,Fe,Co,Ni and Cd).Mater.Res.Bull.1985,20,1181–1189.(c)Rao,R.R.;Raychaudhuri,A.K.Magnetic studies of a mixed antiferromagnetic system Fe1?xNixPS3.J.Phys.Chem.Solids1992,53,577–583.

    (23) Xiang,H.;Lee,C.;Koo,H.J.;Gong,X.;Whangbo,M.H.Magnetic properties and energy-mapping analysis.Dalton Trans.2013,42,823–853.

    少妇的逼水好多| 国产精品免费大片| 精品国产国语对白av| 久久精品久久久久久久性| 精品人妻在线不人妻| 国产精品一区二区在线观看99| 一区二区三区精品91| 国产精品欧美亚洲77777| 日韩亚洲欧美综合| 午夜福利视频在线观看免费| 国产av精品麻豆| 国产熟女午夜一区二区三区 | 欧美老熟妇乱子伦牲交| 久久免费观看电影| 九色成人免费人妻av| 我要看黄色一级片免费的| 特大巨黑吊av在线直播| 亚洲性久久影院| 天天操日日干夜夜撸| 免费不卡的大黄色大毛片视频在线观看| 日日爽夜夜爽网站| 国产精品久久久久久久久免| 伦精品一区二区三区| 我的老师免费观看完整版| 十分钟在线观看高清视频www| 王馨瑶露胸无遮挡在线观看| 九九爱精品视频在线观看| 日韩,欧美,国产一区二区三区| 国产极品天堂在线| 伦理电影免费视频| 国产成人aa在线观看| 免费少妇av软件| 熟女电影av网| 亚洲综合色惰| 午夜老司机福利剧场| 嘟嘟电影网在线观看| 色5月婷婷丁香| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 亚洲国产色片| 日韩电影二区| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 国产精品熟女久久久久浪| av在线老鸭窝| 欧美xxⅹ黑人| 亚洲综合色网址| 99久久精品国产国产毛片| av黄色大香蕉| 国产熟女欧美一区二区| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 精品亚洲乱码少妇综合久久| 大陆偷拍与自拍| 少妇人妻 视频| 少妇猛男粗大的猛烈进出视频| 晚上一个人看的免费电影| 不卡视频在线观看欧美| 亚洲熟女精品中文字幕| 天堂8中文在线网| 丰满饥渴人妻一区二区三| 亚洲国产精品999| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 99热全是精品| 午夜福利,免费看| 久久99精品国语久久久| 午夜免费鲁丝| 亚洲av不卡在线观看| 国产欧美亚洲国产| 国产国语露脸激情在线看| 一二三四中文在线观看免费高清| 中文字幕精品免费在线观看视频 | 美女中出高潮动态图| av有码第一页| 亚洲国产av新网站| 一级毛片我不卡| videos熟女内射| 国产精品久久久久久久电影| av又黄又爽大尺度在线免费看| 亚洲av免费高清在线观看| 日本欧美视频一区| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 欧美变态另类bdsm刘玥| 亚洲精品,欧美精品| 视频中文字幕在线观看| 国产亚洲一区二区精品| 亚洲精品美女久久av网站| 男人操女人黄网站| 免费观看无遮挡的男女| 黑人巨大精品欧美一区二区蜜桃 | 日韩大片免费观看网站| 国产精品嫩草影院av在线观看| 精品久久久噜噜| 人成视频在线观看免费观看| 青春草亚洲视频在线观看| 天堂俺去俺来也www色官网| 精品人妻熟女毛片av久久网站| 哪个播放器可以免费观看大片| 国精品久久久久久国模美| 熟妇人妻不卡中文字幕| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 亚洲国产精品成人久久小说| 亚洲精品一二三| 国产 一区精品| 久久韩国三级中文字幕| 国产色爽女视频免费观看| 高清黄色对白视频在线免费看| 色哟哟·www| 国产乱来视频区| 日本黄色日本黄色录像| 亚洲国产av新网站| 老司机亚洲免费影院| 秋霞伦理黄片| 国产精品成人在线| 国产av国产精品国产| 亚洲图色成人| 成年美女黄网站色视频大全免费 | 国产一区二区三区综合在线观看 | 成人无遮挡网站| 亚洲欧美色中文字幕在线| 亚洲av欧美aⅴ国产| 狂野欧美激情性xxxx在线观看| 在线观看www视频免费| 成年人免费黄色播放视频| 亚洲欧美成人综合另类久久久| 一区二区三区乱码不卡18| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 天美传媒精品一区二区| 精品人妻一区二区三区麻豆| 精品人妻偷拍中文字幕| 制服人妻中文乱码| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| 国产一区亚洲一区在线观看| 三级国产精品片| 国产欧美亚洲国产| 女人精品久久久久毛片| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费 | av有码第一页| 十分钟在线观看高清视频www| 久久久久精品性色| 午夜福利,免费看| 草草在线视频免费看| 免费观看的影片在线观看| 秋霞伦理黄片| 3wmmmm亚洲av在线观看| 人妻人人澡人人爽人人| 久久毛片免费看一区二区三区| 国产成人精品无人区| 美女xxoo啪啪120秒动态图| 在线 av 中文字幕| 国产精品99久久久久久久久| 亚洲综合色惰| 亚洲精品第二区| 国产在线视频一区二区| 国产精品人妻久久久影院| 97精品久久久久久久久久精品| 精品人妻熟女毛片av久久网站| 日日撸夜夜添| 狂野欧美白嫩少妇大欣赏| 亚洲久久久国产精品| 久久久久久伊人网av| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区 | 日本欧美国产在线视频| 亚洲国产精品999| 精品久久久久久电影网| 欧美xxxx性猛交bbbb| 免费看光身美女| 色吧在线观看| 国产视频内射| 全区人妻精品视频| 99九九线精品视频在线观看视频| av在线app专区| 日韩人妻高清精品专区| 久久国产亚洲av麻豆专区| 久久久a久久爽久久v久久| 18在线观看网站| 99久久综合免费| 亚洲丝袜综合中文字幕| 精品国产乱码久久久久久小说| 亚洲四区av| 国产成人一区二区在线| 成人国产av品久久久| 亚洲第一区二区三区不卡| 在线观看国产h片| 熟妇人妻不卡中文字幕| 日韩av在线免费看完整版不卡| 啦啦啦视频在线资源免费观看| 夜夜爽夜夜爽视频| 日韩中字成人| 老司机亚洲免费影院| 久久久久久久久久成人| 久久久久久久久大av| 少妇 在线观看| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频 | 久久国产精品大桥未久av| 黑人猛操日本美女一级片| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 久久婷婷青草| 视频区图区小说| 日韩 亚洲 欧美在线| 五月开心婷婷网| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 亚洲精品,欧美精品| 亚洲精品国产av成人精品| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 国产69精品久久久久777片| 中文字幕人妻丝袜制服| 91在线精品国自产拍蜜月| 夜夜爽夜夜爽视频| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 黄色配什么色好看| √禁漫天堂资源中文www| 精品99又大又爽又粗少妇毛片| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 国产精品不卡视频一区二区| 在线观看三级黄色| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 能在线免费看毛片的网站| 国产精品不卡视频一区二区| 亚洲国产欧美在线一区| 亚洲不卡免费看| 2022亚洲国产成人精品| 我要看黄色一级片免费的| 国产探花极品一区二区| 午夜久久久在线观看| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 国内精品宾馆在线| 五月开心婷婷网| 国产视频首页在线观看| 日本欧美视频一区| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 久久99一区二区三区| 久久 成人 亚洲| av视频免费观看在线观看| 99热网站在线观看| 91精品国产九色| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 国产伦理片在线播放av一区| 国产国拍精品亚洲av在线观看| 亚洲不卡免费看| 大香蕉久久成人网| 国产精品久久久久久精品电影小说| 久久久久久久久久久免费av| 伦理电影免费视频| 日韩视频在线欧美| 亚洲综合色惰| 亚洲精品国产av蜜桃| 18在线观看网站| 免费日韩欧美在线观看| 精品酒店卫生间| 在线观看国产h片| 精品一区二区三卡| 日日撸夜夜添| 国产爽快片一区二区三区| freevideosex欧美| 丝袜脚勾引网站| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| kizo精华| 多毛熟女@视频| 少妇精品久久久久久久| 人人妻人人澡人人看| 国产视频内射| 91午夜精品亚洲一区二区三区| av电影中文网址| 人妻制服诱惑在线中文字幕| 黑人欧美特级aaaaaa片| 在线观看免费视频网站a站| 桃花免费在线播放| 九九爱精品视频在线观看| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| 国精品久久久久久国模美| 亚洲精品一二三| 国产亚洲欧美精品永久| 久久久久久久亚洲中文字幕| 国产成人免费观看mmmm| 老熟女久久久| 日韩伦理黄色片| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 国产一级毛片在线| 中文欧美无线码| 97精品久久久久久久久久精品| 日本-黄色视频高清免费观看| 精品少妇内射三级| av有码第一页| 国产av国产精品国产| 日日摸夜夜添夜夜添av毛片| 国产精品欧美亚洲77777| 国产成人精品一,二区| 国产伦精品一区二区三区视频9| 999精品在线视频| 婷婷色麻豆天堂久久| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| 成人免费观看视频高清| 国产高清有码在线观看视频| 麻豆成人av视频| 国产片内射在线| 青春草视频在线免费观看| av免费在线看不卡| 亚洲国产精品国产精品| 人人妻人人澡人人看| 欧美丝袜亚洲另类| 欧美日韩成人在线一区二区| 麻豆乱淫一区二区| 男女啪啪激烈高潮av片| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| 99精国产麻豆久久婷婷| 日韩欧美精品免费久久| 99国产综合亚洲精品| 亚洲高清免费不卡视频| 亚洲成色77777| 黄色毛片三级朝国网站| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 十八禁网站网址无遮挡| 天堂8中文在线网| 尾随美女入室| 人人澡人人妻人| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 亚洲国产精品999| 在线观看国产h片| 久久久欧美国产精品| 亚洲欧洲日产国产| 日韩欧美一区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又爽又刺激的免费视频.| 女人精品久久久久毛片| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 亚洲国产欧美在线一区| 免费人成在线观看视频色| 在线观看三级黄色| 日韩电影二区| 男女边吃奶边做爰视频| 国产精品国产av在线观看| 欧美另类一区| kizo精华| 观看美女的网站| 亚洲久久久国产精品| 综合色丁香网| 九草在线视频观看| 嫩草影院入口| 在线天堂最新版资源| 亚洲精品国产av成人精品| 全区人妻精品视频| 热99国产精品久久久久久7| 亚洲欧美精品自产自拍| a级毛片黄视频| 看免费成人av毛片| 五月玫瑰六月丁香| 精品久久久噜噜| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 男女国产视频网站| 国产成人一区二区在线| 一区二区三区四区激情视频| 亚洲成色77777| 99久久综合免费| 久久久久久久久久人人人人人人| 免费观看的影片在线观看| 永久网站在线| 精品人妻熟女av久视频| freevideosex欧美| 婷婷成人精品国产| 99热国产这里只有精品6| 亚洲人成网站在线播| 国产精品秋霞免费鲁丝片| 高清毛片免费看| 免费av不卡在线播放| 精品少妇内射三级| av.在线天堂| 久久久久网色| 国产黄色免费在线视频| 亚洲av综合色区一区| 亚洲天堂av无毛| 国产欧美日韩一区二区三区在线 | 精品一区二区三卡| 伦理电影免费视频| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 精品国产一区二区三区久久久樱花| 成人无遮挡网站| 免费观看av网站的网址| 国产精品一区www在线观看| 视频在线观看一区二区三区| 国产一级毛片在线| 精品一区二区免费观看| 久久国产精品男人的天堂亚洲 | 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 国产精品久久久久久久久免| www.色视频.com| 老女人水多毛片| 国产男人的电影天堂91| 亚洲精品一二三| 日本爱情动作片www.在线观看| 伦理电影大哥的女人| 能在线免费看毛片的网站| 欧美xxⅹ黑人| 一边摸一边做爽爽视频免费| 日本色播在线视频| 高清在线视频一区二区三区| 免费久久久久久久精品成人欧美视频 | 十八禁高潮呻吟视频| 亚洲一级一片aⅴ在线观看| 欧美97在线视频| 欧美另类一区| 亚洲精品美女久久av网站| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 麻豆乱淫一区二区| 久久久久精品久久久久真实原创| 欧美精品高潮呻吟av久久| 国产精品三级大全| 十八禁网站网址无遮挡| 人妻人人澡人人爽人人| a级毛片在线看网站| 在线观看www视频免费| 久久精品久久久久久噜噜老黄| 涩涩av久久男人的天堂| 色哟哟·www| 人人妻人人爽人人添夜夜欢视频| 热re99久久国产66热| 全区人妻精品视频| 在线免费观看不下载黄p国产| 亚洲色图 男人天堂 中文字幕 | 午夜视频国产福利| av国产精品久久久久影院| 亚洲成人av在线免费| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 欧美3d第一页| 国产成人91sexporn| 男人添女人高潮全过程视频| 丰满迷人的少妇在线观看| 国产在线免费精品| 国产精品熟女久久久久浪| 这个男人来自地球电影免费观看 | 大片电影免费在线观看免费| 午夜福利,免费看| 国产精品久久久久久av不卡| 高清黄色对白视频在线免费看| 国产乱来视频区| 日韩精品有码人妻一区| 久久狼人影院| 观看美女的网站| 欧美日韩综合久久久久久| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 中文字幕人妻熟人妻熟丝袜美| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 国产爽快片一区二区三区| 精品久久蜜臀av无| 尾随美女入室| 日韩欧美精品免费久久| 视频在线观看一区二区三区| 亚洲美女搞黄在线观看| 在线观看三级黄色| 麻豆成人av视频| 国产免费一区二区三区四区乱码| 久久热精品热| 亚洲国产欧美日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 免费看不卡的av| 黄色毛片三级朝国网站| 午夜福利网站1000一区二区三区| 91精品国产九色| 免费不卡的大黄色大毛片视频在线观看| 国产午夜精品一二区理论片| 黄色毛片三级朝国网站| 纵有疾风起免费观看全集完整版| 久热久热在线精品观看| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 日韩欧美精品免费久久| 亚洲精品日韩在线中文字幕| 99久久人妻综合| 男女边吃奶边做爰视频| 五月开心婷婷网| 国产片特级美女逼逼视频| 亚洲熟女精品中文字幕| 午夜影院在线不卡| 天美传媒精品一区二区| 永久网站在线| 嘟嘟电影网在线观看| 爱豆传媒免费全集在线观看| 伦精品一区二区三区| 亚洲综合精品二区| 国产精品偷伦视频观看了| 国产日韩欧美亚洲二区| 在线观看国产h片| 黑丝袜美女国产一区| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 少妇的逼水好多| 精品少妇内射三级| 亚洲精品亚洲一区二区| 久久精品国产鲁丝片午夜精品| 激情五月婷婷亚洲| 久久国产精品大桥未久av| 午夜激情福利司机影院| www.色视频.com| 国产精品人妻久久久久久| 毛片一级片免费看久久久久| 亚洲精品视频女| 国产深夜福利视频在线观看| 男女国产视频网站| 久久国产精品大桥未久av| 亚洲五月色婷婷综合| 色婷婷av一区二区三区视频| 熟女av电影| 性色avwww在线观看| 免费人妻精品一区二区三区视频| 国产亚洲精品第一综合不卡 | 婷婷成人精品国产| 亚洲综合色网址| 国产欧美亚洲国产| 熟女人妻精品中文字幕| 少妇人妻 视频| 国产午夜精品一二区理论片| 丰满少妇做爰视频| 只有这里有精品99| 久久久国产欧美日韩av| 国产精品女同一区二区软件| 永久网站在线| 中文字幕制服av| 午夜久久久在线观看| 久久精品人人爽人人爽视色| 亚洲欧美日韩另类电影网站| 女人精品久久久久毛片| 国产精品99久久久久久久久| 亚洲精品日本国产第一区| 少妇丰满av| 午夜视频国产福利| 一级毛片我不卡| 国产午夜精品久久久久久一区二区三区| 久久久久久久亚洲中文字幕| av在线播放精品| 国产精品 国内视频| 伊人久久国产一区二区| 成人18禁高潮啪啪吃奶动态图 | av卡一久久| 汤姆久久久久久久影院中文字幕| 丝袜喷水一区| av在线播放精品| 久久久亚洲精品成人影院| 777米奇影视久久| 看免费成人av毛片| 51国产日韩欧美| 日本vs欧美在线观看视频| 亚洲性久久影院| 中文乱码字字幕精品一区二区三区| 免费播放大片免费观看视频在线观看| 久久久欧美国产精品| 亚洲精品国产av成人精品| 一区在线观看完整版| 精品一品国产午夜福利视频| videossex国产| 制服诱惑二区| 一区二区日韩欧美中文字幕 | 在线免费观看不下载黄p国产| 色吧在线观看| 黄色配什么色好看| 亚洲精品成人av观看孕妇| 一本色道久久久久久精品综合| 国产成人freesex在线| 黄色视频在线播放观看不卡| 久久久久久久久大av| 十八禁网站网址无遮挡| 日韩 亚洲 欧美在线| 十分钟在线观看高清视频www| 欧美日本中文国产一区发布| 久久精品夜色国产| 一本色道久久久久久精品综合| 国产在线免费精品| 国产日韩欧美视频二区| 久久久久视频综合| 看十八女毛片水多多多| a级毛色黄片| 久久久国产一区二区| 成人亚洲欧美一区二区av| 久热久热在线精品观看| 激情五月婷婷亚洲| 亚洲欧美精品自产自拍| 国产深夜福利视频在线观看| 人人澡人人妻人|