• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of the Electronic Structure of Manganese Nitrido Complexes by Para Ring Substituents:a Theoretical Study①

    2018-11-22 01:58:46NINGTuRongSONGJinShuiWEIJingZHANGMinYiLUQinQinHUANGJingLIChunSenStteKeyLortoryofStructurlChemistryFujinInstituteofReserchontheStructureofMtterChineseAcdemyofSciencesFuzhou350002ChinFujinProvincilKeyLortoryofTh
    結構化學 2018年10期

    NING Tu-Rong SONG Jin-Shui, WEI Jing ZHANG Min-Yi, LU Qin-Qin, HUANG Jing LI Chun-Sen, ② (Stte Key Lortory of Structurl Chemistry, Fujin Institute of Reserch on the Structure of Mtter, Chinese Acdemy of Sciences, Fuzhou 350002, Chin) (Fujin Provincil Key Lortory of Theoreticl nd Computtionl Chemistry, Ximen 361005, Chin)

    A density functional theory investigation was performed to find the relationship between various substituents on the ligand of manganese nitrido complexes and the electronic structures.The prediction of energy difference of two electronic structures by HOMO-LUMO gaps was illustrated by a valence-bond state correlation diagram.

    1 INTRODUCTION

    Transformation of dinitrogen to nitrogen-containing compounds is an important process in nature and it has attracted a great deal of attention in chemistry[1].In the past decades, high-valent metal nitrido complexes have been proposed as key intermediates in the biological enzymatic N2fixation[2,3]and the industrial Haber-Bosch process[4].Various transition metals are involved in these reactions such as molybdenum[5,6], ruthenium[7],iron[8-15], manganese[16-24], etc.For instance, ruthenium nitrido salen complex was found to be capable of oxidizing phenols into p-benzoquinone with fourelectron transfer[7].High-valent iron(V) nitrido complex with a neutral ligand has been spectroscopically and chemically characterized recently and proved to be a powerful two electron oxidant[8].The molybdenum nitrido complex was trapped from dinitrogen cleavage, which was considered as an intermediate of catalytic activation of dinitrogen.Particularly, manganese nitrido and imido complexes have been postulated as the active reagents responseble for nitrogen transfer[14,23,24]and dinitrogen cleavage reaction[5,6,25-27].

    It was found by spectroscopic and theoretical investigations that manganese nitrido complexes changed the spin state, and then the electronic structure, when the ligand fields altered[17].Mayer and coworkers synthesized a series of manganese nitridos in different oxidation states III, IV, V, which perform the amination of silyl enol ethers in a nitrogen atom transfer process[24], and found that the electronic structures of manganese nitridos are dependent on ligand framework[18].Clarke and Storr investigated the oxidized manganese(V) nitrido salen complexes with different para ring substituents and revealed that nitrido activation is dictated by remote ligand electronics[16].As such, the electronic structure of metal nitrido complex may be tuned by the ligand electronics, thereby contributing to the reactivity.For instance, Stranger and coworkers calculated the mechanism of dinitrogen activation by transition metal nitrido from three-coordinated complexes and found that the metals with d3configuration were better than other transition metals.The substituents on the ligand also lead significant effects on the thermodynamics of intermediates and productions[27].It is therefore important to highlight the impact of the ligand electronics on the electronic structures of metal nitrido complex.

    The general rules for electronic structures of manganese salen nitrido complexes with different ligands remain under-investigated.In this work,based on the research of Clarke and Storr[16], the effects of two electronic structures of complexes with different substituents on the ligand were investigated theoretically.Electronic configurations of the complexes and their geometries, orbital occupations,bond properties, and relative energies will be described.The relationship of HOMO-LUMO gap and energy difference of two types of complexes is figured out.This work may be helpful for designing new catalysis for nitrogen fixation by controlling the electronic structures of the metal nitrido complexes.

    2 COMPUTATIONAL MODEL AND METHODS

    Based on the manganese nitrido salen complex synthetized by Clarke and Storr, we designed a serial of analogues shown in Fig.1 with different substituents (R), ranging from electron-donating groups to electron-withdrawing groups on the para ring of ligand (R = H, CF3,tBu, NMe2, CH3, NH2, OH, F,SH, Cl, CH2NH2, CH2OH, CH=CH2, CN, COCH3,NMeF, OCH3and SCH3).Two electronic structures characterized by different positions of the radical are labeled as [MnV(SalenR?)N]+and [MnVI(SalenR)N]+in Fig.1, respectively.[MnV(SalenR?)N]+corresponds to the one whose radical resides on ligand (L-type),whereas [MnVI(SalenR)N]+has the radical residing on the center metal (M-type).In addition, the optimized geometries of M- and L-type species were labeled asmandl, correspondingly.To examine the geometries and electronic structures, the bond properties at these two geometries were calculated and compared.Relative energy (RE) of the M- and L-type manganese salen nitrido complexes was calculated by EL-EMfor one species to assign the ground state and the relaxed excited state.Moreover, the vertical excitation states that invert the M- and L-type electronic structures at their own geometries were also investigated.The vertical excitation energy was estimated by the gap of b HOMO and LUMO of each species approximately.The relationship between RE and gaps of two electronic structures was modeled by a valence-bond state correlation diagram (VBSCD)[28,29].

    Fig.1.Model complex and substituents.(a) M-type electronic structure [MnV(SalenR?)N]+,(b) L-type electronic structure [MnVI(SalenR)N]+

    All the calculations were carried out by using ORCA program package[30].Full geometry optimization and frequency calculations were performed by B3LYP functional[31,32]coupled with def2-SVP[33]basis set for all atoms.A larger basis set of def2-TZVPP[33]was employed for single point energy corrections.To improve computational efficiency,the RIJCOSX approximation[34-36]in combination with def2-SVP/J and def2-TZVPP/J[37]auxiliary basis sets was applied.Dispersion effects were computed by using the well-established dispersion corrections D3 with Becke-Johnson damping scheme[38,39].Mulliken population and Mayer bond order were calculated to investigate single electron location and bond character of the complexes.

    3 RESULTS AND DISCUSSION

    3.1 Geometries and electronic structure

    For the complexes with various substituents on the ring ligand, themandlgeometries were found and all stationary points were located except themgeometry when R = NMe2.

    To describe the electronic structure features of M-and L-type complexes, typical orbital occupations of the complex for R = CF3were chosen as example.As can be seen from Fig.2, the electronic structures of M-type complexes are mainly characterized by the singly occupied Mn-dxyorbital and the doubly occupied ligand ring p orbital.The corresponding complex has a d1configuration on the metal center.By contrast, the electronics of L-type complexes display a picture of singly occupied ligand ring porbital and doubly occupied Mn-dxyorbital.The corresponding complex has a low-spin d2configuration on the metal center.Our results of Mn(V) salen nitrido complex are in good consistence with Gray’s work[22].Compared with Mayer’s Mn(V) nitrido complex in which the metal center has a high-spin ground state with a different ligand[18], it seems that the electronic configurations of [Mn(SalenR)N]+complexes are sensitive to the coordination environment.

    Fig.2.Electronic structure of the complex (R = CF3).(a) M-type; (b) L-type.R=CF3

    Table 1 collects the bond lengths and properties of[Mn(SalenR)N]+complexes atmandlgeometry.Atmgeometry, the bond lengths of Mn–N(1) are about 1.50~1.51 ?, which are in good agreement with crystal structures[22].As such, the bond orders of Mn–N(1) for these complexes are also very close to each other.The bond orders around 2.5 suggest two and half bonds between two atoms.Moreover, the total spin densities of Mn–N(1) bond are about 0.90~0.93, indicating an unpaired electron resides on the orbital of the center metal.These similarities in bond properties of all complexes are attributed to the same M-type electronic structures at this geometry.

    Atlgeometry, the distances of Mn–N(1) for these complexes have a slight variation of 1.47~1.48 ?,which are shorter than the respectivemgeometry.The calculated bond orders around 2.8 suggest a triple bond between Mn and N(1) atoms.Note that,at this geometry their population of spin density shows one electron resides on the ligand orbital but no unpaired electron on the Mn–N(1) moiety,indicating an L-type configuration.Moreover, the spin densities for various complexes listed in Table 1 are almost unchanged.Therefore, similar to the M-type complexes, the properties of L-type ones are also independent of ligand substituents.In Storr’s work their calculation showed the spin density for L-type complexes mainly localized on one of the ligating aromatic rings and the substituent[16].However, our results show the spin density is delocalized on the whole ligand.Considering that the two aromatic rings are nearly identical, the delocalized configuration from our calculations seems more reasonable.

    Table 1.Selected Bond Lengths (?), Bond Orders and Spin Densities at m and l Geometry

    Overall, the most remarkable geometric feature of M- and L-types is the length of Mn–N(1) bond,which has significant influence on the electronic structures and bond properties.For a given electronic structure, the properties of key bonds Mn–N(1)around the metal are nearly the same whether the substituents are electron-donating or electronwithdrawing.

    3.2 Relationship of relative energies and gaps

    The relative energy (RE) of the complexes for L-and M-type species are listed in Table 2.Complexes with electron-withdrawing groups CF3, F, Cl CN,COCH3and weak electron-donating groups H,tBu,CH3have positive RE values, indicating the M-type is the ground state.By contrast, the complexes with strong electron-donating groups NH2, OH, SH and their derivatives OCH3, SCH3, NMeF, NMe2prefer the L-type as the ground state.These results related to the electronics of substituents and ground states are in consistence with previous work[16].

    How does the substituent change the ground state of manganese nitrido complexes? By comparing the two electronic structures in Fig.2, both a (spin up)orbitals of metal and ligand are occupied.However,the HOMO and LUMO of b (spin down) orbitals are different.Electron transfer between b orbitals of metal and ligand leads to the conversion of two electronic structures, because the electronics of substituent can change the energies of ligand ring orbital.Here we take M-type configuration as an example.At the beginning the metal and ligand orbital are LUMO and HOMO.If a substituent has a ligand orbital with high energy, the electron in bligand orbital prefers to move into the metal orbital,thus giving an L-type configuration.

    Table 2.Collection of Relative Energies (RE, kcal/mol), b Orbital Energies(eM, a.u.) and Vertical Excitation Energies (ΔEV, kcal/mol) at m and l Geometry

    Table 2 also collects the energies of b HOMO and LUMO (?) for this serial of complexes.Here em,M,em,L, el,Mand el,Lrepresent the orbital energies of ligand and metal orbital atmandlgeometry,respectively.Because the orbital energies of different complexes cannot be compared directly, here the gaps of HOMO and LUMO were used to estimate the vertical excitation energy (ΔEV) at two geometries.

    The energy gaps of the two orbitals are also listed in Table 2.In themgeometry column, the energy gap represents the vertical excitation energy of electron transfer from ligand orbital to metal orbital.As such, large gaps correspond to the species with ground state in L-type, while small gaps give M-type ground state.By contrast forlgeometry, small energy gaps of two orbitals correspond to large RE values, indicating electron can easily transfer from metal to the ligand to form the L-type complex.Moreover, we found that half of the gap differences is quite close to RE.The relationship of RE and vertical excitation energy can be proposed as

    To check the rationality of this equation, a linear fit of two columns was derived and shown in Fig.3.Interestingly, the R2of 0.986 shows a good correlation between RE and half of gap difference, with the intercept of 1 and a small error term of 1.43.These findings could help us to estimate the stability of different electronic structures by the orbital energies.Besides, the physical picture of mysterious C term is also worth to be uncovered.

    Fig.3.Linear plot of RE and half of orbital gap difference

    3.3 Explanation of the linear relationship

    The linear relationship of RE and orbital gap difference could be explained from valence bond state correlated diagram, as shown in Fig.4.

    Fig.4.Valence bond state-correlation diagram for the M- and L-type complexes

    Define potential energy surfaces of two electronic structures EMand ELare in a parabolic curve approximately

    where kMand kLrepresent the force constants of the potential surfaces and geometrical distance D from xmto xlis defined as

    Thus, atmandlgeometries the vertical excitation energies can be read from the diagram as

    When x = xmand x = xl, the potential energies in Eqs.4 and 5 could be written as

    Therefore, subtracting Eq.8 from Eq.7 and combining Eq.9 and 10 one has

    Compared with Eq.3, the origin of C term could be found as

    Therefore, the linear relationship of RE and orbital gaps found from Eq.11 is an explanation of Eq.3 by the VBSCD.The C term in Eq.12 depends on the potential surface (kMand kL) and the geometrical change D, which relate to the electronic and geometrical difference of two conformers,respectively.Specially, if the two electronic structures are identical, the RE of two species should be 0.In this case, the profiles of two states should be in mirror symmetry in VBSCD and the same k value with C as 0.In general case the two electronic structures are not identical, resulting in a nonzero C value.Note that in our data sets the RE is in a range of –5.1~10.1 kcal/mol.One may concern how C changes if the RE value is out of this range.However,it should be noted that a huge RE will lead to an unstable relaxed exited state, which is not suitable to use Eq.12 to estimate RE.For example, in our calculations when R = NMe2onlylgeometry can be located because the M-type electronic structure has high energy, and thus no gap andmgeometry can be used to calculate RE.

    4 CONCLUSION

    In this work, we designed a serial of manganese nitrido complexes, [Mn(SalenR)N]+, with different R substituents.The geometries of M- and L-type electronic structures and bond properties of[Mn(SalenR)N]+complexes were investigated.The relative energies between these two electronic structures depend on the electronic properties of the substituents.Interestingly, for each type of complexes, the geometries of ligand bonds, bond orders and spin densities are nearly the same.A linear relationship between relative energy and orbital gap difference was found.The explanation from VBSCD shows this linear relationship is universal for these two electronic structures.The physical picture of intercept term is related to the electronic and geometrical difference of electronic structures.Further work of exploration on the N2activation by[Mn(SalenR)N]+complexes will be performed.

    REFERENCES

    (1) Thompson, N.B.; Green, M.T.; Peters, J.C.Nitrogen fixation via a terminal Fe(IV) nitride.J.Am.Chem.Soc.2017, 139, 15312-5315.

    (2) Hoffman, B.M.; Lukoyanov, D.; Yang, Z.Y.; Dean, D.R.; Seefeldt, L.C.Mechanism of nitrogen fixation by nitrogenase: the next stage.Chem.Rev.2014, 114, 4041-4062.

    (3) Siegbahn, P.E.M.Model calculations suggest that the central carbon in the FeMo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation.J.Am.Chem.Soc.2016, 138, 10485-10495.

    (4) Liu, H.Ammonia Synthesis Catalysts: Innovation and Practice.World Scientific Publishing Co.Pte.Ltd.: Singapore2013, p1-20.

    (5) Laplaza, C.E.; Johnson, M.J.A.; Peters, J.C.; Odom, A.L.; Kim, E.; Cummins, C.C.; George, G.N.; Pickering, I.J.Dinitrogen cleavage by three-coordinate molybdenum(III) complexes:? mechanistic and structural data.J.Am.Chem.Soc.1996, 118, 8623-8638.

    (6) Laplaza, C.E.; Cummins, C.C.Dinitrogen cleavage by a three-coordinate molybdenum(III) complex.Science1995, 268, 861-863.

    (7) Xie, J.; Man, W.L.; Wong, C.Y.; Chang, X.; Che, C.M.; Lau, T.C.Four-electron oxidation of phenols to p-benzoquinone imines by a(salen)ruthenium(vi) nitrido complex.J.Am.Chem.Soc.2016, 138, 5817-5820.

    (8) Sabenya, G.; Lazaro, L.; Gamba, I.; Martin-Diaconescu, V.; Andris, E.; Weyhermüller, T.; Neese, F.; Roithova, J.; Bill, E.; Lloret-Fillol, J.; Costas,M.Generation, spectroscopic and chemical characterization of an octahedral iron (V) – nitrido species with a neutral ligand platform.J.Am.Chem.Soc.2017, 9168-9177.

    (9) Vardhaman, A.K.; Lee, Y.M.; Jung, J.; Ohkubo, K.; Nam, W.; Fukuzumi, S.Enhanced electron transfer reactivity of a nonheme iron(IV)-imido complex as compared to the iron(IV)oxo analogue.Angew.Chem.Int.Ed.2016, 55, 3709-3713.

    (10) Mondal, B.; Roy, L.; Neese, F.; Ye, S.High-valent iron-oxo and -nitrido complexes: bonding and reactivity.Isr.J.Chem.2016, 56, 763-772.

    (11) Mu?oz, S.B.; Lee, W.T.; Dickie, D.A.; Scepaniak, J.J.; Subedi, D.; Pink, M.; Johnson, M.D.; Smith, J.M.Styrene aziridination by iron(IV)nitrides.Angew.Chem.Int.Ed.2015, 54, 10600-10603.

    (12) Lee, W.T.; Juarez, R.A.; Scepaniak, J.J.; Mu?oz, S.B.; Dickie, D.A.; Wang, H.; Smith, J.M.Reaction of an iron(IV) nitrido complex with cyclohexadienes: cycloaddition and hydrogen-atom abstraction.Inorg.Chem.2014, 53, 8425-8430.

    (13) Liu, Y.; Guan, X.; Wong, E.L.M.; Liu, P.; Huang, J.S.; Che, C.M.Nonheme iron-mediated amination of C(sp3)–H bonds.Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations.J.Am.Chem.Soc.2013, 135,7194-7204.

    (14) Scepaniak, J.J.; Bontchev, R.P.; Johnson, D.L.; Smith, J.M.Snapshots of complete nitrogen atom transfer from an iron(IV) nitrido complex.Angew.Chem.Int.Ed.2011, 50, 6630-6633.

    (15) Nieto, I.; Ding, F.; Bontchev, R.P.; Wang, H.; Smith, J.M.Thermodynamics of hydrogen atom transfer to a high-valent iron imido complex.J.Am.Chem.Soc.2008, 130, 2716-2717.

    (16) Clarke, R.M.; Storr, T.Tuning electronic structure to control manganese nitride activation.J.Am.Chem.Soc.2016, 138, 15299-15302.

    (17) Kropp, H.; Scheurer, A.; Heinemann, F.W.; Bendix, J.; Meyer, K.Coordination-induced spin-state change in manganese(V) complexes: the electronic structure of manganese(V) nitrides.Inorg.Chem.2015, 54, 3562-3572.

    (18) Kropp, H.; King, A.E.; Khusniyarov, M.M.; Heinemann, F.W.; Lancaster, K.M.; DeBeer, S.; Bill, E.; Meyer, K.Manganese nitride complexes in oxidation states III, IV, and V: synthesis and electronic structure.J.Am.Chem.Soc.2012, 134, 15538-15544.

    (19) Zdilla, M.J.; Abu-Omar, M.M.Mechanism of catalytic aziridination with manganese corrole:? the often postulated high-valent Mn(V) imido is not the group transfer reagent.J.Am.Chem.Soc.2006, 128, 16971-16979.

    (20) Ho, C.M.; Lau, T.C.; Kwong, H.L.; Wong, W.T.Activation of manganese nitrido complexes by bronsted and Lewis acids.Crystal structure and asymmetric alkene aziridination of a chiral salen manganese nitrido complex.J.Chem.Soc., Dalton Trans.1999, 2411-2414.

    (21) Minakata, S.; Ando, T.; Nishimura, M.; Ryu, I.; Komatsu, M.Novel asymmetric and stereospecific aziridination of alkenes with a chiral nitridomanganese complex.Angew.Chem.Int.Ed.1998, 37, 3392-3394.

    (22) Chang, C.J.; Connick, W.B.; Low, D.W.; Day, M.W.; Gray, H.B.Electronic structures of nitridomanganese(V) complexes.Inorg.Chem.1998, 37,3107-3110.

    (23) Du Bois, J.; Tomooka, C.S.; Hong, J.; Carreira, E.M.Nitridomanganese(V) complexes:? design, preparation, and use as nitrogen atom-transfer reagents.Acc.Chem.Res.1997, 30, 364-372.

    (24) Du Bois, J.; Hong, J.; Carreira, E.M.; Day, M.W.Nitrogen transfer from a nitridomanganese(V) complex:? amination of silyl enol ethers.J.Am.Chem.Soc.1996, 118, 915-916.

    (25) Christian, G.J.; Terrett, R.N.; Stranger, R.; Cavigliasso, G.; Yates, B.F.Dinitrogen activation by Fryzuk's [Nb(P(2)N(2))] complex and comparison with the Laplaza-Cummins [Mo{N(R)Ar}(3)] and Schrock [Mo(N(3)N)] systems.Chem.Eur.J.2009, 15, 11373-11383.

    (26) Curley, J.J.; Cook, T.R.; Reece, S.Y.; Müller, P.; Cummins, C.C.Shining light on dinitrogen cleavage: structural features, redox chemistry, and photochemistry of the key intermediate bridging dinitrogen complex.J.Am.Chem.Soc.2008, 130, 9394-9405.

    (27) Christian, G.; Driver, J.; Stranger, R.Dinitrogen activation in sterically-hindered three-coordinate transition metal complexes.Faraday Discuss.2003, 124, 331-341.

    (28) Shaik, S.; Shurki, A.Valence bond diagrams and chemical reactivity.Angew.Chem.Int.Ed.1999, 38, 586-625.

    (29) Shaik, S.S.; Hiberty, P.C.A Chemist's Guide to Valence Bond Theory.Wiley: New Jersey2007, p116-192.

    (30) Neese, F.The ORCA program system.Wiley Interdiscip.Rev.Comput.Mol.Sci.2012, 2, 73-78.

    (31) van Lenthe, E.; Baerends, E.J.; Snijders, J.G.Relativistic regular two-component Hamiltonians.J.Chem.Phys.1993, 99, 4597-4610.

    (32) Lee, C.; Yang, W.; Parr, R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785-789.

    (33) Weigend, F.; Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys.Chem.Chem.Phys.2005, 7, 3297-3305.

    (34) Izsák, R.; Neese, F.; Klopper, W.Robust fitting techniques in the chain of spheres approximation to the Fock exchange: the role of the complementary space.J.Chem.Phys.2013, 139, 094111-10.

    (35) Izsák, R.; Neese, F.An overlap fitted chain of spheres exchange method.J.Chem.Phys.2011, 135, 144105-11.

    (36) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U.Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations.A‘chain-of-spheres’ algorithm for the Hartree-Fock exchange.Chem.Phys.2009, 356, 98-109.

    (37) Weigend, F.Accurate Coulomb-fitting basis sets for H to Rn.Phys.Chem.Chem.Phys.2006, 8, 1057-1065.

    (38) Grimme, S.; Ehrlich, S.; Goerigk, L.Effect of the damping function in dispersion corrected density functional theory.J.Chem.Comput.2011, 32,1456-1465.

    (39) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D)for the 94 elements H-Pu.J.Chem.Phys.2010, 132, 154104-19.

    黄频高清免费视频| 国产欧美日韩精品一区二区| 熟女电影av网| 国产蜜桃级精品一区二区三区| 国产一区二区三区在线臀色熟女| 亚洲成人久久爱视频| 在线播放国产精品三级| 黄色日韩在线| 久久精品国产清高在天天线| 这个男人来自地球电影免费观看| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| 日本 av在线| 性色av乱码一区二区三区2| x7x7x7水蜜桃| 91九色精品人成在线观看| 18禁观看日本| 岛国视频午夜一区免费看| 淫秽高清视频在线观看| 18美女黄网站色大片免费观看| 国产成人av教育| 色视频www国产| 麻豆一二三区av精品| 欧美日韩黄片免| 国产精品一及| www.www免费av| www.精华液| 亚洲最大成人中文| 一区福利在线观看| 亚洲国产欧美一区二区综合| 在线播放国产精品三级| 精品国产亚洲在线| 国产午夜精品久久久久久| 欧美色视频一区免费| 国产激情欧美一区二区| 波多野结衣高清无吗| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 成人18禁在线播放| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 亚洲五月天丁香| 成熟少妇高潮喷水视频| 免费av不卡在线播放| 久久亚洲精品不卡| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 97超视频在线观看视频| 成人av在线播放网站| 夜夜躁狠狠躁天天躁| 成年女人看的毛片在线观看| 国产精品九九99| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 久久久成人免费电影| 一个人观看的视频www高清免费观看 | 18禁裸乳无遮挡免费网站照片| 国产成人啪精品午夜网站| 白带黄色成豆腐渣| 久久精品aⅴ一区二区三区四区| 日韩av在线大香蕉| 伦理电影免费视频| 黄色 视频免费看| 亚洲国产欧洲综合997久久,| 国产视频内射| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 欧美成人性av电影在线观看| 美女扒开内裤让男人捅视频| 一个人看的www免费观看视频| 日本 av在线| 亚洲五月天丁香| 99久久成人亚洲精品观看| 亚洲专区国产一区二区| 中文字幕人妻丝袜一区二区| x7x7x7水蜜桃| 亚洲专区字幕在线| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 日本 欧美在线| 高清在线国产一区| 熟女电影av网| 国产精品九九99| 免费在线观看亚洲国产| 又黄又爽又免费观看的视频| 国产精品久久久久久精品电影| 99riav亚洲国产免费| 国产高清三级在线| 日韩免费av在线播放| 色综合站精品国产| 国产激情久久老熟女| 国产精品98久久久久久宅男小说| 久久久水蜜桃国产精品网| 久99久视频精品免费| 亚洲国产欧美网| 人人妻,人人澡人人爽秒播| 国产精品av久久久久免费| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 99re在线观看精品视频| 一本一本综合久久| 国产亚洲精品一区二区www| 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 欧美一级a爱片免费观看看| 国产高清视频在线播放一区| 我要搜黄色片| 国产aⅴ精品一区二区三区波| 精品国产超薄肉色丝袜足j| 国产成人福利小说| 99久国产av精品| 国产精品99久久99久久久不卡| 免费电影在线观看免费观看| 国产成人aa在线观看| 韩国av一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 青草久久国产| 国产亚洲精品一区二区www| 男人舔女人下体高潮全视频| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 免费观看的影片在线观看| 日日摸夜夜添夜夜添小说| av天堂在线播放| 亚洲七黄色美女视频| 高清在线国产一区| 精品人妻1区二区| 最近最新中文字幕大全免费视频| 国产人伦9x9x在线观看| 我的老师免费观看完整版| 国产一区二区在线av高清观看| 免费在线观看成人毛片| 国产精品亚洲一级av第二区| 国产精品爽爽va在线观看网站| aaaaa片日本免费| 日韩欧美国产在线观看| 日韩中文字幕欧美一区二区| 免费av毛片视频| 俄罗斯特黄特色一大片| 日韩欧美国产在线观看| 嫩草影视91久久| 亚洲av第一区精品v没综合| www.熟女人妻精品国产| 日韩精品青青久久久久久| 一夜夜www| www.熟女人妻精品国产| 日本五十路高清| 色播亚洲综合网| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 久久人人精品亚洲av| 精品久久久久久久末码| 亚洲国产欧美网| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 天天一区二区日本电影三级| 久久中文看片网| 热99re8久久精品国产| 国产精品乱码一区二三区的特点| www.999成人在线观看| 亚洲人成伊人成综合网2020| 精品不卡国产一区二区三区| 女生性感内裤真人,穿戴方法视频| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 久久久久久国产a免费观看| 国产视频一区二区在线看| 久久久久久久午夜电影| 成人18禁在线播放| 欧美日本亚洲视频在线播放| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 午夜福利欧美成人| 青草久久国产| 曰老女人黄片| 听说在线观看完整版免费高清| 99久久综合精品五月天人人| 成人av一区二区三区在线看| 欧美激情在线99| 国内精品久久久久精免费| 最好的美女福利视频网| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 国产精华一区二区三区| 超碰成人久久| 免费高清视频大片| 欧美中文综合在线视频| 亚洲 国产 在线| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 国产精品久久久久久精品电影| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| 成年女人永久免费观看视频| 国产av一区在线观看免费| 亚洲av成人不卡在线观看播放网| 免费观看的影片在线观看| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 成年女人永久免费观看视频| 两个人看的免费小视频| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 757午夜福利合集在线观看| 九色成人免费人妻av| 精品午夜福利视频在线观看一区| 午夜免费成人在线视频| 毛片女人毛片| 不卡av一区二区三区| 男女床上黄色一级片免费看| 在线播放国产精品三级| 美女午夜性视频免费| 精品一区二区三区视频在线 | 亚洲精品一区av在线观看| 18禁裸乳无遮挡免费网站照片| 好看av亚洲va欧美ⅴa在| 久久久久久久久久黄片| 亚洲精品乱码久久久v下载方式 | 黄色视频,在线免费观看| 精品久久久久久久久久久久久| 日韩欧美国产一区二区入口| 禁无遮挡网站| av福利片在线观看| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 少妇丰满av| bbb黄色大片| 精品不卡国产一区二区三区| 亚洲精品中文字幕一二三四区| 日日夜夜操网爽| 国产高清激情床上av| aaaaa片日本免费| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 亚洲熟妇中文字幕五十中出| 久久久久精品国产欧美久久久| 亚洲乱码一区二区免费版| 成年人黄色毛片网站| 欧美不卡视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 国产精品野战在线观看| 国产不卡一卡二| 免费大片18禁| 亚洲人成电影免费在线| 真实男女啪啪啪动态图| 一区二区三区激情视频| 成人特级黄色片久久久久久久| 宅男免费午夜| 国产亚洲精品久久久com| 久久久精品大字幕| 他把我摸到了高潮在线观看| 成人三级做爰电影| 好男人电影高清在线观看| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 国产黄色小视频在线观看| 99久久精品一区二区三区| 国产精品一及| 级片在线观看| 日韩欧美一区二区三区在线观看| 少妇的丰满在线观看| 午夜福利高清视频| 久久久色成人| 日韩中文字幕欧美一区二区| 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 国产高清有码在线观看视频| 国产精品亚洲美女久久久| 亚洲中文av在线| 久久国产精品人妻蜜桃| 久久久成人免费电影| 亚洲第一欧美日韩一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色淫秽网站| 国产野战对白在线观看| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片午夜丰满| 亚洲成人免费电影在线观看| 亚洲黑人精品在线| 国内精品一区二区在线观看| 日本a在线网址| 99久久99久久久精品蜜桃| 变态另类丝袜制服| 国产激情欧美一区二区| 国产黄a三级三级三级人| 最新美女视频免费是黄的| www日本黄色视频网| 日本撒尿小便嘘嘘汇集6| 悠悠久久av| 午夜免费激情av| 黄色日韩在线| 老鸭窝网址在线观看| 日本熟妇午夜| 听说在线观看完整版免费高清| 美女被艹到高潮喷水动态| 宅男免费午夜| 国产高清三级在线| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 99精品欧美一区二区三区四区| 成人18禁在线播放| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 一a级毛片在线观看| 成人鲁丝片一二三区免费| 亚洲专区中文字幕在线| 亚洲人成电影免费在线| ponron亚洲| 久久性视频一级片| 午夜福利在线观看免费完整高清在 | 亚洲av成人不卡在线观看播放网| 亚洲人成电影免费在线| 国产爱豆传媒在线观看| 热99re8久久精品国产| 12—13女人毛片做爰片一| 国产精华一区二区三区| 亚洲熟女毛片儿| 在线观看午夜福利视频| 中文亚洲av片在线观看爽| 午夜福利在线观看吧| 婷婷亚洲欧美| 男女视频在线观看网站免费| 日本 av在线| 欧美黄色淫秽网站| 美女免费视频网站| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线| 国产精品永久免费网站| 香蕉av资源在线| 高清在线国产一区| 免费电影在线观看免费观看| 亚洲在线自拍视频| 久久久水蜜桃国产精品网| 国产成人av激情在线播放| 99热只有精品国产| 亚洲欧洲精品一区二区精品久久久| 在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| avwww免费| 99热这里只有精品一区 | 黄色片一级片一级黄色片| 成人av一区二区三区在线看| bbb黄色大片| 日韩人妻高清精品专区| 免费在线观看成人毛片| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 欧美+亚洲+日韩+国产| 99久久国产精品久久久| 欧美日本亚洲视频在线播放| 欧美一级毛片孕妇| 日本 av在线| 欧美国产日韩亚洲一区| 黄片小视频在线播放| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕| 亚洲在线观看片| 五月玫瑰六月丁香| 99热精品在线国产| 露出奶头的视频| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 精品国产乱码久久久久久男人| 香蕉久久夜色| 欧美激情在线99| 国产乱人伦免费视频| 精品久久久久久久末码| 久久精品91蜜桃| 午夜精品在线福利| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 亚洲美女黄片视频| 美女扒开内裤让男人捅视频| 国产私拍福利视频在线观看| 国产探花在线观看一区二区| 精品久久久久久久毛片微露脸| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人| 一个人看的www免费观看视频| 国产精品久久视频播放| 久久精品91蜜桃| 欧美色视频一区免费| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| www日本黄色视频网| 国产成人啪精品午夜网站| 欧美午夜高清在线| 啦啦啦韩国在线观看视频| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 日本免费a在线| 又黄又爽又免费观看的视频| 18禁裸乳无遮挡免费网站照片| 国产午夜福利久久久久久| 成人av在线播放网站| 亚洲av成人不卡在线观看播放网| www国产在线视频色| 一区福利在线观看| 亚洲人成网站高清观看| 色综合站精品国产| 香蕉久久夜色| 日本 欧美在线| 亚洲电影在线观看av| 亚洲人成电影免费在线| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 国产免费av片在线观看野外av| 男女那种视频在线观看| 九色成人免费人妻av| 91在线观看av| 国产精品久久久久久人妻精品电影| 精品不卡国产一区二区三区| 一级作爱视频免费观看| 久久久国产欧美日韩av| 国产精品久久电影中文字幕| 亚洲18禁久久av| 少妇的逼水好多| 制服丝袜大香蕉在线| 亚洲最大成人中文| 午夜免费激情av| 国产爱豆传媒在线观看| 狂野欧美激情性xxxx| 男女做爰动态图高潮gif福利片| 欧美大码av| 麻豆国产97在线/欧美| 亚洲无线观看免费| 老鸭窝网址在线观看| 欧美三级亚洲精品| 亚洲人成伊人成综合网2020| 久久久久久久午夜电影| 成人欧美大片| 日韩欧美免费精品| 在线a可以看的网站| 久久午夜亚洲精品久久| 亚洲真实伦在线观看| 欧美极品一区二区三区四区| 97超视频在线观看视频| 亚洲av片天天在线观看| 91久久精品国产一区二区成人 | 欧美又色又爽又黄视频| 美女扒开内裤让男人捅视频| 国产高清视频在线观看网站| 在线观看舔阴道视频| 岛国在线免费视频观看| 日本黄色视频三级网站网址| 非洲黑人性xxxx精品又粗又长| 巨乳人妻的诱惑在线观看| 国产综合懂色| 亚洲av电影在线进入| 日韩精品中文字幕看吧| tocl精华| 日韩欧美精品v在线| 欧洲精品卡2卡3卡4卡5卡区| 哪里可以看免费的av片| 两性午夜刺激爽爽歪歪视频在线观看| 中国美女看黄片| 12—13女人毛片做爰片一| 欧美黄色淫秽网站| 宅男免费午夜| 黑人操中国人逼视频| 欧美在线一区亚洲| av在线蜜桃| 国产69精品久久久久777片 | 国产成人精品久久二区二区免费| 免费人成视频x8x8入口观看| 国产一区二区三区视频了| 国产视频内射| 欧美午夜高清在线| 人人妻人人看人人澡| 91久久精品国产一区二区成人 | 色在线成人网| 国产综合懂色| 99国产综合亚洲精品| 免费无遮挡裸体视频| 欧美色视频一区免费| 精品久久久久久,| 国产人伦9x9x在线观看| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 精品熟女少妇八av免费久了| 中文字幕人成人乱码亚洲影| 国产在线精品亚洲第一网站| 最近视频中文字幕2019在线8| 黄色日韩在线| 热99re8久久精品国产| 午夜a级毛片| 啦啦啦韩国在线观看视频| 搡老妇女老女人老熟妇| 亚洲中文字幕一区二区三区有码在线看 | 熟女电影av网| 国产日本99.免费观看| 九九久久精品国产亚洲av麻豆 | 91麻豆精品激情在线观看国产| 一区二区三区国产精品乱码| 亚洲精华国产精华精| 好男人电影高清在线观看| 美女扒开内裤让男人捅视频| 久久香蕉国产精品| 网址你懂的国产日韩在线| 日韩有码中文字幕| 国产高清激情床上av| 国产伦精品一区二区三区四那| 亚洲aⅴ乱码一区二区在线播放| 黄色 视频免费看| 99久国产av精品| 亚洲熟妇中文字幕五十中出| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区精品| 亚洲国产精品sss在线观看| 1024手机看黄色片| 18禁黄网站禁片免费观看直播| 国产在线精品亚洲第一网站| 国产伦人伦偷精品视频| 999精品在线视频| 久久精品国产99精品国产亚洲性色| 亚洲av免费在线观看| 无限看片的www在线观看| 国产亚洲精品久久久com| 日韩成人在线观看一区二区三区| 精品一区二区三区av网在线观看| 黄频高清免费视频| 黄色 视频免费看| 老司机福利观看| 免费高清视频大片| 欧美不卡视频在线免费观看| 99久久国产精品久久久| 精品国产美女av久久久久小说| 天堂av国产一区二区熟女人妻| a级毛片在线看网站| 男人舔女人的私密视频| 国产高清videossex| 极品教师在线免费播放| 国产极品精品免费视频能看的| 亚洲一区高清亚洲精品| 十八禁网站免费在线| 不卡av一区二区三区| 一级作爱视频免费观看| 国产精品av视频在线免费观看| 淫妇啪啪啪对白视频| 18禁美女被吸乳视频| 国产一区二区三区视频了| 特大巨黑吊av在线直播| 琪琪午夜伦伦电影理论片6080| 亚洲av五月六月丁香网| 久久这里只有精品19| 丰满的人妻完整版| 欧美日本视频| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 国产1区2区3区精品| 男女视频在线观看网站免费| 婷婷精品国产亚洲av在线| xxx96com| 亚洲av熟女| 嫩草影视91久久| 最近最新中文字幕大全电影3| 一夜夜www| 国产爱豆传媒在线观看| 伦理电影免费视频| 观看美女的网站| 99久久久亚洲精品蜜臀av| 午夜成年电影在线免费观看| 中文字幕熟女人妻在线| 成年女人看的毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 成人特级av手机在线观看| 国产黄片美女视频| 色视频www国产| 久久精品影院6| 老熟妇乱子伦视频在线观看| 老司机午夜十八禁免费视频| 亚洲18禁久久av| 网址你懂的国产日韩在线| av片东京热男人的天堂| 老汉色av国产亚洲站长工具| 亚洲精品一卡2卡三卡4卡5卡| 日本黄色片子视频| 国产av不卡久久| 麻豆成人av在线观看| 成年女人毛片免费观看观看9| 女生性感内裤真人,穿戴方法视频| 欧美日韩综合久久久久久 | 亚洲专区中文字幕在线| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人| www.自偷自拍.com| 久久热在线av| 啪啪无遮挡十八禁网站| 日本五十路高清| 精品国内亚洲2022精品成人| 国模一区二区三区四区视频 |