• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of the Electronic Structure of Manganese Nitrido Complexes by Para Ring Substituents:a Theoretical Study①

    2018-11-22 01:58:46NINGTuRongSONGJinShuiWEIJingZHANGMinYiLUQinQinHUANGJingLIChunSenStteKeyLortoryofStructurlChemistryFujinInstituteofReserchontheStructureofMtterChineseAcdemyofSciencesFuzhou350002ChinFujinProvincilKeyLortoryofTh
    結構化學 2018年10期

    NING Tu-Rong SONG Jin-Shui, WEI Jing ZHANG Min-Yi, LU Qin-Qin, HUANG Jing LI Chun-Sen, ② (Stte Key Lortory of Structurl Chemistry, Fujin Institute of Reserch on the Structure of Mtter, Chinese Acdemy of Sciences, Fuzhou 350002, Chin) (Fujin Provincil Key Lortory of Theoreticl nd Computtionl Chemistry, Ximen 361005, Chin)

    A density functional theory investigation was performed to find the relationship between various substituents on the ligand of manganese nitrido complexes and the electronic structures.The prediction of energy difference of two electronic structures by HOMO-LUMO gaps was illustrated by a valence-bond state correlation diagram.

    1 INTRODUCTION

    Transformation of dinitrogen to nitrogen-containing compounds is an important process in nature and it has attracted a great deal of attention in chemistry[1].In the past decades, high-valent metal nitrido complexes have been proposed as key intermediates in the biological enzymatic N2fixation[2,3]and the industrial Haber-Bosch process[4].Various transition metals are involved in these reactions such as molybdenum[5,6], ruthenium[7],iron[8-15], manganese[16-24], etc.For instance, ruthenium nitrido salen complex was found to be capable of oxidizing phenols into p-benzoquinone with fourelectron transfer[7].High-valent iron(V) nitrido complex with a neutral ligand has been spectroscopically and chemically characterized recently and proved to be a powerful two electron oxidant[8].The molybdenum nitrido complex was trapped from dinitrogen cleavage, which was considered as an intermediate of catalytic activation of dinitrogen.Particularly, manganese nitrido and imido complexes have been postulated as the active reagents responseble for nitrogen transfer[14,23,24]and dinitrogen cleavage reaction[5,6,25-27].

    It was found by spectroscopic and theoretical investigations that manganese nitrido complexes changed the spin state, and then the electronic structure, when the ligand fields altered[17].Mayer and coworkers synthesized a series of manganese nitridos in different oxidation states III, IV, V, which perform the amination of silyl enol ethers in a nitrogen atom transfer process[24], and found that the electronic structures of manganese nitridos are dependent on ligand framework[18].Clarke and Storr investigated the oxidized manganese(V) nitrido salen complexes with different para ring substituents and revealed that nitrido activation is dictated by remote ligand electronics[16].As such, the electronic structure of metal nitrido complex may be tuned by the ligand electronics, thereby contributing to the reactivity.For instance, Stranger and coworkers calculated the mechanism of dinitrogen activation by transition metal nitrido from three-coordinated complexes and found that the metals with d3configuration were better than other transition metals.The substituents on the ligand also lead significant effects on the thermodynamics of intermediates and productions[27].It is therefore important to highlight the impact of the ligand electronics on the electronic structures of metal nitrido complex.

    The general rules for electronic structures of manganese salen nitrido complexes with different ligands remain under-investigated.In this work,based on the research of Clarke and Storr[16], the effects of two electronic structures of complexes with different substituents on the ligand were investigated theoretically.Electronic configurations of the complexes and their geometries, orbital occupations,bond properties, and relative energies will be described.The relationship of HOMO-LUMO gap and energy difference of two types of complexes is figured out.This work may be helpful for designing new catalysis for nitrogen fixation by controlling the electronic structures of the metal nitrido complexes.

    2 COMPUTATIONAL MODEL AND METHODS

    Based on the manganese nitrido salen complex synthetized by Clarke and Storr, we designed a serial of analogues shown in Fig.1 with different substituents (R), ranging from electron-donating groups to electron-withdrawing groups on the para ring of ligand (R = H, CF3,tBu, NMe2, CH3, NH2, OH, F,SH, Cl, CH2NH2, CH2OH, CH=CH2, CN, COCH3,NMeF, OCH3and SCH3).Two electronic structures characterized by different positions of the radical are labeled as [MnV(SalenR?)N]+and [MnVI(SalenR)N]+in Fig.1, respectively.[MnV(SalenR?)N]+corresponds to the one whose radical resides on ligand (L-type),whereas [MnVI(SalenR)N]+has the radical residing on the center metal (M-type).In addition, the optimized geometries of M- and L-type species were labeled asmandl, correspondingly.To examine the geometries and electronic structures, the bond properties at these two geometries were calculated and compared.Relative energy (RE) of the M- and L-type manganese salen nitrido complexes was calculated by EL-EMfor one species to assign the ground state and the relaxed excited state.Moreover, the vertical excitation states that invert the M- and L-type electronic structures at their own geometries were also investigated.The vertical excitation energy was estimated by the gap of b HOMO and LUMO of each species approximately.The relationship between RE and gaps of two electronic structures was modeled by a valence-bond state correlation diagram (VBSCD)[28,29].

    Fig.1.Model complex and substituents.(a) M-type electronic structure [MnV(SalenR?)N]+,(b) L-type electronic structure [MnVI(SalenR)N]+

    All the calculations were carried out by using ORCA program package[30].Full geometry optimization and frequency calculations were performed by B3LYP functional[31,32]coupled with def2-SVP[33]basis set for all atoms.A larger basis set of def2-TZVPP[33]was employed for single point energy corrections.To improve computational efficiency,the RIJCOSX approximation[34-36]in combination with def2-SVP/J and def2-TZVPP/J[37]auxiliary basis sets was applied.Dispersion effects were computed by using the well-established dispersion corrections D3 with Becke-Johnson damping scheme[38,39].Mulliken population and Mayer bond order were calculated to investigate single electron location and bond character of the complexes.

    3 RESULTS AND DISCUSSION

    3.1 Geometries and electronic structure

    For the complexes with various substituents on the ring ligand, themandlgeometries were found and all stationary points were located except themgeometry when R = NMe2.

    To describe the electronic structure features of M-and L-type complexes, typical orbital occupations of the complex for R = CF3were chosen as example.As can be seen from Fig.2, the electronic structures of M-type complexes are mainly characterized by the singly occupied Mn-dxyorbital and the doubly occupied ligand ring p orbital.The corresponding complex has a d1configuration on the metal center.By contrast, the electronics of L-type complexes display a picture of singly occupied ligand ring porbital and doubly occupied Mn-dxyorbital.The corresponding complex has a low-spin d2configuration on the metal center.Our results of Mn(V) salen nitrido complex are in good consistence with Gray’s work[22].Compared with Mayer’s Mn(V) nitrido complex in which the metal center has a high-spin ground state with a different ligand[18], it seems that the electronic configurations of [Mn(SalenR)N]+complexes are sensitive to the coordination environment.

    Fig.2.Electronic structure of the complex (R = CF3).(a) M-type; (b) L-type.R=CF3

    Table 1 collects the bond lengths and properties of[Mn(SalenR)N]+complexes atmandlgeometry.Atmgeometry, the bond lengths of Mn–N(1) are about 1.50~1.51 ?, which are in good agreement with crystal structures[22].As such, the bond orders of Mn–N(1) for these complexes are also very close to each other.The bond orders around 2.5 suggest two and half bonds between two atoms.Moreover, the total spin densities of Mn–N(1) bond are about 0.90~0.93, indicating an unpaired electron resides on the orbital of the center metal.These similarities in bond properties of all complexes are attributed to the same M-type electronic structures at this geometry.

    Atlgeometry, the distances of Mn–N(1) for these complexes have a slight variation of 1.47~1.48 ?,which are shorter than the respectivemgeometry.The calculated bond orders around 2.8 suggest a triple bond between Mn and N(1) atoms.Note that,at this geometry their population of spin density shows one electron resides on the ligand orbital but no unpaired electron on the Mn–N(1) moiety,indicating an L-type configuration.Moreover, the spin densities for various complexes listed in Table 1 are almost unchanged.Therefore, similar to the M-type complexes, the properties of L-type ones are also independent of ligand substituents.In Storr’s work their calculation showed the spin density for L-type complexes mainly localized on one of the ligating aromatic rings and the substituent[16].However, our results show the spin density is delocalized on the whole ligand.Considering that the two aromatic rings are nearly identical, the delocalized configuration from our calculations seems more reasonable.

    Table 1.Selected Bond Lengths (?), Bond Orders and Spin Densities at m and l Geometry

    Overall, the most remarkable geometric feature of M- and L-types is the length of Mn–N(1) bond,which has significant influence on the electronic structures and bond properties.For a given electronic structure, the properties of key bonds Mn–N(1)around the metal are nearly the same whether the substituents are electron-donating or electronwithdrawing.

    3.2 Relationship of relative energies and gaps

    The relative energy (RE) of the complexes for L-and M-type species are listed in Table 2.Complexes with electron-withdrawing groups CF3, F, Cl CN,COCH3and weak electron-donating groups H,tBu,CH3have positive RE values, indicating the M-type is the ground state.By contrast, the complexes with strong electron-donating groups NH2, OH, SH and their derivatives OCH3, SCH3, NMeF, NMe2prefer the L-type as the ground state.These results related to the electronics of substituents and ground states are in consistence with previous work[16].

    How does the substituent change the ground state of manganese nitrido complexes? By comparing the two electronic structures in Fig.2, both a (spin up)orbitals of metal and ligand are occupied.However,the HOMO and LUMO of b (spin down) orbitals are different.Electron transfer between b orbitals of metal and ligand leads to the conversion of two electronic structures, because the electronics of substituent can change the energies of ligand ring orbital.Here we take M-type configuration as an example.At the beginning the metal and ligand orbital are LUMO and HOMO.If a substituent has a ligand orbital with high energy, the electron in bligand orbital prefers to move into the metal orbital,thus giving an L-type configuration.

    Table 2.Collection of Relative Energies (RE, kcal/mol), b Orbital Energies(eM, a.u.) and Vertical Excitation Energies (ΔEV, kcal/mol) at m and l Geometry

    Table 2 also collects the energies of b HOMO and LUMO (?) for this serial of complexes.Here em,M,em,L, el,Mand el,Lrepresent the orbital energies of ligand and metal orbital atmandlgeometry,respectively.Because the orbital energies of different complexes cannot be compared directly, here the gaps of HOMO and LUMO were used to estimate the vertical excitation energy (ΔEV) at two geometries.

    The energy gaps of the two orbitals are also listed in Table 2.In themgeometry column, the energy gap represents the vertical excitation energy of electron transfer from ligand orbital to metal orbital.As such, large gaps correspond to the species with ground state in L-type, while small gaps give M-type ground state.By contrast forlgeometry, small energy gaps of two orbitals correspond to large RE values, indicating electron can easily transfer from metal to the ligand to form the L-type complex.Moreover, we found that half of the gap differences is quite close to RE.The relationship of RE and vertical excitation energy can be proposed as

    To check the rationality of this equation, a linear fit of two columns was derived and shown in Fig.3.Interestingly, the R2of 0.986 shows a good correlation between RE and half of gap difference, with the intercept of 1 and a small error term of 1.43.These findings could help us to estimate the stability of different electronic structures by the orbital energies.Besides, the physical picture of mysterious C term is also worth to be uncovered.

    Fig.3.Linear plot of RE and half of orbital gap difference

    3.3 Explanation of the linear relationship

    The linear relationship of RE and orbital gap difference could be explained from valence bond state correlated diagram, as shown in Fig.4.

    Fig.4.Valence bond state-correlation diagram for the M- and L-type complexes

    Define potential energy surfaces of two electronic structures EMand ELare in a parabolic curve approximately

    where kMand kLrepresent the force constants of the potential surfaces and geometrical distance D from xmto xlis defined as

    Thus, atmandlgeometries the vertical excitation energies can be read from the diagram as

    When x = xmand x = xl, the potential energies in Eqs.4 and 5 could be written as

    Therefore, subtracting Eq.8 from Eq.7 and combining Eq.9 and 10 one has

    Compared with Eq.3, the origin of C term could be found as

    Therefore, the linear relationship of RE and orbital gaps found from Eq.11 is an explanation of Eq.3 by the VBSCD.The C term in Eq.12 depends on the potential surface (kMand kL) and the geometrical change D, which relate to the electronic and geometrical difference of two conformers,respectively.Specially, if the two electronic structures are identical, the RE of two species should be 0.In this case, the profiles of two states should be in mirror symmetry in VBSCD and the same k value with C as 0.In general case the two electronic structures are not identical, resulting in a nonzero C value.Note that in our data sets the RE is in a range of –5.1~10.1 kcal/mol.One may concern how C changes if the RE value is out of this range.However,it should be noted that a huge RE will lead to an unstable relaxed exited state, which is not suitable to use Eq.12 to estimate RE.For example, in our calculations when R = NMe2onlylgeometry can be located because the M-type electronic structure has high energy, and thus no gap andmgeometry can be used to calculate RE.

    4 CONCLUSION

    In this work, we designed a serial of manganese nitrido complexes, [Mn(SalenR)N]+, with different R substituents.The geometries of M- and L-type electronic structures and bond properties of[Mn(SalenR)N]+complexes were investigated.The relative energies between these two electronic structures depend on the electronic properties of the substituents.Interestingly, for each type of complexes, the geometries of ligand bonds, bond orders and spin densities are nearly the same.A linear relationship between relative energy and orbital gap difference was found.The explanation from VBSCD shows this linear relationship is universal for these two electronic structures.The physical picture of intercept term is related to the electronic and geometrical difference of electronic structures.Further work of exploration on the N2activation by[Mn(SalenR)N]+complexes will be performed.

    REFERENCES

    (1) Thompson, N.B.; Green, M.T.; Peters, J.C.Nitrogen fixation via a terminal Fe(IV) nitride.J.Am.Chem.Soc.2017, 139, 15312-5315.

    (2) Hoffman, B.M.; Lukoyanov, D.; Yang, Z.Y.; Dean, D.R.; Seefeldt, L.C.Mechanism of nitrogen fixation by nitrogenase: the next stage.Chem.Rev.2014, 114, 4041-4062.

    (3) Siegbahn, P.E.M.Model calculations suggest that the central carbon in the FeMo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation.J.Am.Chem.Soc.2016, 138, 10485-10495.

    (4) Liu, H.Ammonia Synthesis Catalysts: Innovation and Practice.World Scientific Publishing Co.Pte.Ltd.: Singapore2013, p1-20.

    (5) Laplaza, C.E.; Johnson, M.J.A.; Peters, J.C.; Odom, A.L.; Kim, E.; Cummins, C.C.; George, G.N.; Pickering, I.J.Dinitrogen cleavage by three-coordinate molybdenum(III) complexes:? mechanistic and structural data.J.Am.Chem.Soc.1996, 118, 8623-8638.

    (6) Laplaza, C.E.; Cummins, C.C.Dinitrogen cleavage by a three-coordinate molybdenum(III) complex.Science1995, 268, 861-863.

    (7) Xie, J.; Man, W.L.; Wong, C.Y.; Chang, X.; Che, C.M.; Lau, T.C.Four-electron oxidation of phenols to p-benzoquinone imines by a(salen)ruthenium(vi) nitrido complex.J.Am.Chem.Soc.2016, 138, 5817-5820.

    (8) Sabenya, G.; Lazaro, L.; Gamba, I.; Martin-Diaconescu, V.; Andris, E.; Weyhermüller, T.; Neese, F.; Roithova, J.; Bill, E.; Lloret-Fillol, J.; Costas,M.Generation, spectroscopic and chemical characterization of an octahedral iron (V) – nitrido species with a neutral ligand platform.J.Am.Chem.Soc.2017, 9168-9177.

    (9) Vardhaman, A.K.; Lee, Y.M.; Jung, J.; Ohkubo, K.; Nam, W.; Fukuzumi, S.Enhanced electron transfer reactivity of a nonheme iron(IV)-imido complex as compared to the iron(IV)oxo analogue.Angew.Chem.Int.Ed.2016, 55, 3709-3713.

    (10) Mondal, B.; Roy, L.; Neese, F.; Ye, S.High-valent iron-oxo and -nitrido complexes: bonding and reactivity.Isr.J.Chem.2016, 56, 763-772.

    (11) Mu?oz, S.B.; Lee, W.T.; Dickie, D.A.; Scepaniak, J.J.; Subedi, D.; Pink, M.; Johnson, M.D.; Smith, J.M.Styrene aziridination by iron(IV)nitrides.Angew.Chem.Int.Ed.2015, 54, 10600-10603.

    (12) Lee, W.T.; Juarez, R.A.; Scepaniak, J.J.; Mu?oz, S.B.; Dickie, D.A.; Wang, H.; Smith, J.M.Reaction of an iron(IV) nitrido complex with cyclohexadienes: cycloaddition and hydrogen-atom abstraction.Inorg.Chem.2014, 53, 8425-8430.

    (13) Liu, Y.; Guan, X.; Wong, E.L.M.; Liu, P.; Huang, J.S.; Che, C.M.Nonheme iron-mediated amination of C(sp3)–H bonds.Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations.J.Am.Chem.Soc.2013, 135,7194-7204.

    (14) Scepaniak, J.J.; Bontchev, R.P.; Johnson, D.L.; Smith, J.M.Snapshots of complete nitrogen atom transfer from an iron(IV) nitrido complex.Angew.Chem.Int.Ed.2011, 50, 6630-6633.

    (15) Nieto, I.; Ding, F.; Bontchev, R.P.; Wang, H.; Smith, J.M.Thermodynamics of hydrogen atom transfer to a high-valent iron imido complex.J.Am.Chem.Soc.2008, 130, 2716-2717.

    (16) Clarke, R.M.; Storr, T.Tuning electronic structure to control manganese nitride activation.J.Am.Chem.Soc.2016, 138, 15299-15302.

    (17) Kropp, H.; Scheurer, A.; Heinemann, F.W.; Bendix, J.; Meyer, K.Coordination-induced spin-state change in manganese(V) complexes: the electronic structure of manganese(V) nitrides.Inorg.Chem.2015, 54, 3562-3572.

    (18) Kropp, H.; King, A.E.; Khusniyarov, M.M.; Heinemann, F.W.; Lancaster, K.M.; DeBeer, S.; Bill, E.; Meyer, K.Manganese nitride complexes in oxidation states III, IV, and V: synthesis and electronic structure.J.Am.Chem.Soc.2012, 134, 15538-15544.

    (19) Zdilla, M.J.; Abu-Omar, M.M.Mechanism of catalytic aziridination with manganese corrole:? the often postulated high-valent Mn(V) imido is not the group transfer reagent.J.Am.Chem.Soc.2006, 128, 16971-16979.

    (20) Ho, C.M.; Lau, T.C.; Kwong, H.L.; Wong, W.T.Activation of manganese nitrido complexes by bronsted and Lewis acids.Crystal structure and asymmetric alkene aziridination of a chiral salen manganese nitrido complex.J.Chem.Soc., Dalton Trans.1999, 2411-2414.

    (21) Minakata, S.; Ando, T.; Nishimura, M.; Ryu, I.; Komatsu, M.Novel asymmetric and stereospecific aziridination of alkenes with a chiral nitridomanganese complex.Angew.Chem.Int.Ed.1998, 37, 3392-3394.

    (22) Chang, C.J.; Connick, W.B.; Low, D.W.; Day, M.W.; Gray, H.B.Electronic structures of nitridomanganese(V) complexes.Inorg.Chem.1998, 37,3107-3110.

    (23) Du Bois, J.; Tomooka, C.S.; Hong, J.; Carreira, E.M.Nitridomanganese(V) complexes:? design, preparation, and use as nitrogen atom-transfer reagents.Acc.Chem.Res.1997, 30, 364-372.

    (24) Du Bois, J.; Hong, J.; Carreira, E.M.; Day, M.W.Nitrogen transfer from a nitridomanganese(V) complex:? amination of silyl enol ethers.J.Am.Chem.Soc.1996, 118, 915-916.

    (25) Christian, G.J.; Terrett, R.N.; Stranger, R.; Cavigliasso, G.; Yates, B.F.Dinitrogen activation by Fryzuk's [Nb(P(2)N(2))] complex and comparison with the Laplaza-Cummins [Mo{N(R)Ar}(3)] and Schrock [Mo(N(3)N)] systems.Chem.Eur.J.2009, 15, 11373-11383.

    (26) Curley, J.J.; Cook, T.R.; Reece, S.Y.; Müller, P.; Cummins, C.C.Shining light on dinitrogen cleavage: structural features, redox chemistry, and photochemistry of the key intermediate bridging dinitrogen complex.J.Am.Chem.Soc.2008, 130, 9394-9405.

    (27) Christian, G.; Driver, J.; Stranger, R.Dinitrogen activation in sterically-hindered three-coordinate transition metal complexes.Faraday Discuss.2003, 124, 331-341.

    (28) Shaik, S.; Shurki, A.Valence bond diagrams and chemical reactivity.Angew.Chem.Int.Ed.1999, 38, 586-625.

    (29) Shaik, S.S.; Hiberty, P.C.A Chemist's Guide to Valence Bond Theory.Wiley: New Jersey2007, p116-192.

    (30) Neese, F.The ORCA program system.Wiley Interdiscip.Rev.Comput.Mol.Sci.2012, 2, 73-78.

    (31) van Lenthe, E.; Baerends, E.J.; Snijders, J.G.Relativistic regular two-component Hamiltonians.J.Chem.Phys.1993, 99, 4597-4610.

    (32) Lee, C.; Yang, W.; Parr, R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785-789.

    (33) Weigend, F.; Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.Phys.Chem.Chem.Phys.2005, 7, 3297-3305.

    (34) Izsák, R.; Neese, F.; Klopper, W.Robust fitting techniques in the chain of spheres approximation to the Fock exchange: the role of the complementary space.J.Chem.Phys.2013, 139, 094111-10.

    (35) Izsák, R.; Neese, F.An overlap fitted chain of spheres exchange method.J.Chem.Phys.2011, 135, 144105-11.

    (36) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U.Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations.A‘chain-of-spheres’ algorithm for the Hartree-Fock exchange.Chem.Phys.2009, 356, 98-109.

    (37) Weigend, F.Accurate Coulomb-fitting basis sets for H to Rn.Phys.Chem.Chem.Phys.2006, 8, 1057-1065.

    (38) Grimme, S.; Ehrlich, S.; Goerigk, L.Effect of the damping function in dispersion corrected density functional theory.J.Chem.Comput.2011, 32,1456-1465.

    (39) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D)for the 94 elements H-Pu.J.Chem.Phys.2010, 132, 154104-19.

    边亲边吃奶的免费视频| 色吧在线观看| av国产免费在线观看| 日本色播在线视频| 网址你懂的国产日韩在线| 精品国产一区二区三区久久久樱花 | 国产免费福利视频在线观看| 一级av片app| 狂野欧美白嫩少妇大欣赏| 国产69精品久久久久777片| 国产亚洲一区二区精品| 免费看日本二区| 亚洲精品乱码久久久v下载方式| 国产亚洲av片在线观看秒播厂 | 免费大片黄手机在线观看| 精品熟女少妇av免费看| 国产一区二区在线观看日韩| 免费不卡的大黄色大毛片视频在线观看 | 在线 av 中文字幕| 亚洲国产色片| 免费黄色在线免费观看| 国产在视频线在精品| 欧美激情久久久久久爽电影| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 久久久久久久大尺度免费视频| 成人午夜精彩视频在线观看| 男女边摸边吃奶| 午夜激情久久久久久久| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 午夜福利网站1000一区二区三区| 一级a做视频免费观看| 2021少妇久久久久久久久久久| 久久久久久久久久久丰满| www.av在线官网国产| 亚洲乱码一区二区免费版| 丰满乱子伦码专区| 韩国av在线不卡| 成人欧美大片| 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 成人二区视频| 网址你懂的国产日韩在线| 国内揄拍国产精品人妻在线| av国产久精品久网站免费入址| 午夜精品国产一区二区电影 | 久久久久国产网址| 日本wwww免费看| 亚洲aⅴ乱码一区二区在线播放| 国产一级毛片在线| 三级经典国产精品| 亚洲综合色惰| 婷婷色综合www| 午夜久久久久精精品| 亚洲成色77777| 热99在线观看视频| 精品久久久久久久末码| videos熟女内射| 美女脱内裤让男人舔精品视频| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 久热久热在线精品观看| 亚洲在久久综合| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 亚洲av不卡在线观看| 伊人久久精品亚洲午夜| 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 亚洲av成人av| 春色校园在线视频观看| 日韩一区二区视频免费看| 国产精品综合久久久久久久免费| 国产精品三级大全| 国产乱来视频区| 大又大粗又爽又黄少妇毛片口| 亚洲欧美一区二区三区黑人 | 久久精品国产鲁丝片午夜精品| 免费无遮挡裸体视频| 草草在线视频免费看| 国产精品久久久久久av不卡| 色尼玛亚洲综合影院| 国产男女超爽视频在线观看| 亚洲av福利一区| 国产精品嫩草影院av在线观看| 国产乱人偷精品视频| 三级经典国产精品| 中文精品一卡2卡3卡4更新| 国产在视频线精品| 99久久精品一区二区三区| 国产乱人视频| 国产综合精华液| 免费看av在线观看网站| 亚洲成人av在线免费| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 青春草视频在线免费观看| 中文字幕av成人在线电影| 一级毛片电影观看| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 一级片'在线观看视频| 久久久久精品性色| 中国美白少妇内射xxxbb| 街头女战士在线观看网站| 国产综合精华液| 女的被弄到高潮叫床怎么办| .国产精品久久| 七月丁香在线播放| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 蜜臀久久99精品久久宅男| 国产综合精华液| 中文字幕亚洲精品专区| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久99久视频精品免费| 亚洲人成网站在线观看播放| 日本色播在线视频| 国内精品宾馆在线| 欧美激情国产日韩精品一区| 高清日韩中文字幕在线| 99久久精品国产国产毛片| 国产淫语在线视频| 亚洲乱码一区二区免费版| 一夜夜www| 韩国高清视频一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲国产精品专区欧美| 午夜免费激情av| 国产淫语在线视频| 少妇人妻一区二区三区视频| 一二三四中文在线观看免费高清| 青春草国产在线视频| 亚洲在久久综合| 精品国产三级普通话版| 国产精品久久久久久精品电影小说 | 最近手机中文字幕大全| 亚洲国产日韩欧美精品在线观看| 久久久成人免费电影| 毛片女人毛片| 欧美激情国产日韩精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年免费大片在线观看| 99视频精品全部免费 在线| 国产一区亚洲一区在线观看| 干丝袜人妻中文字幕| 亚洲色图av天堂| 爱豆传媒免费全集在线观看| 女人被狂操c到高潮| 亚洲成色77777| 国产成人精品婷婷| 亚洲成人一二三区av| 少妇高潮的动态图| 国产男人的电影天堂91| 一级av片app| 国产av码专区亚洲av| 国国产精品蜜臀av免费| 中文字幕亚洲精品专区| 22中文网久久字幕| 免费观看无遮挡的男女| 午夜免费观看性视频| 国产一区二区三区av在线| av卡一久久| av在线老鸭窝| av国产免费在线观看| 插阴视频在线观看视频| 麻豆成人av视频| 国产精品久久久久久精品电影| av女优亚洲男人天堂| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 国产麻豆成人av免费视频| 一个人看视频在线观看www免费| 亚洲av.av天堂| 亚洲国产精品成人久久小说| 亚洲在久久综合| 精品一区二区免费观看| 韩国高清视频一区二区三区| 日本黄大片高清| 偷拍熟女少妇极品色| 亚洲精品国产av蜜桃| 大陆偷拍与自拍| 床上黄色一级片| 免费看av在线观看网站| 国产免费一级a男人的天堂| 一级二级三级毛片免费看| 国产精品久久久久久久久免| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 午夜免费男女啪啪视频观看| 日日撸夜夜添| 成人鲁丝片一二三区免费| 久久久久久久久久人人人人人人| 99九九线精品视频在线观看视频| 观看免费一级毛片| 欧美xxⅹ黑人| 日本色播在线视频| 国产精品人妻久久久久久| 国产在视频线精品| 午夜爱爱视频在线播放| 国产在视频线精品| 国产探花极品一区二区| 亚洲av成人av| 成年av动漫网址| 三级国产精品欧美在线观看| 天天躁日日操中文字幕| 午夜视频国产福利| 高清日韩中文字幕在线| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线 | 十八禁网站网址无遮挡 | 国产成人精品福利久久| 国产熟女欧美一区二区| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 国产美女午夜福利| 成人欧美大片| av网站免费在线观看视频 | 久久久久精品性色| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 天堂中文最新版在线下载 | 免费不卡的大黄色大毛片视频在线观看 | 国产av码专区亚洲av| 日韩强制内射视频| 久久久久久久亚洲中文字幕| 男女下面进入的视频免费午夜| 成人性生交大片免费视频hd| 国产av码专区亚洲av| 国产高清国产精品国产三级 | 国产视频内射| 国产一级毛片七仙女欲春2| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的 | 欧美成人一区二区免费高清观看| 99re6热这里在线精品视频| 亚洲av免费在线观看| 啦啦啦啦在线视频资源| 久久热精品热| 亚洲四区av| 99re6热这里在线精品视频| 亚洲av成人av| 在线观看人妻少妇| 久久精品久久久久久噜噜老黄| 成人性生交大片免费视频hd| 国产午夜福利久久久久久| 成人午夜高清在线视频| 91狼人影院| xxx大片免费视频| 久久久久久久国产电影| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | 啦啦啦啦在线视频资源| 亚洲精品视频女| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 97在线视频观看| videos熟女内射| 91av网一区二区| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 最近中文字幕高清免费大全6| 久久精品熟女亚洲av麻豆精品 | 欧美3d第一页| 午夜日本视频在线| 五月天丁香电影| 久久久久久久久久久免费av| 91在线精品国自产拍蜜月| 99久久精品一区二区三区| 国产精品一及| 国产乱人偷精品视频| 欧美日韩在线观看h| 成年人午夜在线观看视频 | 国产高清国产精品国产三级 | 国产精品蜜桃在线观看| 汤姆久久久久久久影院中文字幕 | 白带黄色成豆腐渣| 嫩草影院新地址| 日韩一区二区视频免费看| 日韩av不卡免费在线播放| 久久这里只有精品中国| 欧美日韩综合久久久久久| 国产精品一区二区在线观看99 | 日韩av在线免费看完整版不卡| av卡一久久| 国产伦在线观看视频一区| xxx大片免费视频| 亚洲精品一区蜜桃| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 国产亚洲5aaaaa淫片| 久久久久精品性色| 精品熟女少妇av免费看| 久久久久久久久久黄片| av在线播放精品| 久久久久久久大尺度免费视频| 18+在线观看网站| 精品人妻偷拍中文字幕| 插阴视频在线观看视频| 免费av不卡在线播放| 青青草视频在线视频观看| 99久久精品一区二区三区| 亚洲精品乱久久久久久| 又爽又黄a免费视频| 久久国产乱子免费精品| 午夜激情福利司机影院| 国产爱豆传媒在线观看| 好男人在线观看高清免费视频| 老司机影院毛片| 欧美激情在线99| 亚洲无线观看免费| 成人漫画全彩无遮挡| 中文字幕久久专区| 777米奇影视久久| 熟妇人妻不卡中文字幕| 美女主播在线视频| 色视频www国产| 在线观看av片永久免费下载| 五月天丁香电影| 欧美区成人在线视频| 少妇猛男粗大的猛烈进出视频 | 日韩人妻高清精品专区| 国产免费视频播放在线视频 | 午夜日本视频在线| 国产高清国产精品国产三级 | 国产中年淑女户外野战色| 免费观看在线日韩| 亚洲最大成人手机在线| 少妇人妻精品综合一区二区| av.在线天堂| 午夜福利视频精品| 免费av不卡在线播放| 国产免费视频播放在线视频 | 精品久久久久久久末码| 看十八女毛片水多多多| 男女视频在线观看网站免费| 人人妻人人澡人人爽人人夜夜 | 国产激情偷乱视频一区二区| 国产男人的电影天堂91| 精品一区二区三卡| 一级a做视频免费观看| 精品一区二区三卡| 亚洲欧洲日产国产| 亚洲在线观看片| 亚洲综合色惰| 内地一区二区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 女的被弄到高潮叫床怎么办| 少妇丰满av| 免费看日本二区| 日韩欧美精品v在线| 麻豆乱淫一区二区| 国产精品国产三级专区第一集| 熟女人妻精品中文字幕| 22中文网久久字幕| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 久久精品夜色国产| 蜜臀久久99精品久久宅男| 99热6这里只有精品| 日韩精品青青久久久久久| 欧美xxxx性猛交bbbb| av网站免费在线观看视频 | av福利片在线观看| 97热精品久久久久久| 免费无遮挡裸体视频| 国产免费视频播放在线视频 | 亚洲av免费高清在线观看| 国产av码专区亚洲av| 插阴视频在线观看视频| 日本黄大片高清| 日韩亚洲欧美综合| 国产高潮美女av| 亚洲精品国产av蜜桃| av播播在线观看一区| 99热全是精品| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 日本色播在线视频| 亚洲久久久久久中文字幕| 久久久久精品久久久久真实原创| 尤物成人国产欧美一区二区三区| 国产 亚洲一区二区三区 | 中文字幕免费在线视频6| 深夜a级毛片| 麻豆av噜噜一区二区三区| 国内少妇人妻偷人精品xxx网站| 能在线免费观看的黄片| 国产精品国产三级专区第一集| 国产乱来视频区| 亚洲欧美精品专区久久| 干丝袜人妻中文字幕| 亚洲精品日韩av片在线观看| 狠狠精品人妻久久久久久综合| 精华霜和精华液先用哪个| 如何舔出高潮| 日本wwww免费看| 精品亚洲乱码少妇综合久久| 在线免费观看的www视频| 精品久久久噜噜| 国产黄a三级三级三级人| 99热这里只有是精品50| 国产成人福利小说| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区| 一夜夜www| 伦理电影大哥的女人| 大片免费播放器 马上看| 免费av不卡在线播放| 一本久久精品| 国产爱豆传媒在线观看| 色视频www国产| 日韩欧美精品v在线| 国产精品久久久久久久久免| 国产伦精品一区二区三区视频9| 尤物成人国产欧美一区二区三区| xxx大片免费视频| 久久这里有精品视频免费| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 两个人视频免费观看高清| 看十八女毛片水多多多| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 国产精品福利在线免费观看| 亚洲国产成人一精品久久久| 久久久久久伊人网av| 国产成人a区在线观看| 高清av免费在线| av专区在线播放| 国产高清国产精品国产三级 | 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 欧美zozozo另类| 三级男女做爰猛烈吃奶摸视频| 最近手机中文字幕大全| 中文字幕av成人在线电影| a级毛色黄片| 美女大奶头视频| 亚洲不卡免费看| 一级毛片 在线播放| 欧美97在线视频| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 日韩av在线大香蕉| 欧美xxⅹ黑人| 麻豆精品久久久久久蜜桃| 精品久久久久久久久亚洲| 亚洲国产精品国产精品| 2018国产大陆天天弄谢| 伦精品一区二区三区| 亚洲国产精品成人综合色| 老司机影院毛片| 亚洲四区av| 日韩一本色道免费dvd| 国产精品一二三区在线看| 午夜免费男女啪啪视频观看| 在线观看美女被高潮喷水网站| 亚洲最大成人中文| 午夜老司机福利剧场| av在线蜜桃| 99热6这里只有精品| 精品久久久久久久久亚洲| videos熟女内射| 国产精品三级大全| 日韩,欧美,国产一区二区三区| 午夜老司机福利剧场| ponron亚洲| 麻豆av噜噜一区二区三区| 亚洲自拍偷在线| 国产精品久久久久久久久免| 美女黄网站色视频| 国产又色又爽无遮挡免| 亚洲aⅴ乱码一区二区在线播放| 日本免费在线观看一区| 欧美xxxx性猛交bbbb| 亚洲成人中文字幕在线播放| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 欧美+日韩+精品| 成人无遮挡网站| 1000部很黄的大片| 亚洲精品456在线播放app| 国产精品久久久久久精品电影| 成人欧美大片| 女人十人毛片免费观看3o分钟| 免费观看在线日韩| 国产视频内射| 日日撸夜夜添| 国产精品人妻久久久久久| 69av精品久久久久久| 午夜福利在线观看免费完整高清在| 久久人人爽人人片av| 精品国产三级普通话版| 成年女人在线观看亚洲视频 | 亚洲精品中文字幕在线视频 | 麻豆av噜噜一区二区三区| 亚洲美女视频黄频| 日韩欧美一区视频在线观看 | 亚洲成人av在线免费| 水蜜桃什么品种好| 少妇被粗大猛烈的视频| 国产探花在线观看一区二区| 欧美日韩视频高清一区二区三区二| 成人亚洲精品一区在线观看 | 亚洲国产欧美在线一区| 91狼人影院| 能在线免费看毛片的网站| 天天躁夜夜躁狠狠久久av| 99久国产av精品| av又黄又爽大尺度在线免费看| 美女脱内裤让男人舔精品视频| 最近2019中文字幕mv第一页| 亚洲欧洲国产日韩| 美女被艹到高潮喷水动态| 嫩草影院新地址| 欧美xxⅹ黑人| 久久草成人影院| 免费不卡的大黄色大毛片视频在线观看 | 热99在线观看视频| a级一级毛片免费在线观看| 欧美一区二区亚洲| 你懂的网址亚洲精品在线观看| 99热6这里只有精品| 婷婷六月久久综合丁香| 小蜜桃在线观看免费完整版高清| 性插视频无遮挡在线免费观看| 三级国产精品欧美在线观看| 欧美 日韩 精品 国产| 日韩三级伦理在线观看| 亚洲在久久综合| 婷婷色综合www| av播播在线观看一区| 久久久a久久爽久久v久久| 18禁在线播放成人免费| av.在线天堂| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 欧美+日韩+精品| 2021少妇久久久久久久久久久| 日韩人妻高清精品专区| 色尼玛亚洲综合影院| 国产亚洲最大av| 国产高清不卡午夜福利| 99热这里只有是精品在线观看| 免费电影在线观看免费观看| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 国产高清三级在线| 一夜夜www| 1000部很黄的大片| 中文字幕免费在线视频6| 国国产精品蜜臀av免费| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 最近最新中文字幕免费大全7| 国产成人一区二区在线| 一本一本综合久久| av播播在线观看一区| 亚洲在线自拍视频| 日本爱情动作片www.在线观看| 两个人的视频大全免费| 99热这里只有精品一区| 国产亚洲最大av| 精品国产露脸久久av麻豆 | 成人毛片a级毛片在线播放| 熟妇人妻不卡中文字幕| 噜噜噜噜噜久久久久久91| 国产熟女欧美一区二区| 国产单亲对白刺激| 国产成人福利小说| 国产精品1区2区在线观看.| 国产中年淑女户外野战色| 国产 亚洲一区二区三区 | av在线亚洲专区| 99久国产av精品国产电影| 美女大奶头视频| 秋霞伦理黄片| 日韩欧美精品免费久久| 国产真实伦视频高清在线观看| 国产成人a区在线观看| 69av精品久久久久久| 亚洲av中文av极速乱| 国产色爽女视频免费观看| 69人妻影院| 日韩av不卡免费在线播放| 午夜久久久久精精品| 搡老妇女老女人老熟妇| av网站免费在线观看视频 | 少妇人妻一区二区三区视频| 成年女人在线观看亚洲视频 | 尤物成人国产欧美一区二区三区| 一级毛片久久久久久久久女| 国产高潮美女av| 高清在线视频一区二区三区| 少妇裸体淫交视频免费看高清| 国内精品美女久久久久久| 亚洲精品国产av蜜桃| 国产高清国产精品国产三级 | 欧美激情久久久久久爽电影| 三级毛片av免费| 亚洲精品乱久久久久久| 色综合色国产| 99热这里只有是精品在线观看| 国产成人精品婷婷| 国产男女超爽视频在线观看|