• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT Study on the Germanium Ion Activated C–H Bond in Methane①

    2018-11-22 01:58:46HOUXiuFangFUFengCHANGQingZHANGWenLin
    結(jié)構(gòu)化學 2018年10期

    HOU Xiu-Fang FU Feng CHANG Qing ZHANG Wen-Lin

    (Laboratory of Analytical Technology and Detection,College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China)

    Density functional calculations show that the GeO+and [OGeOH]+can activate the H3C-H bond, in contrast to the inertness of Ge+and GeOH+.

    1 INTRODUCTION

    Methane is the smallest saturated hydrocarbon and the principal component in natural gas.It is characterized by the absence of a dipole moment, the extremely high pKa value, the rather small polarizability, the modest proton affinity, an anomalously high ionization energy (12.61±0.01 eV)[1], and a negative electron affinity or the significant energies required for both the homo- and heterolytic cleavage of the C–H bond[2].These properties lead to the lower reactivity of methane relative to desired products such as ethylene or methanol.How to activate methane C–H bonds into value-added products like methanol, acetic acid, hydrogen cyanide and so on under a less expensive and cleaner process is a major problem and a “grand challenge”[3]nowadays.The first thought is metal-mediated dehydrogenation of methane.Bohme’s[4]research indicates that only As+, Nb+, Ta+, W+, Os+, Ir+, and Pt+can bring dehydrogenation of methane to generate metal carbenes in 59 atomic cations, while Ge+and methane only form addition [Ge(CH4)][5].

    How can we improve the reactivity and selectivity of metal-mediated bond activation processes? There are chiefly changes of cluster size, charge state and ligands effect.Firstly, the cluster size is one of the most important factors in metal-mediated bond activation processes[5].The catalytic properties of small clusters show large variations with cluster size[6].For example, Pd8and Pd10are the most reactive clusters in Pd clusters activating CH4, while Pd3and Pd9are slower[7].Secondly, generally the cationic metals, owing to their electrophilic nature,are more reactive than their anionic and neutral counterparts, so the main group metal cluster cations Ge+, GeO+, GeOH+and OGeOH+are our objects of study.Thirdly, when the ligand attaches to the metal ion M+, it will affect the electronic character of metal centers, then the chemistry of [ML]+complexes may change greatly.Two or more ligands may tune the chemical features of cationic metal better.

    In the Periodic Table, the germanium lies on a special place that the non-metal As is situated at the top, Sn at the bottom, Ga on the left, and the nonmetal As on the right.The electronic structure of the germanium element is 4s24p2, with unfilled shells or unpaired electrons in p orbitals which may lead to special metal-ligand interactions.Benzi[8,9]reported the reactions of monogermane with O2, NH3, CO,CO2, and C2H4under high pressure using Fourier transform mass spectrometry.Tang and co-workers[10]investigated the reactions between M+(M = Si, Ge,Sn and Pb) and benzene in the gas phase using a laser ablation/inert buffer gas ion source coupled with a reflection time-of-flight mass spectrometer.Power[11]indicated that the main-group compounds generally do not interact strongly with CO, C2H4or H2.Ge+and methane only form addition [Ge(CH4)] with the reaction efficiency (2 × 10-4) using an inductivelycoupled plasma/selected-ion flow tube (ICP/SIFT)tandem mass spectrometer[5].These survey results suggest that the Ge chemical property is inactive and requires ligand to tune the reactivity.

    In the recent paper, Sun and co-workers[12]have investigated the metal free cluster OSiOH+activation methane system, and the present study is a logical extension to the OGeOH+and CH4system.By electrospray ionization, it failed to generate GeO+,while large amount of GeOH+was produced due to the rather high hydrogen-atom affinities of GeO+.A solid-state-based laser-ablation method can produce GeO+[13].Herein we present the gas-phase reactions of the main group metal Ge+, GeO+, GeOH+and OGeOH+with methane by state-of-the-art quantum chemical calculations so as to explore the origin of the ligand effect.

    2 COMPUTATIONAL DETAILS

    Full optimization of geometries for all stationary points involved the reaction underlying the main group metal Ge+, GeO+, GeOH+and OGeOH+mediating the methane activation process using the density functional theory (DFT) method[14-16]based on the hybrid of Becke’s three-parameter exchange functional and the Lee, Yang, and Parr correlation functional (B3LYP)[17-19].The 6-311++G** basis set was performed for hydrogen, carbon, nitrogen and germanium.Frequency analysis was calculated at the same theoretical level.Frequency analysis was carried out for all stationary points for two purposes.The first one was to check whether the optimized geometry corresponds to a minimum or a transition state, and the second was to obtain the zero-point vibrational energies and Gibbs free energies.Relative energies were corrected for unscaled zero-point vibrational energy contributions.Furthermore, the intrinsic reaction coordinate (IRC) calculations[20]were performed to confirm that the optimized transition states correctly connect the relevant reactants and products.To check the reliability of our theoretical geometrical and energetic results obtained at the B3LYP/6-311++G** level of theory, we optimized all the complexes with the highly accurate theoretical method.Optimization calculations were done at the CCSD and MP2 levels with 6-311++G**basis set.Besides, the relativistic effective core potential (ECP) of Stuttgart/Dresden (Lanl2dz) was adopted to describe the metal Ge with the label MP2①in Tables S1 and S2 (We mark MP2①to discriminate ECP (Lanl2dz) for Ge from that of 6-311++G** in the MP2 level.).As shown in the supplementary information, there was a good agreement between the geometrical parameters and relative energy calculated with B3LYP, CCSD and MP2, though individual data have big difference.It illustrated that the results are reliable.Furthermore,we should underline the complexation energy calculated with the B3LYP method.The Cartesian coordinates of all stationary points under B3LYP/6-311++G** had be provided in SI.The natural population analysis had been made with the natural bond orbital (NBO) analysis[21,22].We had plotted the map of electrostatic potential surface at 0.001 a.u.isosurface contours by using GaussView software.Furthermore, Multiwfn software was used for quantitative analysis of molecular surfaces[23].All computations reported here are carried out using the GAUSSIAN 09 program suit[24].

    3 RESULTS AND DISCUSSION

    3.1 Reaction of Ge+ with CH4

    We start to discuss the reaction between Ge+and CH4, with the potential energy profiles depicted in the supporting information Fig.S1.The electronic configuration of the ground state Ge+may be written as [Ar]3d104s24p1.For CH4, the C–H bond lengths are 1.09 ?, with the H–C–H angle of 109.5°.The doublet ground state of Ge+is 634.56 kJ/mol more stable than the quartet excited state, so we only take into account the ground state situation, marked 2 at the top left corner of the complex.For example, the methane coordinates to the metal center leading to the encounter complex2GeCH4+, which is –50.95 kJ/mol relative to the reactant asymptote.However, a H-atom transfer happens via transition state to form the complex2HGeCH3+.This step has high activation barrier (49.87 kJ/mol) and therefore is unlikely to happen at room temperature.Bohme’s[4]inductivelycoupled plasma/selected-ion flow tube (ICP/SIFT)tandem mass spectrometer research and Schwarz[25]DFT-based calculation results indicate that Ge+and methane only form the structural association product[Ge(CH4)]+.The Ge+(4s24p1) is incapable of activating CH4since it lacks electrons to donate to the C–H antibonding orbital of CH4in terms of the donoracceptor model.

    3.2 Reaction of GeO+ with CH4

    In order to improve the Ge+reactivity, we then study the reaction between GeO+and methane.The electronic configuration of the ground state GeO+may be written as(1σ)2(2σ)2(1π)4(3σ)2(4σ)2(5σ)2(2π)4(6σ)2(7σ)2(1δ)4(3π)4(8σ)2(9σ)2(10σ)2(4π)32?+.The equilibrium structure is determined to be re(GeO) = 1.67 ?.Hydrogenatom transfer (HAT) constitutes a key process in methane activation by metal-oxo species.The doublet ground state GeO+is more stable than the quartet excited state, so we only account the ground state situation.Regarding the mechanistic details of HAT, there are two modes.One is the direct HAT from CH4to the oxygen atom of MO+, and the other involves several steps, in which an empty coordinate site at the metal atom is required.The Ge in GeO+has no vacant coordination site, so we only consider the first situation.The direct HAT process prevails mainly for the open shell metal oxide and the high spin located at the terminal oxygen atom (0.72 spin density in O of GeO+).In the C–H bond activation of CH4by GeO+, the reaction proceeds barrier-free,directly to the complex [GeOH]+??CH3˙(0.85 spin density in CH3).In this HAT-product the methyl group loosely coordinates to the H of the newly formed hydroxyl group.The exothermic reaction is completed by liberation of the CH3˙ radical, resulting in the formation of [GeOH]+.This barrier-free step is exothermic by 169.9 kJ/mol.An alternative pathway is that a CH4molecule interacts with the terminal Ge in GeO+, thus forming an electrostatic complex[GeOCH4]+.Then the hydrogen transfer from carbon to Ge via the transition state2TS1/2 to form[HOGeCH3]+.The2TS1/2 lies 99.8 kJ/mol above the reactants, so the path does not occur under ambient conditions.In contrast to the bare metal cation Ge+,which exhibits no activity towards methane according to the above calculation, the reaction of metal monoxide GeO+due to the high spin density at the O atom (0.72) is efficient.In order to explore if the product GeOH+can further react with CH4, the following study is performed.

    Fig.1.Schematic potential-energy profiles from GeO+/CH4

    3.3 Reaction of GeOH+ with CH4

    The GeOH+species is linear and its electronic configuration is described as (1σ)2(2σ)2(1π)4(3σ)2(4σ)2-(5σ)2(2π)4(6σ)2(7σ)2(1δ)4(3π)4(8σ)2(9σ)2(10σ)2(4π)41?+.The equilibrium structure is determined to be re(GeO)= 1.68 ? and re(OH) = 0.97 ?, which are basically consistent with Yamaguchi’s[26]results.The GeO bond length in GeOH+is 0.01 ? longer than that of diatomic GeO+.It is seen that the hydrogen atom destabilizes the Ge–O bond in GeOH+.The single ground state GeOH+is more stable than the triplet excited state, so we only take into account the ground state situa- tion, marked 1 at the top left corner of the complex, for example ‘1M1’.The potential energy profiles are drawn in the supporting information (Fig.S2).The hydrogen atom in CH4transfers to Ge in GeOH+in the transition state1TS1/2.The1TS1/2 lies 341.6 kJ/mol above the reactants, so the path doesn’t occur under ambient conditions.

    3.4 Reaction of OGeOH+ with CH4

    In OGeOH+, we mark the terminal oxygen atom as*O to distinguish the two oxygen atoms.The equilibrium structure is determined to be re(*OGe) = 1.61 ? and re(GeO) = 1.69 ?, in which oxygen atom lies in the OH group, and re(OH) = 0.98 ?, ∠ OGeO =172° and ∠G eOH = 121°.The four atoms are in the same plane.The oxygen atom adds to the other side of GeOH+; the Ge–O and O–H bonds in OGeOH+are also 0.01 ? longer than that of GeOH+.It is seen that the O atom destabilizes the Ge–O and O–H bonds.The cluster ion OGeOH+is generated in the reaction of [GeO2]+with water based on DFT.Full details of the process are provided in the support information(Fig.S3).Then mechanistic insight into the details of the methane activation step by OGeOH+has been discussed.The most favorable pathways for the reactions of OGeOH+/CH4couple are located on the singlet potential energy surface (PES), as shown in Fig.2.In the first case, an encounter complex (1M1)is initially formed from the reactants.This step is exothermic by 61.9 kJ/mol, thus indicating a rather stronger interaction between the positively charged germanium atom and methane (the charge on the germanium atom of OGeOH+amounts to 2.2 |e|based on a natural bond orbital (NBO) analysis).Subsequently, one C–H of the incoming methane substrate is activated and a hydrogen atom is transferred to the terminal *O atom of OGeOH+via transition state TS1/2 to form the rather stable germanium cation compound M2.In the latter, the positive charge at the germanium atom amounts to 2.1 |e|, and the formations of strong Ge–C and *O–H bonds account for the high stability of M2.Next, the methyl group can migrate via TS2/3 to one of the hydroxide ligands, thus forming complex M3.For the latter route, OGeOH+may be attacked by me-thane at the terminal oxygen atom *O to give directly the intermediate complex M3.To clarify the reaction mechanism of the directly formed intermediate complex M3 by the terminal oxygen atom *O attacking the C–H bond of methane, the energy changes and selected structures have been given in Fig.3.First of all, the terminal oxygen atom *O is close to the C–H bond of methane, with the *O??H bond to be 2.50 ?.Secondly, the activated C–H bond is increased from 1.11 to 1.57 ?, and the *O–H bond(1.01 ?) is nearly formed.And then, the *O–C bond distance is 1.52 ?, and the *O–Ge bond is increased from 1.81 to 2.03 ?.Finally, the Ge–*O bond continues to lengthen to 2.04 ?.The analysis indicates that the process is barrier-free to yield M3.This intermediate then serves as a branching point to either produce CH3OH and [GeOH+] or generate[GeOCH3]+accompanied by the loss of H2O.

    Fig.2.Schematic potential-energy profiles from OGeOH+/CH4

    Fig.3.Changes of the potential energy along the OGeOH+ + CH4 reaction pathway, where the selected geometry is given

    Color-filled maps of the electron localization function along OGeOH++ CH4reaction pathway are presented in Fig.4.In M1, the absence of a disynaptic valence basin between Ge and the CH4carbon and hydrogen atoms confirms that interaction could be an electrostatic interaction.The first C–H bond breaking takes place due to the appearance of V(H,O*) basin in TS1/2.There is strength of disynaptic V(H,O*) basin, indicating that the H atom has shifted to *O completely in M2.As for TS2/3,the analysis reveals the weakening of disynaptic V(C,Ge) basin and the forming of disynaptic V(C,O)basin.There are two paths to form M3.One is[OGeOH+] + CH4→ M1 → TS1/2 → M2 → TS2/3→ M3, and the other is [OGeOH+] + CH4→ M1(Fig.2), which is obviously favorable.The ELF of M3 shows that CH3transfers to *O entirely.At the same time, the Ge–O bond breaks accompanied by the formation of a new *O–H bond.As for TS3/4, the appearance of H–O··H··*O bond by V(H,O,H,O)basin clearly proves the trend of H transferring into O of the OH.In the case of M4, a trisynaptic V(H,O,H) basin takes the place of V(H, O, H, O)basin, which indicates the formation of H2O.At the moment, the M4 intermediate dissociates into GeOCH3+and H2O.The energies of the intermediates and products are below the entrance channel,so the reaction can occur under ambient conditions.

    Fig.4.(Color online) ELF projection map of the key points on the OGeOH+ + CH4 reaction pathway

    3.5 Comparison of the four systems

    The reaction mechanism of the four main group metal cations towards methane can be explained in NBO charge distribution.The charge at the terminal oxygen atom in GeO+and OGeOH+are –0.72 and–0.83 |e| respectively, which reveals that the terminal oxygen atom is the active site.The interaction of terminal oxygen atom and the hydrogen atom in methane leads to the translocation of H to *O atom.In conclusion, the ligands affect the local charge distribution in the main group germanium metal cation compounds.

    Molecular electrostatic potential is another influence factor.The molecular electrostatic potential surface maps of the four metal ions and CH4are shown in Fig.5, which is drawn at 0.001 a.u.isosurface contours using GaussView software.The electron density distributions reveal the interaction between molecules.As shown in MEP map, due to electrostatic potential, there is a tendency between terminal oxygen *O in GeO+and OGeOH+and H in CH4to get close to each other.That explains the reason of GeO+and OGeOH+activate H3C–H bond.

    Fig.5.Map of molecular electrostatic potential surface of the four metal ion and CH4 plotted by GaussView software using the B3LYP/6-311++G** wave functions

    4 CONCLUSION

    The methane activation mechanistic by the main group metal Ge+, GeO+, GeOH+and OGeOH+have been studied by the density functional theory method.The main reaction channel of GeO+/CH4is that the H in CH4is abstracted by the O in GeO+to form GeOH+and CH3˙.The fast and efficient reaction is barrier-free process along with exothermicity, which is in agreement with literature.For the OGeOH+and CH4system, the optimal path is that OGeOH+reacts with methane to form M3 firstly, and then, M4, the transformation product of M3, decomposes into[GeOCH3]+and H2O.However, as for Ge+and GeOH+, the activation reaction is difficult to carry out under ambient temperature.Therefore, the ligands affect the main group germanium metal cation compounds reactivity to a certain extent.The results provide effective information for more sophisticated research in the future.

    REFERENCES

    (1) Berkowitz, J.; Greene, J.P.; Cho, H.; Rusci?, B.The ionization potentials of CH4and CD4.J.Chem.Phys.1987, 86, 674-676.

    (2) Schwarz, H.; González-Navarrete, P.; Li, J.; Schlangen, M.; Sun, X.; Weiske, T.; Zhou, S.Unexpected mechanistic variants in the thermal gas-phase activation of methane.Organometallics2017, 36, 8-17.

    (3) Gunsalus, N.J.; Koppaka, A.; Park, S.H.; Bischof, S.M.; Hashiguchi, B.G.; Periana, R.A.Homogeneous functionalization of methane.Chem.Rev.2017, 117, 8521-8573.

    (4) Shayesteh, A.; Lavrov, V.V.; Koyanagi, G.K.; Bohme, D.K.Reactions of atomic cations with methane: gas phase room-temperature kinetics and periodicities in reactivity.J.Phys.Chem.A2009, 113, 5602-5611.

    (5) Schwarz, H.; Schr?der, D.Concepts of metal-mediated methane functionalization.An intersection of experiment and theory.Pure Appl.Chem.2000,72, 2319-2332.

    (6) Bansmann, J.; Baker, S.H.; Binns, C.; Blackman, J.A.; Bucher, J.P.; Dorantes-dávila, J.; Dupuis, V.; Favre, L.; Kechrakos, D.; Kleibert, A.;Meiwes-Broer, K.H.; Pastor, G.M.; Perez, A.; Toulemonde, O.; Trohidou, K.N.; Tuaillon, J.; Xie, Y.Magnetic and structural properties of isolated and assembled clusters.Surf.Sci.Rep.2005, 56, 189-189.

    (7) Trevor, D.J.; Cox, D.M.; Kaldor, A.Methane activation on unsupported platinum clusters.J.Am.Chem.Soc.1990, 112, 3742-3749.

    (8) Benzi, P.; Operti, L.; Vaglio, G.A.; Volpe, P.; Speranza, M.; Gabrielli, R.Gas phase ion-molecule reactions of monogermane with oxygen and ammonia.J.Organomet.Chem.1988, 354, 39-50.

    (9) Benzi, P.; Operti, L.; Vaglio, G.A.; Volpe, P.; Speranza, M.; Gabrielli, R.Gas phase ion-molecule reactions of monogermane with carbon oxides and ethylene: Formation of germanium-carbon bonds.J.Organomet.Chem.1989, 373, 289-300.

    (10) Xing, X.; Tian, Z.; Liu, H.; Tang, Z.Reactions between M+(M = Si, Ge, Sn and Pb) and benzene in the gas phase.Rapid Commun.Mass Spectrom.2003, 17, 1743-1748.

    (11) Power, P.P.Main-group elements as transition metals.Nature2010, 463, 171-177.

    (12) Sun, X.; Zhou, S.; Schlangen, M.; Schwarz, H.Efficient room-temperature methane activation by the closed-shell.; metal-free cluster [OSiOH]+: a novel mechanistic variant.Chem.Eur.J.2016, 22, 14257-14263.

    (13) Chen, K.; Wang, Z.C.; Schlangen, M.; Wu, Y.D.; Zhang, X.; Schwarz, H.Thermal activation of methane and ethene by bare MO+(M = Ge, Sn, and Pb): a combined theoretical/experimental study.Chem.Eur.J.2011, 17, 9619-9625.

    (14) Bai, X.; Ling, R.R.; Lv, J.; Wu, H.S.; Structural, electronic and magnetic properties of ConO (n = 2~10) clusters: a density functional study.Chin.J.Struct.Chem.2018, 137, 175-185.

    (15) Li, Y.; Xing, Y.Y.; Liu, R.R.; Hu, J.M.; Zhang, Y.F.; Chen, W.K.Density functional theory study of the adsorption of C2H2on the Cu/Pt(111)bimetallic surfaces.Chin.J.Struct.Chem.2013, 32, 1211-1221.

    (16) Li, G.F.; Lu, S.Q.; Peng, P.Theoretical study of geometric structures for ground-state AlnC (n = 2~7) clusters.Chin.J.Struct.Chem.2012, 31,582-590.

    (17) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.J.Chem.Phys.1993, 98, 5648-5652.

    (18) Becke, A.D.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys.Rev.A1988, 38, 3098-3200.

    (19) Lee, C.; Yang, W.T.; Parr, R.G.Development of the Colle-salvetti correlation energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785-789.

    (20) Gonzalez, C.; Schlegel, H.B.An improved algorithm for reaction path following.J.Chem.Phys.1989, 90, 2154-2161.

    (21) Reed, A.E.; Weinstock, R.B.; Weinhold, F.Natural population analysis.J.Chem.Phys.1985,83, 735-746.

    (22) Carpenter, J.E.; Weinhold, F.Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure.J.Mol.Struct.(Theochem.)1988, 169, 41-46.

    (23) Lu, T.; Chen, F.Multiwfn: a multifunctional wavefunction analyzer.J.Comput.Chem.2012,33, 580-592.

    (24) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.;Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.;Iyengar, S, S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.Gaussian 09,Revision A.02.Gaussian, Inc.Wallingford, CT2009.

    (25) Zhang, X.; Schwarz, H.A DFT-based analysis of the grossly varying reactivity pattern in room-temperature activation and dehydrogenation of CH4by main-group atomic M+(M = Ga, Ge, As, and Se).Chem.Eur.J.2009, 15,11559-11565.

    (26) Yamaguchi, Y.; Richards, C.A.; Schaefer, Ⅲ Jr H.F.The GeOH+-HGeO+system: a detailed quantum mechanical study.J.Chem.Phys.1995, 103,7975-7982.

    可以免费在线观看a视频的电影网站| 久久久久久大精品| 免费无遮挡裸体视频| 成年人黄色毛片网站| 在线视频色国产色| 国产午夜精品论理片| 成人三级做爰电影| АⅤ资源中文在线天堂| 欧美日韩黄片免| 午夜久久久久精精品| 久久久久国内视频| 国产成年人精品一区二区| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www| 午夜激情福利司机影院| 欧美日韩中文字幕国产精品一区二区三区| 最好的美女福利视频网| 婷婷亚洲欧美| 中出人妻视频一区二区| 成在线人永久免费视频| 色噜噜av男人的天堂激情| 亚洲欧美精品综合一区二区三区| 久久草成人影院| 搡老妇女老女人老熟妇| 国产av一区二区精品久久| 国产精品98久久久久久宅男小说| 看免费av毛片| 观看免费一级毛片| 国产成人一区二区三区免费视频网站| 国产亚洲精品久久久久5区| 少妇人妻一区二区三区视频| 国产精品乱码一区二三区的特点| 一本综合久久免费| 亚洲国产欧美网| 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 国产又黄又爽又无遮挡在线| 国产真实乱freesex| 日本一二三区视频观看| 麻豆av在线久日| 久久久久久国产a免费观看| 精品久久久久久,| 日韩欧美一区二区三区在线观看| 国产精品免费一区二区三区在线| 99精品欧美一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 在线观看www视频免费| 国产1区2区3区精品| 色综合婷婷激情| 两个人看的免费小视频| 日本一本二区三区精品| 欧美一级a爱片免费观看看 | 特级一级黄色大片| 国产精品国产高清国产av| www日本在线高清视频| 亚洲最大成人中文| 久久久久久久久中文| 免费在线观看亚洲国产| 18禁美女被吸乳视频| 黄片小视频在线播放| 午夜福利18| 久久人人精品亚洲av| 国产精品影院久久| 香蕉久久夜色| 国产午夜精品论理片| 91老司机精品| 精品日产1卡2卡| 母亲3免费完整高清在线观看| 18美女黄网站色大片免费观看| 日日干狠狠操夜夜爽| 欧美在线一区亚洲| 国产成人精品久久二区二区91| 香蕉丝袜av| 后天国语完整版免费观看| 搡老妇女老女人老熟妇| 一个人免费在线观看电影 | 色综合站精品国产| 国产亚洲精品久久久久5区| 日本 av在线| 黄色 视频免费看| 看黄色毛片网站| 久久久精品大字幕| 首页视频小说图片口味搜索| 免费搜索国产男女视频| 国产亚洲精品久久久久5区| 日韩欧美三级三区| 免费在线观看完整版高清| 亚洲精品粉嫩美女一区| 国产高清视频在线观看网站| 国产91精品成人一区二区三区| 色综合亚洲欧美另类图片| 欧美黑人精品巨大| 在线视频色国产色| 亚洲av成人不卡在线观看播放网| 免费在线观看影片大全网站| av免费在线观看网站| 夜夜躁狠狠躁天天躁| www.精华液| 成年免费大片在线观看| 国产熟女午夜一区二区三区| 久99久视频精品免费| 99热6这里只有精品| 久久久久国产一级毛片高清牌| 人妻丰满熟妇av一区二区三区| 日韩精品中文字幕看吧| 熟女电影av网| 成人特级黄色片久久久久久久| 亚洲av成人不卡在线观看播放网| 日韩成人在线观看一区二区三区| 日韩精品免费视频一区二区三区| 19禁男女啪啪无遮挡网站| 国产精品一区二区三区四区免费观看 | 香蕉丝袜av| 91国产中文字幕| 国产高清videossex| 亚洲一区中文字幕在线| 亚洲乱码一区二区免费版| www.999成人在线观看| а√天堂www在线а√下载| 99热6这里只有精品| 最新在线观看一区二区三区| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区91| 丰满的人妻完整版| 一级片免费观看大全| 午夜福利成人在线免费观看| 亚洲最大成人中文| 一进一出抽搐gif免费好疼| 天堂√8在线中文| 成人av在线播放网站| 日韩大尺度精品在线看网址| 亚洲一区中文字幕在线| 欧美在线黄色| 日本a在线网址| 老司机福利观看| 黑人操中国人逼视频| 亚洲 国产 在线| 亚洲成人国产一区在线观看| 亚洲精品中文字幕一二三四区| 久久久国产成人免费| 国产久久久一区二区三区| 亚洲av片天天在线观看| 欧美成人午夜精品| 欧美av亚洲av综合av国产av| 天堂√8在线中文| 麻豆av在线久日| 亚洲一区高清亚洲精品| 精品国内亚洲2022精品成人| 又黄又爽又免费观看的视频| 91字幕亚洲| 精品乱码久久久久久99久播| 亚洲av第一区精品v没综合| 久久性视频一级片| 午夜福利成人在线免费观看| 日日夜夜操网爽| 亚洲国产日韩欧美精品在线观看 | 99国产精品99久久久久| 欧美乱码精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 女人高潮潮喷娇喘18禁视频| 美女黄网站色视频| 亚洲av成人av| 国产精品九九99| 免费观看人在逋| 欧美在线一区亚洲| 人成视频在线观看免费观看| 99久久无色码亚洲精品果冻| 午夜福利免费观看在线| 18禁国产床啪视频网站| 色噜噜av男人的天堂激情| 免费在线观看影片大全网站| 白带黄色成豆腐渣| 成人av在线播放网站| 久久中文字幕人妻熟女| 我要搜黄色片| 国产精品一及| 五月伊人婷婷丁香| 久久精品影院6| 国产三级黄色录像| 欧美zozozo另类| 色播亚洲综合网| 国产成人精品久久二区二区91| av超薄肉色丝袜交足视频| 午夜福利视频1000在线观看| 久久香蕉激情| 丰满人妻熟妇乱又伦精品不卡| 中文字幕高清在线视频| 欧美高清成人免费视频www| 久久久精品大字幕| 男女那种视频在线观看| 国产精品亚洲av一区麻豆| 成年女人毛片免费观看观看9| 亚洲免费av在线视频| 久久草成人影院| 女人被狂操c到高潮| 热99re8久久精品国产| 后天国语完整版免费观看| 午夜免费激情av| 一本一本综合久久| 可以在线观看的亚洲视频| tocl精华| 99精品久久久久人妻精品| 国产亚洲欧美98| 久久草成人影院| 久久久久久久久中文| 全区人妻精品视频| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 免费在线观看完整版高清| av在线天堂中文字幕| 久久精品91无色码中文字幕| 国产真实乱freesex| 国产片内射在线| 久久精品亚洲精品国产色婷小说| 久久精品91蜜桃| 日韩欧美三级三区| 欧美一区二区国产精品久久精品 | 99久久无色码亚洲精品果冻| 免费在线观看亚洲国产| 成人欧美大片| 久久欧美精品欧美久久欧美| 欧美日韩乱码在线| 国产激情久久老熟女| 精品少妇一区二区三区视频日本电影| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 精品一区二区三区av网在线观看| 韩国av一区二区三区四区| 午夜福利在线在线| 国产私拍福利视频在线观看| 亚洲七黄色美女视频| 国产精品美女特级片免费视频播放器 | 1024香蕉在线观看| 亚洲性夜色夜夜综合| 麻豆成人午夜福利视频| 成熟少妇高潮喷水视频| 窝窝影院91人妻| 成年版毛片免费区| 伊人久久大香线蕉亚洲五| 在线永久观看黄色视频| 亚洲av电影在线进入| 国产精品久久视频播放| 中文字幕精品亚洲无线码一区| 蜜桃久久精品国产亚洲av| 一区二区三区国产精品乱码| 欧美精品亚洲一区二区| 日韩精品青青久久久久久| 草草在线视频免费看| 极品教师在线免费播放| 两性夫妻黄色片| 久久精品国产99精品国产亚洲性色| 国产99久久九九免费精品| 亚洲色图av天堂| 亚洲av成人不卡在线观看播放网| 久久精品aⅴ一区二区三区四区| 深夜精品福利| 午夜福利免费观看在线| 在线观看美女被高潮喷水网站 | 啦啦啦免费观看视频1| 国产91精品成人一区二区三区| 露出奶头的视频| 桃红色精品国产亚洲av| 久久久久久亚洲精品国产蜜桃av| 国产人伦9x9x在线观看| 好看av亚洲va欧美ⅴa在| 亚洲精品中文字幕在线视频| 亚洲成人中文字幕在线播放| 国产av不卡久久| 国产精品久久视频播放| 欧美色欧美亚洲另类二区| 中文在线观看免费www的网站 | 日韩精品免费视频一区二区三区| 欧美黑人欧美精品刺激| 久久久久久久精品吃奶| 97超级碰碰碰精品色视频在线观看| 久久 成人 亚洲| 日本成人三级电影网站| 波多野结衣高清作品| 狠狠狠狠99中文字幕| 亚洲人与动物交配视频| 国产人伦9x9x在线观看| 又黄又粗又硬又大视频| 国产午夜福利久久久久久| www日本黄色视频网| 一个人免费在线观看的高清视频| 午夜精品久久久久久毛片777| 两个人看的免费小视频| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| videosex国产| 午夜精品在线福利| 亚洲五月天丁香| 欧美zozozo另类| 成年免费大片在线观看| 麻豆一二三区av精品| 身体一侧抽搐| 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区黑人| 日本一区二区免费在线视频| 国产av麻豆久久久久久久| 巨乳人妻的诱惑在线观看| 真人一进一出gif抽搐免费| 成人永久免费在线观看视频| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 99精品久久久久人妻精品| 一本精品99久久精品77| 亚洲色图av天堂| av天堂在线播放| 欧美性猛交黑人性爽| 午夜精品久久久久久毛片777| 久久国产精品人妻蜜桃| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 宅男免费午夜| 免费看十八禁软件| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| 波多野结衣高清无吗| 制服丝袜大香蕉在线| 少妇的丰满在线观看| 国产伦一二天堂av在线观看| 精品一区二区三区视频在线观看免费| 男女下面进入的视频免费午夜| 国产欧美日韩精品亚洲av| 啪啪无遮挡十八禁网站| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩国产亚洲二区| 国产男靠女视频免费网站| 色综合站精品国产| 亚洲成人久久爱视频| 国产探花在线观看一区二区| 国产午夜福利久久久久久| 国产精品一及| 一级片免费观看大全| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区国产精品乱码| 国产精品久久久久久久电影 | 首页视频小说图片口味搜索| 欧美乱码精品一区二区三区| 久久欧美精品欧美久久欧美| 麻豆国产97在线/欧美 | 日本撒尿小便嘘嘘汇集6| 日韩大尺度精品在线看网址| 日本黄色视频三级网站网址| 亚洲成人国产一区在线观看| 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 日本熟妇午夜| 美女午夜性视频免费| 国内毛片毛片毛片毛片毛片| 国产精品美女特级片免费视频播放器 | 久久中文字幕一级| 桃色一区二区三区在线观看| netflix在线观看网站| 国产av在哪里看| 听说在线观看完整版免费高清| 国产成人一区二区三区免费视频网站| 亚洲 欧美一区二区三区| 午夜福利高清视频| 老汉色av国产亚洲站长工具| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频| 欧美日韩黄片免| 免费在线观看完整版高清| 久久久久九九精品影院| 国产成人av激情在线播放| 欧美三级亚洲精品| 一二三四社区在线视频社区8| 亚洲人成电影免费在线| 色综合婷婷激情| av国产免费在线观看| 麻豆av在线久日| 午夜精品一区二区三区免费看| 免费在线观看影片大全网站| 亚洲熟妇熟女久久| 99热6这里只有精品| 国产伦一二天堂av在线观看| 亚洲乱码一区二区免费版| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 国产视频一区二区在线看| 亚洲精品色激情综合| 午夜精品久久久久久毛片777| 男男h啪啪无遮挡| 日韩成人在线观看一区二区三区| 国产成人精品久久二区二区91| www.精华液| 午夜两性在线视频| 国产91精品成人一区二区三区| 99riav亚洲国产免费| 亚洲在线自拍视频| 亚洲全国av大片| 淫秽高清视频在线观看| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 国产精品一区二区三区四区久久| 99久久国产精品久久久| 黄片大片在线免费观看| 国产精品永久免费网站| 精品一区二区三区视频在线观看免费| 他把我摸到了高潮在线观看| 在线观看免费日韩欧美大片| 日韩欧美在线二视频| 两个人的视频大全免费| 中文字幕熟女人妻在线| 亚洲欧美精品综合久久99| 全区人妻精品视频| 成人午夜高清在线视频| 三级毛片av免费| 婷婷亚洲欧美| 亚洲18禁久久av| 成年免费大片在线观看| 窝窝影院91人妻| 亚洲国产精品999在线| a级毛片在线看网站| 免费观看精品视频网站| 亚洲美女黄片视频| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 大型av网站在线播放| 国产在线精品亚洲第一网站| 亚洲av成人不卡在线观看播放网| 99国产精品一区二区蜜桃av| 人妻丰满熟妇av一区二区三区| 日韩成人在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 中文字幕高清在线视频| 两个人免费观看高清视频| 女警被强在线播放| 久久人妻av系列| 亚洲 欧美 日韩 在线 免费| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 好看av亚洲va欧美ⅴa在| 18禁观看日本| 两个人视频免费观看高清| 99久久国产精品久久久| 美女扒开内裤让男人捅视频| 高潮久久久久久久久久久不卡| 一进一出抽搐gif免费好疼| 欧美一区二区国产精品久久精品 | 精品午夜福利视频在线观看一区| 欧美精品啪啪一区二区三区| 一进一出好大好爽视频| 国产熟女午夜一区二区三区| 国产精品亚洲美女久久久| 久久精品aⅴ一区二区三区四区| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| 欧美又色又爽又黄视频| av视频在线观看入口| 精品第一国产精品| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 男女那种视频在线观看| 亚洲全国av大片| 亚洲国产精品成人综合色| 最新美女视频免费是黄的| 国产精品综合久久久久久久免费| 国产亚洲精品久久久久5区| 法律面前人人平等表现在哪些方面| 亚洲熟女毛片儿| 90打野战视频偷拍视频| 国产v大片淫在线免费观看| 日韩中文字幕欧美一区二区| av有码第一页| 欧美另类亚洲清纯唯美| 国产一级毛片七仙女欲春2| 国产亚洲精品久久久久5区| www.精华液| 神马国产精品三级电影在线观看 | 国产激情欧美一区二区| 欧美在线黄色| 青草久久国产| 国产成+人综合+亚洲专区| 国产精品av视频在线免费观看| 欧美日韩一级在线毛片| 岛国在线观看网站| 亚洲国产欧美人成| 成人18禁在线播放| 人人妻,人人澡人人爽秒播| 免费看十八禁软件| 欧美乱码精品一区二区三区| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 国产99白浆流出| 欧美日韩亚洲综合一区二区三区_| 制服人妻中文乱码| 18禁黄网站禁片免费观看直播| 亚洲成av人片免费观看| 搞女人的毛片| 亚洲熟妇熟女久久| 欧洲精品卡2卡3卡4卡5卡区| 91字幕亚洲| 午夜精品在线福利| 国产黄片美女视频| 听说在线观看完整版免费高清| 精品国内亚洲2022精品成人| 草草在线视频免费看| 亚洲成a人片在线一区二区| 黄色 视频免费看| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 国产一区二区在线av高清观看| 久久午夜综合久久蜜桃| av欧美777| 欧美中文日本在线观看视频| 亚洲 国产 在线| 91国产中文字幕| 国产精品1区2区在线观看.| 精品国产乱码久久久久久男人| 免费观看精品视频网站| 国产91精品成人一区二区三区| 精品久久蜜臀av无| 国产三级中文精品| 久久久国产成人免费| 一区二区三区激情视频| 亚洲av熟女| 在线观看舔阴道视频| 国产三级黄色录像| xxx96com| 国产精品久久久人人做人人爽| 中出人妻视频一区二区| 91字幕亚洲| 一级作爱视频免费观看| 在线观看www视频免费| 麻豆av在线久日| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 一本综合久久免费| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 亚洲成人国产一区在线观看| 成人18禁在线播放| 欧美在线黄色| 午夜福利18| 国产成人av教育| 悠悠久久av| 亚洲欧美日韩高清专用| 亚洲熟女毛片儿| 国产精品久久视频播放| 亚洲午夜精品一区,二区,三区| 国产黄色小视频在线观看| 好看av亚洲va欧美ⅴa在| 国产精品自产拍在线观看55亚洲| 啦啦啦韩国在线观看视频| 88av欧美| 成人18禁高潮啪啪吃奶动态图| 亚洲激情在线av| 在线播放国产精品三级| 国产精品香港三级国产av潘金莲| 亚洲欧美精品综合久久99| 免费看a级黄色片| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 狂野欧美白嫩少妇大欣赏| 少妇粗大呻吟视频| 精品欧美国产一区二区三| 麻豆成人av在线观看| 欧美在线一区亚洲| 日本熟妇午夜| 欧美日韩亚洲综合一区二区三区_| 国产激情欧美一区二区| 88av欧美| 一本精品99久久精品77| 国产高清激情床上av| 婷婷丁香在线五月| 丁香欧美五月| www国产在线视频色| 午夜福利在线在线| 99久久国产精品久久久| 亚洲成人久久性| 亚洲成av人片免费观看| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 久久精品国产综合久久久| 九九热线精品视视频播放| 波多野结衣巨乳人妻| 国产av不卡久久| 亚洲av成人精品一区久久| 国产精品,欧美在线| 国产成人啪精品午夜网站| 美女午夜性视频免费| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 婷婷丁香在线五月| www日本黄色视频网| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 中出人妻视频一区二区| 国产一区在线观看成人免费| 亚洲第一欧美日韩一区二区三区| 欧美av亚洲av综合av国产av| 成人三级做爰电影| 成人三级黄色视频| 色综合欧美亚洲国产小说| 色噜噜av男人的天堂激情| 亚洲男人的天堂狠狠| 丰满的人妻完整版| 中文在线观看免费www的网站 | 亚洲免费av在线视频| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 国产私拍福利视频在线观看| 久久 成人 亚洲| 日韩欧美免费精品| 亚洲专区字幕在线| 99国产综合亚洲精品| 看黄色毛片网站|