• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction of β-Cyclodextrin Catalyst with p-Chlorobenzonitrile for the Synthesis of 5-Substituted 1H-tetrazoles in n,n-Dimethylformamide: a DFT Study①

    2018-11-22 01:58:46YIShanFengWANYaLiWANGXueYe
    結(jié)構(gòu)化學(xué) 2018年10期
    關(guān)鍵詞:阿東墓穴封口

    YI Shan-Feng WAN Ya-Li WANG Xue-Ye

    (Key Laboratory for Green Organic Synthesis and Application of Hunan Province,Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China)

    The synthesis of 5-substituted 1H-tetrazoles in n,n-dimethylformamide (DMF) withb-cyclodextrin (b-CD) as catalyst can get an excellent yield in short reaction time, so the complex of b-CD with p-chlorobenzonitrile has been investigated using density functional theory (DFT) method.

    1 INTRODUCTION

    Cyclodextrins (CDs) are a class of macrocyclic oligosaccharides connected together by α-1,4 glycosidic bonds[1].a-, b- and g-CD, composed of six, seven and eight glucose units (Fig.1),respectively are commonly used in recent years[2].They have hydrophilic external and hydrophobic internal cavity, and thus a wide range of guest molecules can be embraced in their cavities[3,4].The ability of CDs to bind guests in their internal hydrophobic cavities plays an important role in changing the physicochemical properties of the guests[5].Due to their particular abilities, they have been extensively employed in facilitating organic reaction by the way of host-guest complexes[6-12].Currently, in view of efficiency, economy and environment, the CD catalyst has been demonstrated by numerous researchers.

    Fig.1.Structure of cyclodextrin

    1H-Tetrazoles are a family of nitrogen-rich heterocycles with chemical instability and potential as precursors of alkylidenecarbenes[13,14].They have a wide range of applications, such as pharmaceutics[15],biomedicine and materials science[16,17].Therefore,the synthesis of 1H-tetrazoles has an attractive prospect.Much work has reported the methods for the synthesis of 1H-tetrazoles[18-22], but they still suffer from drawbacks such as long time or environmental unfriendliness.Thus, an efficient and environmentally friendly catalyst is useful.The 5-substituted 1H-tetrazoles can be synthesized with β-CD as the catalyst[23].Host-guest interaction of β-CD must play an important role in this process.The highly efficient β-CD as catalyst for the synthesis of 5-substituted 1H-tetrazoles has been studied experimentally, while the interaction of β-CD as catalyst with guest has not been reported.

    In this work, the computational method is used to describe the host-guest interaction of β-CD catalyst with p-chlorobenzonitrile for the synthesis of 5-substituted 1H-tetrazoles in n,n-dimethylformamide(DMF).More attention is focused on the interaction of β-CD and p-chlorobenzonitrile using density functional theory (DFT) method.The minimum energy structure is investigated in water, DMF and DMSO.To know more details, the natural bonding orbital (NBO), nuclear magnetic resonance (NMR)spectra, frontier molecular orbitals and Mulliken charge are discussed.

    2 COMPUTATIONAL METHODS

    The initial geometry of β-CD is constructed in Chem3D Ultra (Version8.0) according to the crystal structure.And the structure of p-chlorobenzonitrile is built using Chemdraw and Chem3D Ultra.The host-guest complexes of β-CD and p-chlorobenzonitrile are constructed by manually in Gauss view making the p-chlorobenzonitrile into β-CD cavity through two possible ways (Fig.2).The glycosidic oxygen atoms of β-CD are placed on the xy plane and their center is defined as the same with the coordinate system.Meanwhile, the center of the guest is placed on the x-axis[3].The relative position between host and guest is measured by the distance between the centers of p-chlorobenzonitrile and β-CD.The guest molecule passes through the host cavity along the z-axis from 8 to –8 ? with a stepwise 1 ? and revolves from 0° to 360° around the z-axis at an interval of 30°.

    Fig.2.Two possible complexation models of p-chlorobenzonitrile into β-CD

    All the calculations are performed using the Gaussian03 software package[24].The method of B3LYP is employed[25].The isolated β-CD and guest are optimized using 6-31G (d, p) basis set firstly in gas phase, then the solvent effect of water (ε =78.390), DMF (ε = 37.219) and dimethyl sulfoxide DMSO (ε = 46.700) are considered using the polarizable continuum model (PCM)[26].The inclusion complexes of each step are optimized by PM3 without any restriction.The precise optimization of inclusion complex is calculated at the B3LYP/6-31G(d, p) level in gas phase which is based on the results of the preliminary PM3 calculation and then in solvent.In addition, the same level is employed to obtain NBO, NMR, frontier molecular orbital and Mulliken charge in DMF.The NMR is investigated with gauge-including atomic orbital (GIAO) method and the tetra methyl silane (TMS) as internal reference for13C and1H, and NH3for15N[27,28].

    3 RESULTS AND DISCUSSION

    3.1 Energy analysis

    The energy of the preliminary optimization is calculated at the PM3 level to find the minimum.Fig.3 shows the relationship between the energy of inclusion complex and the position for two possible complexation models.As shown in Fig.3, multiple local minima can be found for the entire process of inclusion in models a and b.Only the global minima of the two models are compared to a minimum.It is easy to find that the global minimum in model b is more negative than in model a.Thus, this inclusion complex is further refined and named as complex b(CB).

    Fig.3.Graphic diagram of the energy for the inclusion complex of p-chlorobenzonitrile into β-CD at different positions

    To know the influence of solvent in this reaction,β-CD, p-chlorobenzonitrile and CB are further investigated in water, DMF and DMSO.The parameters are recorded in Table 1.The energies of p-chlorobenzonitrile, β-CD and CB have some differences in water, DMF and DMSO.Thus, there must be some interactions between the solvent and the molecule in solvent, and the interaction has an influence on the occurrence of cycloaddition reaction.From the information of Table 1, it is easy to note that the value of interaction energy (ΔE) is positive in water and DMSO, while it is negative in DMF.The change of ΔE is an important sign of the driving force towards complexation and the negative value means favorable inclusion.Therefore, the p-chlorobenzonitrile can bind with β-CD efficiently in nonaqueous DMF, which is in agreement with the literature survey[23].

    Table 1.Calculated Interaction Energy (kJ·mol-1) of CB for Different Solvents

    3.2 Hydrogen bond interactions

    To know the interaction between host and guest,the hydrogen bond is investigated by the natural bond orbital (NBO) analysis[29].The results are summarized in Table 2.

    Table 2.Bond Lengths (?), Bond Angles (°) and Stabilization Energy E(2) (kcal·mol-1) of Hydrogen Bonds for CB

    The hydrogen bond is defined as an X–H··Y interaction in which the distance of H··Y is less than 3.0 ? but the angle is larger than 90°[30].The strength of hydrogen bond is measured by the second-order Moller-Plesset perturbation stabilization energy E(2)which is in relation to the donor-acceptor delocalization[31].The value of E(2)in CB reveals that more hydrogen bonds form guest to β-CD.That is to say, the lone pairs are mainly delocalized to the anti-bonds of β-CD, especially for the lone pairs on the nitrogen atom (N148) of cyanogroup.They are delocalized to O105–H134and C20–H67which result in strong stabilization energy.Additionally, the value of E(2)lower than 2.0 kcal·mol-1indicates typical weak hydrogen bond[32].Therefore, the calculated data indicate two classical hydrogen bonds and one weak hydrogen bond in CB.Thus, it can imply that the hydrogen bonds play a significant role in CB.And the hydrogen bonds between nitrogen atom (N148)and secondary hydroxyl make great contribution to driving the p-chlorobenzonitrile molecule into the cavity of b-CD and keeping the stability of CB.

    3.3 NMR study

    To confirm the relative position between p-chlorobenzonitrile and β-CD in DMF, the1H NMR of β-CD in the presence and absence of p-chlorobenzonitrile in DMF is calculated.The isotropic chemical shift (δ) and chemical shift displacement (Δδ) are calculated according to:

    where σ is the isotropic shielding value.The spectra data are shown in Table 3.There is an obvious upfield shift for H3and H5in CB compared to free β-CD, which indicates that the internal H3and H5protons are more sensitive to the complexation effect than the other protons located outside.A relatively high association appears between p-chlorobenzonitrile and the internal protons of β-CD.

    Table 3.1HNMR Chemical Shift (ppm) of the b-CD for Free and CB

    The chemical shift ranges of13C and15N spectra are large.Thus, they are sensitive to reflect alteration in the chemical environment.The guest13C NMR and15N NMR in the presence and absence of β-CD are recorded in Table 4.The C1and C5are on the meta, C2and C4on the ortho, while C6on the para of benzene ring in p-chlorobenzonitrile.Owing to the deformation of the guest, there are some differences about the values of carbon atoms in the same position of benzene ring upon complexation.As is known, low shielded electrons correspond to large isotropic chemical shift and vice versa.From the information in Table 4, it is easy to note that the chemical shifts of p-chlorobenzonitrile have some changes.All atoms except for C3and N12in CB exhibit downfield shifts in contrast to the free, and the remarkable downfield shift is for C11.It represents that most carbon atoms of p-chlorobenzonitrile possess more positive charges and are high electropositive in the presence of β-CD and the carbon atom of cyanogroup (C11) is more obvious than others.Obviously, the N12moves to upfield significantly.It indicates that more positive charges focus on the carbon atom of cyanogroup (C11) and more negative charges concentrate on the nitrogen atom of cyanogroup (N12) upon complexation.

    Table 4.13CNMR Chemical Shift (ppm) of p-Chlorobenzonitrile for the Free and CB

    3.4 Frontier molecular orbital

    The frontier molecular orbitals which can reflect the electronic structures are investigated.The highest occupied molecular orbital (HOMO) and the lowest virtual molecular orbital (LUMO) of CB are shown in Fig.4.It should be noted that the HOMO is mainly spread around β-CD, and the LUMO almost focuses on p-chlorobenzonitrile.The HOMO represents the ability to donate electron while the LUMO as an electron acceptor represents the ability to obtain electron[33].Thus, the p-chlorobenzonitrile in CB is more likely to accept electrons than isolated p-chlorobenzonitrile.

    Fig.4.HOMO and LUMO orbitals of CB

    The HOMO energy can be used to measure the ionization potential (IP ≈ –EHOMO)[34,35]and the LUMO energy has association with the electron affinity (EA ≈ –ELUMO)[35].In addition, the energy gap between HOMO and LUMO is a significant sign for chemical activity and smaller value of energy gap means more activity[36].In this case, the energy gaps of reactants are investigated to know more details about β-CD in catalyzing p-chlorobenzonitrile, as shown in Fig.5.The energy gaps of HOMO-LUMO between p-chlorobenzonitrile and NaN3with β-CD as catalyst are smaller than that without β-CD, and the gap between the HOMO of p-chlorobenzonitrile and the LUMO of NaN3in the presence of β-CD is the smallest.Thus, the chemical activity of p-chlorobenzonitrile and NaN3with β-CD as catalyst is improved and the major match is the HOMO of p-chlorobenzonitrile with the LUMO of NaN3.The conclusion is supported by the result from Fig.4 that the LUMO is mainly focused on p-chlorobenzonitrile in CB.The electrophilicity (ω) of free p-chlorobenzonitrile and CB is calculated[37]:

    The values in the presence and absence of β-CD are 3.8060 and 3.4771 eV, respectively.The electrophilicity of p-chlorobenzonitrile is more obvious with β-CD catalyst.The energy of HOMO is larger in complex than in free, while the LUMO is smaller.Therefore, the IP of guest is decreased and EA is enhanced upon complexation.The chemical activity and electrophilicity of p-chlorobenzonitrile are greater after the formation of inclusion complex.This suggests that the p-chlorobenzonitrile in the cavity of β-CD is more active and electrophilic than free.

    Fig.5.HOMO-LUMO energy gap (eV) for reactants in the presence and absence of β-CD

    3.5 Mulliken charge

    In order to confirm the results about electronic distribution, the Mulliken charge analyses for isolated guest and CB are researched and recorded in Table 5.The total charges of p-chlorobenzonitrile change from 0 to 0.0267 upon complexation.This indicates the p-chlorobenzonitrile with positive charges in the complex.In other words, the p-chlorobenzonitrile donates electron upon complexation and the total charges of all atoms are certainly zero, sob-CD in CB must accept electron and vice versa.Therefore, p-chlorobenzonitrile is electron-deficient with electrophilicity in complex, which is in good agreement with the conclusion from frontier molecular orbitals analysis.

    Table 5.Mulliken Charges (e) for Isolated Guest and Guest in Complex

    The obvious charge transfer can be found on the atoms in functional group (-CN).They are more sensitive to be affected by β-CD.The C11possesses more positive charges, while N12has more negative charges in CB, which is in accordance with the result from13CNMR.However, more positive charges are distributed on cyanogroup and p-chlorobenzonitrile than negative charges.Thus, the functional group is easier to be attacked by azide ions in the presence of β-CD as catalyst.

    3.6 Catalytic mechanism

    Based on the above conclusions, a plausible reaction pathway is proposed and shown in Fig.6.In the first step, the p-chlorobenzonitrile enters into the cavity forming hydrogen bonds between nitrogen atom (N148) and the secondary hydroxyl, then the electron density redistributes between b-CD and p-chlorobenzonitrile.The hydrogen bonds ofb-CD with p-chlorobenzonitrile help p-chlorobenzonitrile enter the cavity of b-CD, and fix p-chlorobenzonitrile in the cavity.The formation of hydrogen bonds changes the charge distribution of the p-chlorobenzonitrile, and benefits to the [2+3]cycloaddition.The p-chlorobenzonitrile is electrondeficient with electrophilicity and more positive charges focus on the carbon atom of cyanogroup (C11)and more negative charges concentrate on the nitrogen atom of cyanogroup (N12).The NaN3can produce azide ions to attack the atoms in functional group (-CN) more easily.Thus, the activity of p-chlorobenzonitrile reacting with the azide ions is increased in the presence of b-CD.Thus, the b-CD catalyst can activate the p-chlorobenzonitrile and facilitate the [2+3] cycloaddition reaction for the synthesis of 5-substituted 1H-tetrazoles by the way of molecular complex.

    Fig.6.Proposed mechanism for β-CD catalyst synthesis of 5-substituted 1H-tetrazoles

    4 CONCLUSION

    The energy results show that the p-chlorobenzonitrile can bind with β-CD efficiently in nonaqueous DMF.The NBO analysis suggests that the hydrogen bonds between nitrogen atom (N148) and the secondary hydroxyl make great contribution to driving the guest into the cavity of b-CD and keeping stability of the complex.The1H NMR of b-CD shows that the p-chlorobenzonitrile is the main association with internal protons of b-CD, and the13C and15N spectra reflect more positive charges focus on the carbon atom of cyanogroup (C11) and more negative charges concentrate on the nitrogen atom of cyanogroup (N12) upon complexation.The p-chlorobenzonitrile in the cavity of β-CD is more active and electrophilic than the free.The functional group of p-chlorobenzonitrile is easier to be attacked by azide ions in the presence of β-CD as catalyst.

    REFERENCES

    (1) Zhang, J.; Ma, P.X.Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective.Adv.Drug.Delivery Rev.2013, 65, 1215-1233.

    (2) Fleischmann, C.; Ritter, H.Color indicator for supramolecular polymer chemistry: phenolphthalein-containing thermo- and pH-sensitive N-(isopropyl) acrylamide copolymers and β-cyclodextrin complexation.Macromol.Rapid Comm.2013, 34, 1085-1089.

    (3) Li, Z.; Couzijn, E.P.A.; Zhang, X.Intrinsic properties of α-cyclodextrin complexes with benzoate derivatives in the gas phase: an experimental and theoretical study.J.Phys.Chem.B2012, 116, 943-950.

    (4) López, C.A.; de Vries, A.H.; Marrink, S.J.Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes.Sci.Rep.-UK.2013, 3, 2071-2076.

    阿里偏著頭,想了想,覺得阿東說得有理。于是他不等阿東開口教他怎么磕頭,便使勁磕了起來。墓穴尚未封口,水泥邊毛毛糙糙。等阿東制止他時,他的額頭已經(jīng)磕出了血,水泥邊沾上他的血印。

    (5) Nakamura, A.; Inoue, Y.Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within γ-cyclodextrin cavity through chemical modification inverted product distribution and enhanced enantioselectivity.J.Am.Chem.Soc.2005, 127,5338-5339.

    (6) Breslow, R.; Dong, S.D.Biomimetic reactions catalyzed by cyclodextrins and their derivatives.Chem.Rev.1998, 98, 1997-2011.

    (7) Strimbu, L.; Liu, J.; Kaifer, A.E.Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction.Langmuir.2003, 19, 483-485.

    (8) Surendra, K.; Krishnaveni, N.S.; Mahesh, A.; Rao, K.R.Supramolecular catalysis of Strecker reaction in water under neutral conditions in the presence of β-cyclodextrin.J.Org.Chem.2006, 71, 2532-2534.

    (9) Murthy, S.N.; Madhav, B.; Kumar, A.V.; Rao, K.R.Nageswar, Y.V.D.Facile and efficient synthesis of 3,4,5-substituted furan-2(5H)-ones by using β-cyclodextrin as reusable catalyst.Tetrahedron2009, 65, 5251-5256.

    (10) Hapiot, F.; Tilloy, S.; Monflier, E.Cyclodextrins as supramolecular hosts for organometallic complexes.Chem.Rev.2006, 106, 767-781.

    (11) Surendra, K.; Krishnaveni, N.S.; Sridhar, R.; Rao, K.R.Synthesis of β-hydroxysulfides from alkenes under supramolecular catalysis in the presence of β-cyclodextrin in water.J.Org.Chem.2006, 71, 5819-5821.

    (12) Kumar, A.; Tripathi, V.D.; Kumar, P.β-Cyclodextrin catalysed synthesis of tryptanthrin in water.Green Chem.2011, 13, 51-54.

    (14) Wardrop, D.J.; Komenda, J.P.Dehydrative fragmentation of 5-hydroxyalkyl-1H-tetrazoles: a mild route to alkylidenecarbenes.Org.Lett.2012, 14,1548-1551.

    (15) Herr, R.J.5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods.Bioorg.Med.Chem.2002, 10,3379-3393.

    (16) Truica-Marasescu, F.; Wertheimer, M.R.Nitrogen-rich plasma-polymer films for biomedical applications.Plasma Process.Polym.2008, 5, 44-57.

    (17) Wittenberger, S.J.; Donner, B.G.Dialkyltin oxide mediated addition of trimethylsilyl azide to nitriles: a novel preparation of 5-substituted tetrazols.J.Org.Chem.1993, 58, 4139-4141.

    (18) Kantam, M.L.; Kumar, K.B.S.; Sridhar, C.Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles.Adv.Synth.Catal.2005, 347, 1212-1214.

    (19) Bonnamour, J.; Bolm, C.Iron salts in the catalyzed synthesis of 5-substituted 1H-tetrazoles.Chem.Eur.J.2009, 15, 4543-4545.

    (20) Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S.FeCl3-SiO2as a reusable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [2+3] cycloaddition of nitriles and sodium azide.Tetra.Lett.2009, 50, 4435-4438.

    (21) Kantam, M.L.; Kumar, K.B.S.; Raja, K.P.An efficient synthesis of 5-substituted 1H-tetrazoles using Zn/Al hydrotalcite catalyst.J.Mol.Catal.A-Chem.2006, 247, 186-188.

    (22) Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccaro, L.TBAF-catalyzed synthesis of 5-substituted 1H-tetrazoles under solventless conditions.J.Org.Chem.2004, 69, 2896-2898.

    (23) Patil, D.R.; Wagh, Y.B.; Ingole, P.G.; Singh, K.; Dalal, D.S.β-Cyclodextrin-mediated highly efficient [2+3] cycloaddition reactions for the synthesis of 5-substituted 1H-tetrazoles.New J.Chem.2013, 37, 3261-3266.

    (24) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr.J.A.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.;Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski,J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas,O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.;Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe,M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc., Pittsburgh PA2013, Gaussian 03, Revision B.05.

    (25) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B1998, 37, 785-789.

    (26) Mennucci, B.Polarizable continuum model.Wires Comput.Mol.Sci.2012, 2, 386-404.

    (27) Wang, T.; Wu, Y.; Wang, X.Molecular structure and vibrational bands and13C chemical shift assignments of both enmein-type diterpenoids by DFT study.Spectrochim.Acta A2014, 117, 449-458.

    (28) Tou?ek, J.; Miert, S.V.; Pieters, L.; Baelen, G.V.; Hostyn, S.; Maes, B.U.W.; Lemière, G.; Dommisse, R.; Marek, R.Structural and solvent effects on the13C and15N NMR chemical shifts of indoloquinoline alkaloids: experimental and DFT study.Magn.Reson.Chem.2008, 46, 42-51.

    (29) Glendening, E.D.; Landis, C.R.; Weinhold, F.Natural bond orbital methods.Wires Comput.Mol.Sci.2012, 2, 1-42.

    (30) Desiraju, G.R.The C–H··O hydrogen bond: structural implications and supramolecular design.Acc.Chem.Res.1996, 29, 441-449.

    (31) Chocholou?ová, J.; ?pirko, V.; Hobza, P.First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H··O and improper blue-shifted C–H··O hydrogen bonds.Phys.Chem.Chem.Phys.2004, 6, 37-41.

    (32) Uccello-Barretta, G.; Balzano, F.; Sicoli, G.; Friglola, C.; Aldana, I.; Monge, A.; Paolino, D.; Guccione, S.Combining NMR and molecular modeling in a drug delivery context: investigation of the multi-mode inclusion of a new NPY-5 antagonist bromobenzene sulfonamide into β-cyclodextrin.Bioorg.Med.Chem.2004, 12, 447-458.

    (33) Yan, Z.; Zuo, Z.; Lv, X.; Li, Z.; Li, Z.; Huang, W.Adsorption of NO on MoO3(010) surface with different location of terminal oxygen vacancy defects:a density functional theory study.Appl.Surf.Sci.2012, 258, 3163-3167.

    (34) Politzer, P.; Abu-Awwad, F.A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies.Theor.Chem.Acc.1998, 99, 83-87.

    (35) Zhan, C.G.; Nichols, J.A.; Dixon, D.A.Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies.J.Phys.Chem.A2003, 107, 4184-4195.

    (36) Prabhu, A.A.M.; Sankaranarayanan, R.K.; Venkatesh, G.; Rajendiran, N.Dual fluorescence of fast blue RR and fast violet B: effects of solvents and cyclodextrin complexation.J.Phys.Chem.B2012, 116, 9061-9074.

    (37) Dinar, K.; Sahra, K.; Seridi, A.; Kadri, M.Inclusion complexes of N-sulfamoyloxazolidinones with β-cyclodextrin: a molecular modeling approach.Chem.Phys.Lett.2014, 595–596, 113-120.

    猜你喜歡
    阿東墓穴封口
    官員們說,加拿大原住民學(xué)校成千上萬的兒童或許被埋在了無名墓穴里
    英語文摘(2021年9期)2021-11-02 06:51:28
    Easter Island
    為什么食品袋封口設(shè)計成鋸齒狀就容易撕開
    常識:阿東的衣服
    孩子(2019年10期)2019-11-22 08:06:01
    不殺之恩
    百花園(2019年3期)2019-09-10 07:22:44
    你這個loser
    醉鬼遇到醉鬼
    袖口包裝機(jī)封口刀的改進(jìn)
    阿東的婚事
    故事會(2017年12期)2017-06-22 23:40:40
    會走路的“棺材”
    奧秘(2015年5期)2015-09-10 07:22:44
    亚洲精品中文字幕一二三四区| 伊人久久大香线蕉亚洲五| 美女福利国产在线| 男男h啪啪无遮挡| av电影中文网址| 亚洲国产精品合色在线| 精品一区二区三卡| 欧美激情高清一区二区三区| 亚洲成国产人片在线观看| 看片在线看免费视频| 国产视频一区二区在线看| 午夜a级毛片| 精品免费久久久久久久清纯| 久久久久久亚洲精品国产蜜桃av| 丝袜美足系列| 亚洲美女黄片视频| 亚洲av第一区精品v没综合| av片东京热男人的天堂| 男男h啪啪无遮挡| 久久久久久人人人人人| 国产精品日韩av在线免费观看 | 欧美日韩亚洲国产一区二区在线观看| 岛国在线观看网站| 久久亚洲精品不卡| 男女下面插进去视频免费观看| av片东京热男人的天堂| 亚洲一区二区三区不卡视频| 天天影视国产精品| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9| 久久青草综合色| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 亚洲av熟女| 久久精品国产99精品国产亚洲性色 | 欧美色视频一区免费| 国产精品一区二区在线不卡| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 真人一进一出gif抽搐免费| 9色porny在线观看| 成人av一区二区三区在线看| 露出奶头的视频| 免费在线观看黄色视频的| 日韩大尺度精品在线看网址 | 午夜a级毛片| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 久久人妻av系列| 侵犯人妻中文字幕一二三四区| 午夜福利欧美成人| 午夜福利在线观看吧| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女 | 夜夜爽天天搞| 久久人妻av系列| 黄网站色视频无遮挡免费观看| 宅男免费午夜| 久久久久九九精品影院| 可以在线观看毛片的网站| 国产成人欧美| 国产av精品麻豆| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 亚洲国产精品sss在线观看 | 国产精品久久久久成人av| 三上悠亚av全集在线观看| 亚洲精品久久成人aⅴ小说| 男人舔女人下体高潮全视频| 国产亚洲精品一区二区www| 咕卡用的链子| 国产亚洲精品综合一区在线观看 | av网站在线播放免费| 国产高清videossex| 亚洲av成人一区二区三| 超碰成人久久| 午夜激情av网站| 色哟哟哟哟哟哟| 女性被躁到高潮视频| 日日夜夜操网爽| 久久久水蜜桃国产精品网| www.999成人在线观看| 中文字幕人妻丝袜制服| 桃红色精品国产亚洲av| 美女 人体艺术 gogo| 亚洲国产中文字幕在线视频| 国产麻豆69| 亚洲欧美激情综合另类| www.精华液| 美女福利国产在线| 在线观看免费视频日本深夜| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 99国产精品一区二区蜜桃av| 最新美女视频免费是黄的| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 在线观看免费日韩欧美大片| 男男h啪啪无遮挡| 男女午夜视频在线观看| 日本免费a在线| 亚洲免费av在线视频| 国产成+人综合+亚洲专区| 99re在线观看精品视频| 香蕉国产在线看| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片 | 嫁个100分男人电影在线观看| 丰满迷人的少妇在线观看| 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 成人三级做爰电影| 女同久久另类99精品国产91| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 国产亚洲精品第一综合不卡| 国产成人av教育| 久久精品国产99精品国产亚洲性色 | 国产免费av片在线观看野外av| 国产av精品麻豆| 成人黄色视频免费在线看| 看黄色毛片网站| 亚洲成人免费av在线播放| 在线看a的网站| 黄色丝袜av网址大全| 老汉色∧v一级毛片| 91成年电影在线观看| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| a级片在线免费高清观看视频| 成人黄色视频免费在线看| 在线国产一区二区在线| 在线观看免费视频网站a站| 日本a在线网址| 一级片免费观看大全| 日韩欧美国产一区二区入口| 欧美+亚洲+日韩+国产| 国产又爽黄色视频| 五月开心婷婷网| 中国美女看黄片| 亚洲人成伊人成综合网2020| 国产aⅴ精品一区二区三区波| 9色porny在线观看| 欧美精品啪啪一区二区三区| av天堂在线播放| 国产精品九九99| 久9热在线精品视频| 国产精品一区二区免费欧美| 午夜两性在线视频| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 成人黄色视频免费在线看| 黄色a级毛片大全视频| 又黄又爽又免费观看的视频| 亚洲欧美日韩无卡精品| 黑丝袜美女国产一区| 操出白浆在线播放| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 国产精品国产av在线观看| 亚洲黑人精品在线| 精品久久久久久电影网| 美女福利国产在线| 精品一区二区三区视频在线观看免费 | 国产精品一区二区精品视频观看| 国产野战对白在线观看| 男女床上黄色一级片免费看| 精品福利永久在线观看| 日本撒尿小便嘘嘘汇集6| 欧美中文综合在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美日韩在线播放| 欧美老熟妇乱子伦牲交| 午夜免费激情av| 老司机福利观看| 99精品久久久久人妻精品| 亚洲一区二区三区欧美精品| 如日韩欧美国产精品一区二区三区| 欧美乱妇无乱码| 操美女的视频在线观看| 伦理电影免费视频| 老熟妇乱子伦视频在线观看| 午夜福利一区二区在线看| 国产精品av久久久久免费| 久9热在线精品视频| 桃色一区二区三区在线观看| svipshipincom国产片| 国产乱人伦免费视频| 国产又爽黄色视频| 最近最新中文字幕大全免费视频| 亚洲欧美一区二区三区黑人| 在线观看日韩欧美| 国产片内射在线| 亚洲人成网站在线播放欧美日韩| 国产av一区二区精品久久| 精品福利永久在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文字幕日韩| 琪琪午夜伦伦电影理论片6080| 色婷婷av一区二区三区视频| 香蕉久久夜色| 亚洲第一av免费看| 免费看十八禁软件| 黄片播放在线免费| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 国产精品久久视频播放| 精品日产1卡2卡| 欧美乱码精品一区二区三区| 不卡一级毛片| 纯流量卡能插随身wifi吗| 久久国产乱子伦精品免费另类| 久久久久久久午夜电影 | 免费在线观看视频国产中文字幕亚洲| 久久久久久免费高清国产稀缺| 亚洲久久久国产精品| 午夜精品在线福利| 99精品在免费线老司机午夜| 亚洲av成人不卡在线观看播放网| 天堂动漫精品| 男女下面插进去视频免费观看| 性少妇av在线| 亚洲 欧美一区二区三区| 超碰97精品在线观看| 99在线人妻在线中文字幕| 在线观看免费日韩欧美大片| 日本撒尿小便嘘嘘汇集6| 一级片'在线观看视频| 国产高清国产精品国产三级| 亚洲专区字幕在线| 亚洲成人精品中文字幕电影 | 精品一区二区三区四区五区乱码| 热re99久久国产66热| 韩国精品一区二区三区| 一个人免费在线观看的高清视频| 欧美日韩亚洲高清精品| 三上悠亚av全集在线观看| 亚洲中文av在线| 日韩有码中文字幕| 在线观看免费高清a一片| av天堂在线播放| 黄色视频,在线免费观看| 十分钟在线观看高清视频www| 国产精品乱码一区二三区的特点 | 久久中文看片网| 老司机午夜福利在线观看视频| 女人被躁到高潮嗷嗷叫费观| 18美女黄网站色大片免费观看| 亚洲av片天天在线观看| 国产一区二区激情短视频| 国产片内射在线| 午夜影院日韩av| 后天国语完整版免费观看| 国产精品国产高清国产av| 91成年电影在线观看| xxx96com| 80岁老熟妇乱子伦牲交| 成人三级做爰电影| 国产精品影院久久| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 国产成人精品无人区| 麻豆一二三区av精品| 精品乱码久久久久久99久播| 国产片内射在线| 久久人人精品亚洲av| 亚洲一区二区三区欧美精品| 国产激情欧美一区二区| 精品少妇一区二区三区视频日本电影| 黄色a级毛片大全视频| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美国产一区二区入口| 日本精品一区二区三区蜜桃| 亚洲精华国产精华精| 精品久久蜜臀av无| 在线观看舔阴道视频| 亚洲自拍偷在线| 一级片免费观看大全| www.熟女人妻精品国产| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 精品久久久久久电影网| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 久久香蕉激情| 日日摸夜夜添夜夜添小说| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 国产成人系列免费观看| 成人国语在线视频| av天堂在线播放| 在线观看日韩欧美| 亚洲 欧美 日韩 在线 免费| 视频在线观看一区二区三区| 99国产精品99久久久久| 日韩成人在线观看一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 黄片小视频在线播放| 日韩有码中文字幕| 高潮久久久久久久久久久不卡| 麻豆久久精品国产亚洲av | 亚洲在线自拍视频| 99久久人妻综合| 日日干狠狠操夜夜爽| 成人18禁高潮啪啪吃奶动态图| 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 国产精品久久久av美女十八| 女人被狂操c到高潮| 亚洲 国产 在线| tocl精华| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 亚洲一码二码三码区别大吗| 狂野欧美激情性xxxx| 欧美人与性动交α欧美软件| 村上凉子中文字幕在线| 日本a在线网址| 91老司机精品| 亚洲精品一区av在线观看| 国产精品久久久久久人妻精品电影| 免费观看精品视频网站| 欧美在线黄色| 99热国产这里只有精品6| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 香蕉丝袜av| 韩国av一区二区三区四区| 成人免费观看视频高清| 亚洲情色 制服丝袜| 欧美日本亚洲视频在线播放| 国产成人精品无人区| 久久热在线av| 午夜精品国产一区二区电影| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 黄色片一级片一级黄色片| 手机成人av网站| 琪琪午夜伦伦电影理论片6080| 性欧美人与动物交配| 久久久久亚洲av毛片大全| 视频区图区小说| 老司机靠b影院| 大型av网站在线播放| 国产亚洲精品综合一区在线观看 | 9191精品国产免费久久| 精品国产乱码久久久久久男人| 精品高清国产在线一区| 淫秽高清视频在线观看| 美国免费a级毛片| 午夜福利在线免费观看网站| 咕卡用的链子| 51午夜福利影视在线观看| av电影中文网址| 国内毛片毛片毛片毛片毛片| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 一二三四在线观看免费中文在| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡| av超薄肉色丝袜交足视频| 亚洲欧美精品综合一区二区三区| 男人的好看免费观看在线视频 | 国产极品粉嫩免费观看在线| 伊人久久大香线蕉亚洲五| 午夜精品在线福利| 日韩精品中文字幕看吧| 国产蜜桃级精品一区二区三区| 在线观看免费日韩欧美大片| 中文字幕色久视频| 一边摸一边抽搐一进一出视频| 日本 av在线| 国产欧美日韩一区二区精品| 757午夜福利合集在线观看| 国产三级黄色录像| 午夜久久久在线观看| 999精品在线视频| 一级片免费观看大全| 亚洲色图综合在线观看| 宅男免费午夜| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 无人区码免费观看不卡| 动漫黄色视频在线观看| 久久久久久久久久久久大奶| 怎么达到女性高潮| 成人国产一区最新在线观看| 国产免费现黄频在线看| 亚洲精品国产一区二区精华液| 久久久久久免费高清国产稀缺| 国产精品日韩av在线免费观看 | 级片在线观看| 精品久久久久久,| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清| 淫秽高清视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美黑人欧美精品刺激| 啦啦啦在线免费观看视频4| 欧美日韩中文字幕国产精品一区二区三区 | 极品人妻少妇av视频| 妹子高潮喷水视频| 日本一区二区免费在线视频| 精品久久久久久,| 人妻久久中文字幕网| 欧美黑人精品巨大| 国产精品一区二区免费欧美| 久久久久久久午夜电影 | 视频在线观看一区二区三区| 麻豆久久精品国产亚洲av | 在线观看一区二区三区| ponron亚洲| 1024视频免费在线观看| 欧美亚洲日本最大视频资源| 热99re8久久精品国产| 91成人精品电影| 中出人妻视频一区二区| 欧美午夜高清在线| 日日爽夜夜爽网站| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲综合一区二区三区_| 99国产精品一区二区三区| 一级片免费观看大全| 一区二区三区激情视频| 视频区图区小说| 色在线成人网| 高清在线国产一区| 国产一区二区三区综合在线观看| 女人爽到高潮嗷嗷叫在线视频| 大型av网站在线播放| 国产视频一区二区在线看| 国产av又大| 神马国产精品三级电影在线观看 | 美女大奶头视频| 精品无人区乱码1区二区| 韩国精品一区二区三区| av网站在线播放免费| 色在线成人网| 国产97色在线日韩免费| 天天影视国产精品| 精品第一国产精品| 露出奶头的视频| 欧美国产精品va在线观看不卡| 18美女黄网站色大片免费观看| 亚洲精品中文字幕在线视频| 国产区一区二久久| 日韩欧美一区二区三区在线观看| xxxhd国产人妻xxx| 成年人免费黄色播放视频| 麻豆一二三区av精品| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 久久香蕉国产精品| 校园春色视频在线观看| 国产99久久九九免费精品| 免费在线观看影片大全网站| 中国美女看黄片| 欧美日韩瑟瑟在线播放| 日本免费a在线| 国产熟女xx| 久久久久久大精品| 亚洲国产欧美网| 国产一区二区在线av高清观看| 黄色a级毛片大全视频| 欧美黑人精品巨大| 久久精品国产99精品国产亚洲性色 | 成人黄色视频免费在线看| 999久久久精品免费观看国产| 超色免费av| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 亚洲专区国产一区二区| 麻豆av在线久日| 水蜜桃什么品种好| av网站免费在线观看视频| 欧美日韩瑟瑟在线播放| 51午夜福利影视在线观看| 中文字幕精品免费在线观看视频| 久久中文字幕人妻熟女| 午夜91福利影院| 母亲3免费完整高清在线观看| 老司机靠b影院| 首页视频小说图片口味搜索| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 69av精品久久久久久| 999精品在线视频| 国产97色在线日韩免费| 亚洲第一青青草原| 精品国产国语对白av| 久久天躁狠狠躁夜夜2o2o| 日韩免费av在线播放| 中出人妻视频一区二区| www.999成人在线观看| 午夜福利影视在线免费观看| 一区二区三区精品91| 日韩欧美国产一区二区入口| 丰满人妻熟妇乱又伦精品不卡| 女生性感内裤真人,穿戴方法视频| 中文字幕精品免费在线观看视频| 国产精品成人在线| 欧美av亚洲av综合av国产av| 黄片播放在线免费| 午夜亚洲福利在线播放| 超碰97精品在线观看| 国产单亲对白刺激| 91精品三级在线观看| 国产伦一二天堂av在线观看| 国产精品成人在线| 国产成人系列免费观看| 怎么达到女性高潮| 国产成人精品久久二区二区91| 免费在线观看影片大全网站| 成人三级做爰电影| 国产精品九九99| 老司机在亚洲福利影院| 午夜老司机福利片| 国产av一区二区精品久久| 看黄色毛片网站| 中亚洲国语对白在线视频| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 亚洲人成77777在线视频| 国产精品99久久99久久久不卡| 无人区码免费观看不卡| 他把我摸到了高潮在线观看| 咕卡用的链子| 成人手机av| 丁香欧美五月| 日日夜夜操网爽| av网站免费在线观看视频| 好男人电影高清在线观看| 国内久久婷婷六月综合欲色啪| 亚洲人成77777在线视频| 国产视频一区二区在线看| 十分钟在线观看高清视频www| 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 男人操女人黄网站| 午夜a级毛片| 热re99久久国产66热| 久久久久国内视频| 无遮挡黄片免费观看| 久久午夜综合久久蜜桃| 国产精品av久久久久免费| 超碰97精品在线观看| 人妻久久中文字幕网| 国产亚洲欧美在线一区二区| 侵犯人妻中文字幕一二三四区| 国产亚洲欧美98| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机亚洲免费影院| av福利片在线| 国产蜜桃级精品一区二区三区| 午夜91福利影院| 两性夫妻黄色片| 国产不卡一卡二| 国产成人精品久久二区二区免费| a在线观看视频网站| 成人三级黄色视频| 亚洲色图综合在线观看| 色精品久久人妻99蜜桃| 久久久国产欧美日韩av| 一级毛片女人18水好多| 日韩人妻精品一区2区三区| av天堂在线播放| 黄色a级毛片大全视频| 欧美在线一区亚洲| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美| 久久久久久久精品吃奶| 一进一出抽搐gif免费好疼 | 欧美日韩中文字幕国产精品一区二区三区 | 久久精品亚洲精品国产色婷小说| 波多野结衣一区麻豆| 男女做爰动态图高潮gif福利片 | 国产视频一区二区在线看| 狂野欧美激情性xxxx| 国产精品日韩av在线免费观看 | 人人妻人人爽人人添夜夜欢视频| 色老头精品视频在线观看| 精品无人区乱码1区二区| 欧美黑人欧美精品刺激| 精品福利观看| 亚洲免费av在线视频| 在线天堂中文资源库| 女同久久另类99精品国产91| 欧美一级毛片孕妇| 久久久久久大精品| 超碰97精品在线观看| 色尼玛亚洲综合影院| 国产伦人伦偷精品视频| 欧美一区二区精品小视频在线| av天堂久久9| 日本a在线网址| 亚洲伊人色综图| 国产精品 欧美亚洲|