• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    YAU’S UNIFORMIZATION CONJECTURE FOR MANIFOLDS WITH NON-MAXIMAL VOLUME GROWTH?

    2018-11-22 09:23:38BinglongCHEN陳兵龍XipingZHU朱熹平
    關(guān)鍵詞:朱熹

    Binglong CHEN(陳兵龍)Xiping ZHU(朱熹平)

    Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,China

    E-mail:mcscbl@mail.sysu.edu.cn;stszxp@mail.sysu.edu.cn

    Abstract The well-known Yau’s uniformization conjecture states that any complete noncompact K?hler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space.The conjecture for the case of maximal volume growth has been recently con firmed by G.Liu in[23].In the first part,we will give a survey on the progress.In the second part,we will consider Yau’s conjecture for manifolds with non-maximal volume growth.We will show that the finiteness of the first Chern number is an essential condition to solve Yau’s conjecture by using algebraic embedding method.Moreover,we prove that,under bounded curvature conditions,is automatically finite provided that there exists a positive line bundle with finite Chern number.In particular,we obtain a partial answer to Yau’s uniformization conjecture on K?hler manifolds with minimal volume growth.

    Key words uniformization conjecture;non-maximal volume growth;Chern number

    1 Introduction

    In K?hler geometry,there is a well-known uniformization conjecture due to Yau[38]:

    Conjecture 1.1Let(Mn,g)be a complete noncompact K?hler manifold with positive bisectional curvature of complex dimension n.Then Mnis biholomorphic to Cn.

    This conjecture was motivated,on the one hand,by the classical uniformization theorem for Riemann surfaces,and by a famous result in Riemannian geometry due to Gromoll-Meyer which says that a complete noncompact Riemannian manifold with positive sectional curvature is di ff eomorphic to the Euclidean space.This conjecture has aroused a great interest in mathematics since it was introduced,it stimulated a lot of researches during the past decades(see[4,5,14,17,23,26,29,34]or references therein).Although there already have been many accomplishments,even breakthroughs for maximal volume growth case,it is an embarrassing fact that presently we even do not know if a complete noncompact K?hler manifold with positive bisectional curvature is Stein or di ff eomorphic to the Euclidean space.

    1.1 Main techniques

    In principle,we have two approaches to solve Conjecture 1.1:

    a)construct a complete flat K?hler metric on Mn,

    b)directly construct a biholomorphic map from Mnto Cn.

    For a),one may use geometric flows to deform the initial metric(e.g.Ricci flow),roughly speaking,we hope that the limit will provide a desired flat K?hler metric on Mn.Ricci flow is the following deformation equation on metrics:

    For b),we need to construct holomorphic functions or holomorphic sections of some line bundles.A conservative way is first to embed Mnto CNor CPNas an affine or quasi-projective variety for some large N,this process is called compacti fication.In views of complex analysis,the key point for this process is to find a pluri-subharmonic functionthat the L2estimate for?equation of H?rmander[19]and Andreotti-Vesentini[1]could be applied.

    The construction of the holomorphic map in b)depends on the geometry of the background manifold,in practical applications,one can combine a)and b),i.e.,deform the background geometry,and accomplish b)by using the geometric informations from a family of deformed metrics(see[4,14]).

    Geometric construction from triangle comparison theorem usually only gives a Lipschitz continuous auxiliary function satisfying certain convexity conditions.To obtain a smooth one,one can use heat equation to deform it:

    The point is that the Levi-form(on K?hler manifold)satis fies a parabolic Lichnerowicz equation:

    Under certain growth condition of the solution u,for instance,orif the bisectional curvature is nonnegative,i.e.,one can show thatis preserved by the heat equation(if it holds initially),moreover it becomes strictly positive for t>0,i.e.,unless the universal cover of the manifold splits isometrically as a nontrivial product M=N×L,see[32].Surely,the splitting can not happen if we assume the bisectional curvature or Ricci curvature is strictly positive.

    So we have two kinds of deformations available,(1.1)and(1.2),one is for metics,the other is for functions.

    In[12],Cheeger-Gromoll proved that a complete Riemannian manifold with nonnegative sectional curvature is di ff eomorphic to the normal bundle of a compact totally geodesic submanifold.The K?hler analogue was obtained in[13](Page 60-65):

    Theorem 1.2(Cao-Chen-Zhu[13])Let M be a complete noncompact K?hler manifold with bounded and nonnegative holomorphic bisectional curvature.Then one of the following holds:

    (i)M admits a K?hler metric with bounded and positive bisectional curvature;

    where k,l1,l2are nonnegative integers,Ckis the complex Euclidean space with flat metric,Mi,1 ≤ i≤ l1,are complete(compact or noncompact)K?hler manifolds with bounded and nonnegative bisectional curvature admitting a K?hler metric with bounded and positive bisectional curvature,Nj,1≤j≤l2,are irreducible compact Hermitian symmetric spaces of rank≥2 with the canonical metrics.

    In the above theorem,the manifold(passing to the universal cover in case ii)is a metric product,not only a fiber bundle.The argument is a delicate maximum principle type argument,which was used by Gu[21]to give an alternative and transcendental proof of generalized Frankel conjecture due to Mok[28],see[13](Page 60-65)for details.This theorem reduces the study of the case of nonnegative bisectional curvature to the strictly positive one,if we assume the curvature is bounded.

    Let us begin with a theorem of Mok-Siu-Yau[29]in 1981:

    Theorem 1.3(Mok-Siu-Yau[29])Let M be a complete non-compact K?hler manifold of non-negative holomorphic bisectional curvature of complex dimension n≥2.Suppose there exist positive constants C1,C2such that for a fixed base point x0and some ?>0,

    (i)Vol(B(x0,r))≥C1r2n,0≤r<+∞,

    (ii)R(x)≤ C2/d(x0,x)2+?on M,

    where Vol(B(x0,r))denotes the volume of the geodesic ball B(x0,r)centered at x0with radius r,R(x)denotes the scalar curvature and d(x0,x)denotes the geodesic distance between x0and x.Then,M is isometrically biholomorphic to Cnwith the flat metric.

    The seminal idea to find a pluri-subharmonic function in Mok-Siu-Yau[29]is to solve the Poincare-Lelong equation:

    The conditions(i)and(ii)guarantee a bounded solution u to the Poincare-Lelong equation(1.4).This bounded pluri-subharmonic function u must be constant by the virtue of Yau’s Liouville theorem,whence the manifold is actually flat.This result is called a gap theorem,which means that there is a gap on the order of the curvature decay on a nonnegatively curved manifold,more precisely,it is actually flat if the curvature decays faster than quadratic.

    Except the curvature sign,the conditions in Mok-Siu-Yau’s theorem consist of two things:i)volume growth,ii)curvature decay.All the subsequent works trying to solve the uniformization conjecture assumed conditions of the above two types.We have to mention that,from the recent result of Liu[23],Yau’s conjecture is true if the manifold has nonnegative bisectional curvature and maximal volume growth.In previous works,under the maximal volume growth and bounded curvature conditions,Yau’s conjecture has been con firmed in Chen-Tang-Zhu[14](for complex dimension 2)and Chau-Tam[4](for all dimensions).However,not much is known when the volume growth is not maximal.In some sense,the maximal volume growth more or less forces the geometry of the manifold at in finity to approximate to that of the Euclidean space.In the non-maximal volume growth case,the geometry at in finity is complicated.

    1.2 Geometry of bisectional curvature

    In[17],we proved the following theorems on the volume growth and curvature decay of any complete K?hler manifold with positive bisectional curvature:

    Theorem 1.4(Chen-Zhu[17])Let Mnbe a complex n-dimensional complete noncompact K?hler manifold with positive holomorphic bisectional curvature.Then the volume growth of M satis fies

    for all 1≤r<∞,where c is some positive constant depending on x0and the dimension n.

    Theorem 1.5(Chen-Zhu[17]) Let Mnbe a complete noncompact K?hler manifold with positive holomorphic bisectional curvature.Then for any x0∈Mn,there exists a positive constant C such that

    for all 0≤r<∞,where R(x)is the scalar curvature of Mn.

    Roughly,it says that the volume of a geodesic ball of radius r grows at least as fast as rn,where 2n is the real dimension of the manifold,the average of the curvature decays at least linearly.It is surprising that these two results are sharp,in the sense that we do have a lot of examples satisfying these minimal volume growth and curvature decay conditions,e.g.Klembeck’s examples,Cao’s static K?hler-Ricci solitons with positive bisectional curvature,see[3].

    Let P ∈ Mn,γ :[0,∞)be geodesic ray with γ(0)=P,and be the Buseman function associated to γ.From comparison theorem,bγis a pluri-subharmonic function.Moreover,by a standard convolution technique or heat equation deformation on bγ(1.2),we obtain a smooth strictly pluri-subharmonic function u of linear growth:

    Theorem 1.4 follows from calculating the Monge-Ampere measure

    and integration by parts([17]).The proof of Theorem 1.5 is a little involved.It based on the following L2-estimates ofoperator(see[1,19]):

    Theorem 1.6(Andreotti-Vesentini[1],H?mander[19]) On a complete K?hler manifold(M,ω),suppose we have a function ?,a Hermitian holomorphic line bundlewith curvature(1,1)-form C1()such that

    where c(x)is a positive function on M,ω the K?hler form;suppose we also have a-closed-valued(0,1)form f on M such that

    Then the equation

    admits a smooth solution u(section of)such that

    Take L=K be the canonical line bundle,then C(L)=?Ric.On some coordinate system|z|<1 around a point P,choose ?=Cu+log|z|2n+2be a strictly psh weight function,then(1.6)holds.Choosefor some smooth compact supported section of L which is holomorphic near P and non-vanishing at P.Then the above L2estimate gives a nontrivial holomorphic section E=S?ξ of L satisfying

    On the other hand,the Poincare-Lelong equation:

    holds in the sense of distributions.The integral average of R over geodesic balls can be derived from the growth of E(see[17]).

    Theorem 1.5 is crucial in proving the maximal volume growth condition is preserved during the Ricci flow(see[4,14]).It yields that the volume growth ratio of the manifold at in finity remains invariant.We know that this ratio is monotonically decreasing as the radius goes to in finity,which follows from the volume comparison theorem since Ric≥0.

    2 Maximal Volume Growth

    The first breakthrough was made by Mok[26].

    Theorem 2.1(Mok[26]) Let M be a complete non-compact K?hler manifold of complex dimension n with positive holomorphic bisectional curvature.Suppose there exist positive constants C1,C2such that for a fixed base point x0,

    then M is biholomorphic to an affine algebraic variety.Moreover,if in addition the complex dimension n=2 and(iii)the Riemannian sectional curvature of M is positive,then M is biholomorphic to C2.

    We recall brie fly the scheme of Mok’s proof.We consider the algebra P(X)of holomorphic functions of polynomial growth and its quotient field R(X)of“rational functions”.We use the solution of(1.4)and L2-estimates(Theorem 1.6)to prove there are many functions in P(X).Then,we prove Siegel’s theorem for R(X),i.e.,R(X)=C(fI···fn;g/h)is a finite extension field of a purely transcendental extension of C of degree n.We do this by establishing a multiplicity estimate for P(X).Then,we use Skoda’s L2-estimates for the ideal problem to prove the “almost-surjectivity”of F=(f1···fn,g,h)of X into an affine algebraic variety.By establishing a uniform multiplicity estimate(i.e.,independent of base points)for P(X),we prove a finiteness theorem for desingularizing F.Finally we use the convexity of X with respect to P(X)to complete F to a proper embedding.

    In[34],Shi obtained the following

    Theorem 2.2(Shi[34]) Let M be a complete non-compact K?hler manifold of complex dimension n with bounded and positive holomorphic bisectional curvature.Suppose there exist positive constants C1,C2such that for a fixed base point x0,

    then M is biholomorphic to a pseudo-convex domain in Cn.

    In[34],Shi initiated the study of Ricci flow on Yau’s uniformization conjecture.He proved that,under the conditions(i)(ii)in his theorem,the K?hler condition,the positivity of bisectional curvature and the maximal volume growth are all preserved.Moreover,he showed that Ricci flow exists for all time t>0,and the curvature decays to zero as t→∞in the following way(Theorem 8.7 in[34]):

    Using the estimate(2.3),Shi proved that there is a smooth positive function u(t)∈C∞[0,∞),such thatwill converge in C∞? topology to a flat K?hler metric.Because it is not known whether the limit is complete,Shi could only conclude that the manifold is a pseudo-convex domain(see also[16]).

    In complex dimension 2,in[14],an affirmative answer to Yau’s uniformization conjecture under the maximal volume condition was obtained:

    Theorem 2.3(Chen-Tang-Zhu[14]) Let M be a complete non-compact K?hler manifold of complex dimension 2 with bounded and positive holomorphic bisectional curvature.Suppose there exist a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to C2.

    Our proof of the theorem consists of three parts.In the first part,we showed that M is a Stein manifold homeomorphic to R4.Since the maximal volume growth condition is preserved(with same constant,Theorem 1.5),we proved that the curvature of the evolving metric decays linearly in time,via a blow up and blow down argument:

    This implies that the injectivity radius of the evolving metric is greater thanand any geodesic ball with radiusis pseudoconvex.From this,one can show that Mnis a Stein manifold homeomorphic to R4.

    In the second part,we considered the algebra P(M)of holomorphic functions of polynomial growth on M and we proved that its quotient field has transcendental degree 2 over C.For this,we first need to construct two algebraically independent holomorphic functions in the algebra P(M).Using the L2estimates in Theorem 1.6,it suffices to construct a strictly plurisubharmonic function of logarithmic growth on M.If the scalar curvature decays in space(at time t=0)at least quadratically as in Theorem 2.1,it was known that such a strictly plurisubharmonic function of logarithmic growth can be obtained by solving the Poincare-Lelong equation(1.4).But we do not assume the curvature decay condition.Here the novel idea is to transform the time decay estimate(2.5)of evolving metrics to the space decay at t=0,via apriori estimates for(nonlinear)heat equations.Roughly speaking,the time decay estimate(2.5)of evolving metrics implies that the curvature of the initial metric must decay quadratically in space in certain average sense:

    The apriori estimate is obtained from integrating the following equation in space and time:

    (2.6)turns out to be enough to solve the Poincare-Lelong equation(1.4)to find a strictly pluri-subharmonic function u of logarithmic growth,

    In the last part,we basically followed the approach of Mok[26]to establish a biholomorphic map from M onto a quasi-affine algebraic variety,by desingularizing certain holomorphic mapping F:M→Z from M to a quasi-affine algebraic variety Z.The essential point is to establish uniform estimates on the multiplicity and the number of irreducible components of the zero divisor of a holomorphic function of polynomial growth.Again,the time decay estimate 2.5 of the Ricci flow plays a crucial role in the arguments.Based on these estimates,we showed that the mapping F:M→Z is almost surjective in the sense that it can miss only a finite number of subvarieties in Z,and can be desingularized by adjoining a finite number of holomorphic functions of polynomial growth.This completes the proof that M is a quasi-affine algebraic variety.Finally,by combining with the fact that M is homeomorphic to R4,we concluded that M is indeed biholomorphic to C2by a classical theorem of Ramanujam on algebraic surfaces.

    In 2006,Chau-Tam[4]extended the above theorem to higher dimensions:

    Theorem 2.4(Chau-Tam[4]) Let M be a complete non-compact K?hler manifold of complex dimension n with bounded and nonnegative holomorphic bisectional curvature.Suppose there exists a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to Cn.

    A result due to Rosay-Rudin([33])and its generalization by Varolin([37])on attractive basins say the following:Let F be a biholomorphism from a complex manifold Nnto itself and let p∈Nnbe a fixed point,andbe the basin of attraction of p.Suppose ? contains an open neighborhood of p.Then ? is biholomorphic toThis result was used by Chau-Tam in[6]to prove that a gradient K?hler Ricci soliton is biholomorphic to Cnif it is either steady with positive Ricci curvature and the scalar curvature achieves its maximum at some point,or expanding with nonnegative Ricci curvature.The gradient K?hler Ricci soliton involves a family of biholomorphisms φtin its de finition,pick one of them(for t>0,so that it is shrinking)to be F in the result of Rosay-Rudin-Varolin([33]and[37]).For more general solutions of K?hler Ricci flow,one usually only have local biholomorphisms,instead of one particular global biholomorphism F.

    We give a sketch of the proof of Theorem 2.4 in[4].They used Ricci flow to deform the initial metric.As explained before,the K?hlerity,nonnegativity of bisectional curvature,maximal volume growth(same constant)are preserved by the Ricci flow as long as the curvature of the solution is bounded.The first crucial thing is to prove that the curvature decays linearly in time,i.e.,(2.5).If the curvature operator is nonnegative,in[17],we proved that(2.5)still holds for all dimensions n by using a blowing up and blowing down argument as in[14].In[31],Ni proved(2.5)holds when bisectional curvature is nonnegative.Letsatis fies a new equation for all t∈(?∞,∞).The estimate(2.5)implies that the curvature of?g(t)is uniformlly bounded independent of t.

    Combining with the maximal volume growth, fix a point P∈M,we have a uniform injectivity radius estimate for allat P.From standard L2-estimate,there is a fixed r>0 such that for each i∈ N,one can construct a holomorphic map Φi:B(r)→ M,where B(r)=is the ball of the radius r in the Euclidean space,such that Φiis a biholomorphic map onto its image Φi(B(r))which contains a geodesic ball of radiusaround P of the metric.Moreover,is close to the Euclidean metric.Fix a large N,let Fibe a family of biholomorphisms from B(r)onto its image which is inside B(r)such thatTo imitate the proof of Rosay-Rudin-Varolin’s result([33]and[37]),one should prove that asymptotically this family of Fibehaves close to a single map F.The authors observed that the eigenvalues of Ricci curvature ofis non-decreasing(it is bounded from above by the estimate),and for any sequence tk→ ∞,the solutionbehave close to a K?hler Ricci soliton.Cao’s Li-Yau-Hamilton inequality[2]and[3]plays a key role in the argument.Here,the idea is that the closeness of the solution with K?hler Ricci soliton is enough to imply the closeness of the family of Fito some single map F.For more details,we refer to[4]and the survey[5].

    In a preprint“On Yau’s uniformization conjecture” arXiv:1606.08958,Liu[23]claimed that he could remove the boundedness of the curvature assumption in Chau-Tam’s theorem[5]:

    Theorem 2.5(Liu[23]) Let M be a complete non-compact K?hler manifold of complex dimension n with nonnegative holomorphic bisectional curvature.Suppose there exists a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to Cn.

    Liu introduced some new ideas with three circles theorems and Cheeger-Colding theory,see[23–25].In[24],he proved that the ring of holomorphic functions of polynomial growth on a complete manifold with nonnegative bisectional curvature is finitely generated,and such a manifold is affine provided it has maximal volume growth,con firming another conjecture of Yau.

    On the other hand,in a recent paper Lee-Tam[22],Lee-Tam proved that on a complete noncompact K?ahler manifold with nonnegative bisectional curvature and maximal volume growth,the K?ahler-Ricci flow exists at least for a short time,and it preserves all these conditions,more importantly,the curvature becomes bounded for t>0.Combining with the previous result in Chau-Tam[4],this yields an alternative proof of Yau’s uniformization conjecture for the maximal volume growth case.

    3 Non-maximal Volume Growth

    As we have seen,there are important progress on Yau’s uniformization conjecture for manifolds with maximal volume growth.Nevertheless,many examples of positively curved K?hler manifolds with non-maximal volume growth were discovered.It is likely that non-maximal volume growth is typical for complete K?hler manifolds with positive bisectional curvature.

    For Conjecture 1.1,the non-maximal volume growth case has also been considered in the literatures(see[18,36]).In[36],W.K.To considered the compacti fication of complete manifolds with non-maximal volume growth,motivated by the work of Mok[27],Mok-Zhong[30].He assumed the finiteness of the first Chern number and the condition of a mixture of the curvature decay and volume growth,more precisely:

    Theorem 3.1(To[36]) Let X be an n-dimensional noncompact complete K?hler manifold of positive Ricci curvature and of finite topological type.Suppose for some base point x0∈X that there exist positive constants k1,k2,k3and a positive real number p such that for a>0

    for all unit tangent vectors v,w ∈ T′(X)and x ∈ X.Then X is biholomorphic to a quasiprojective variety.Moreover,if p≥2,the theorem is valid without assuming condition(iii).

    Corollary 3.2(To[36]) Let X be a two-dimensional noncompact complete K?hler manifold of positive sectional curvature.Suppose X satis fies conditions(i),(ii),and(iii)of the above theorem.Then X is biholomorphic to C2.Moreover,if p>2,the corollary is valid without assuming condition(iii)of the Theorem 3.2.

    In[18],we proved that when sectional curvature is positive and bounded,the finiteness of the Chern numberis sufficient to ensure that the manifold is quasi-projective.

    Theorem 3.3(Chen-Zhu[18]) Let Mnbe a complete noncompact K?hler manifold with bounded and positive sectional curvature,and

    Then Mnis biholomorphic to a quasi-projective variety.In the case of complex dimension n=2,M2is biholomorphic to C2.

    4 Finite Chern Numbers

    Note that in K?hler geometry,positive sectional curvature is stronger than positive bisectional curvature.

    More precisely,we will prove the following:

    Theorem 4.1Let Mnbe a complete K?hler manifold with bounded sectional curvature and positive Ricci curvature.Suppose Mnadmits a Hermitian holomorphic line bundle L such that the curvature C1(L)of L is positive and bounded and satis fies

    Combining Theorems 3.3 and 4.1,we get the following:

    Corollary 4.2Let Mnbe a complete noncompact K?hler manifold with bounded and positive sectional curvature.Suppose Mnadmits a Hermitian holomorphic line bundle L such that the curvature C1(L)of L is positive and bounded and satis fies

    Then Mnis biholomorphic to a quasi-projective variety.In the case of complex dimension n=2,M2is biholomorphic to C2.

    Several remarks are in order.

    Remark 4.3Let Mnbe a complete K?hler manifold with bounded sectional curvature and positive Ricci curvature.Suppose Mnadmits a strictly pluri-subharmonic function ? such thatis bounded and

    This can be obtained by taking L to be the trivial line bundle M×C equipped with the Hermitian metric e??.

    Remark 4.4Let Mnbe a complete K?hler manifold with bounded positive bisectional curvature.Suppose Mnhas minimal volume growth in the sense of Theorem 1.4,i.e.,there exists x0∈Mnand C>0 such that

    for all a>0,where n is the complex dimension of the manifold.Then

    This can be obtained in the following way.It is well-known the Buseman function on this manifold is a pluri-subharmonic function with Lipschitz constant 1.Making use of the heat equation deformation of the Buseman function,we get a smooth strictly pluri-subharmonic function ψ with bounded gradient.The boundedness ofis ensured by the Bernstein estimate.is derived from the minimal volume growth condition(see[17]).

    5 Proof of Theorem 4.1

    Let M be a complete K?hler manifold,L a Hermitian holomorphic line bundle with positive curvaturelocal holomorphic coordinates around x0,z1(x0)= ···=zn(x0)=0;e be a local holomorphic section(nowhere vanishing on1 be a smooth cuto fffunction onSince C1(L)>0,we may choose sufficiently large positive integer p0such that

    The integrability forces uito vanish at x0at least to the 2nd order,i.e.,ifnontrivial holomorphic section of Lp0?K.We summarize the results in the following proposition:

    Proposition 5.1Let M be a complex n-dimensional complete K?hler manifold,L a Hermitian holomorphic line bundle with positive curvature C1(L)>0 on M.Then for any x0∈M,there exists positive integer p0and n nontrivial holomorphic sections siof Lp0?K such that

    Let M and the line bundle L be assumed as in Theorem 4.1.Fix x0∈M.Denote by Γ(Lp0?K)the space of L2? integrable holomorphic sections of Lp0?K.For s∈ Γ(Lp0?K),direct computations lead to

    where trg(C1(Lp0?K))=p0trg(C1(L))?R is bounded by our assumption.

    Multiplying both sides of(5.6)by a cut-o fffunction,integrating by parts,and making use of Cauchy-Schwarz inequality,we have

    Applying mean value inequality to(5.6),we have

    where we used the boundedness of trg(C1(Lp0?K)).By volume comparison theorem,we have vol(B(x,1))≥ (1+d(x,x0)2n)?1vol(B(x0,1)),hence

    where C may depend on s and x0.

    For applications in sequel,we need to fix an auxiliary function ψ on Mnwhich may be used to construct cut-o fffunctions.ψ satis fies

    where C is some constant depending only on the curvature bound.The easiest way to construct ψ is smoothing the distance function by convolutions in a suitable ball(of tangent space)of uniform size.

    Proposition 5.2For anyhave

    Theorem 4.1 is a corollary of Proposition 5.2.

    Proof of Theorem 4.1Take n nontrival sections s1,s2,···,sn∈ Γ(L?p0? K),(this is possible by Proposition(1.6),and let ε1,ε2,···,εk→ 0,the limitinf of the left hand side of(5.13)is not less thanRMnRicnby(5.12).Hence

    and the Theorem 4.1 is proved.

    So we only need to show Proposition 5.2.The method is a modi fication of the standard Bezout estimate(see[18,27,36]).First of all,we need a lemma:

    Lemma 5.3For anywe have

    The first term in the right hand side of(5.16)is just i)k?1.Integrate by parts the second term and use Cauchy-Schwarz,it can be controlled from above by

    where we have used(5.10).The first and second terms in(5.17)are controlled by ii)k?1.By(5.10)(5.9)and induction assumption i)k?1,the third term in(5.17)can be controlled from above by

    Taking a sequence of regular values a → ∞ of ψ,we find the third term of(5.17)converges to zero,and we have estimated i)kby i)k?1and ii)k?1.

    To derive ii)k,we consider

    by integration by parts and Cauchy-Schwarz.Combining(5.19)and(5.20),we get

    Taking a sequence of a→∞,we have estimated ii)kin terms of i)k,i.e.,

    The proof of the lemma is completed.

    Now we are ready to prove Proposition 5.2.

    Proof of Proposition 5.2The case k=0 is trivial.When k=1,for any big regular value a of ψ,we have

    猜你喜歡
    朱熹
    朱熹《春日》
    從習總書記考察朱熹園說起
    中華詩詞(2021年5期)2021-12-31 08:27:00
    春日
    漢字漢語研究(2019年2期)2019-08-27 00:48:02
    武夷山
    EnglishReadingTeachingBasedonSchemaTheory
    博白·客家·朱熹
    文史春秋(2016年1期)2016-12-01 05:41:53
    論朱熹詩歌的沖雅之風
    論朱熹對孟子思想的工具化注解
    西南學林(2016年2期)2016-11-08 12:16:34
    “朱子深衣”與朱熹
    海峽姐妹(2016年4期)2016-02-27 15:18:14
    日韩在线高清观看一区二区三区| 中国国产av一级| 亚洲av中文av极速乱| 亚洲性久久影院| 亚洲欧美色中文字幕在线| 伊人久久国产一区二区| 波野结衣二区三区在线| 亚洲性久久影院| 国产成人精品一,二区| 国产欧美日韩综合在线一区二区| 国产亚洲精品第一综合不卡 | 在线观看免费日韩欧美大片| 有码 亚洲区| av电影中文网址| 中文字幕制服av| 男人舔女人的私密视频| 黄色配什么色好看| 69精品国产乱码久久久| 日本av手机在线免费观看| 视频中文字幕在线观看| 成人二区视频| 久久久久久久国产电影| 亚洲少妇的诱惑av| 成人亚洲欧美一区二区av| 69精品国产乱码久久久| 国产1区2区3区精品| 免费看av在线观看网站| 在线精品无人区一区二区三| 国产熟女午夜一区二区三区| av在线播放精品| 久久99热6这里只有精品| 日韩欧美一区视频在线观看| 男女啪啪激烈高潮av片| 成人影院久久| 青春草国产在线视频| 精品一品国产午夜福利视频| 午夜福利网站1000一区二区三区| 国产亚洲午夜精品一区二区久久| av女优亚洲男人天堂| 精品亚洲成国产av| 你懂的网址亚洲精品在线观看| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 丝袜在线中文字幕| 亚洲精品美女久久久久99蜜臀 | 99热这里只有是精品在线观看| 久久狼人影院| 日韩人妻精品一区2区三区| 国产一区亚洲一区在线观看| 中文乱码字字幕精品一区二区三区| videos熟女内射| 成人亚洲精品一区在线观看| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 精品亚洲乱码少妇综合久久| 精品酒店卫生间| 亚洲熟女精品中文字幕| 在线观看美女被高潮喷水网站| a级毛色黄片| 考比视频在线观看| 亚洲av日韩在线播放| 国产精品国产三级国产av玫瑰| 热re99久久国产66热| 中文字幕制服av| 九草在线视频观看| av福利片在线| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 免费不卡的大黄色大毛片视频在线观看| 啦啦啦中文免费视频观看日本| www.熟女人妻精品国产 | 国产精品人妻久久久久久| 久久人人97超碰香蕉20202| 亚洲四区av| 精品久久蜜臀av无| 国产欧美另类精品又又久久亚洲欧美| 又大又黄又爽视频免费| 一区二区三区精品91| 婷婷色麻豆天堂久久| 免费人妻精品一区二区三区视频| 日本av免费视频播放| 1024视频免费在线观看| 欧美成人午夜精品| 97精品久久久久久久久久精品| 丝袜人妻中文字幕| 精品少妇黑人巨大在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人漫画全彩无遮挡| 精品少妇内射三级| 51国产日韩欧美| 激情视频va一区二区三区| 亚洲 欧美一区二区三区| www日本在线高清视频| 97精品久久久久久久久久精品| 日日啪夜夜爽| 日韩在线高清观看一区二区三区| 成年动漫av网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩免费高清中文字幕av| 男人爽女人下面视频在线观看| 国产成人精品一,二区| 日本免费在线观看一区| 国产男人的电影天堂91| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 欧美国产精品一级二级三级| 丰满迷人的少妇在线观看| 97在线人人人人妻| 亚洲欧美成人精品一区二区| 热99久久久久精品小说推荐| 国产免费现黄频在线看| 天堂中文最新版在线下载| 国产精品一国产av| 男人操女人黄网站| 日韩中文字幕视频在线看片| 国产精品免费大片| 少妇的逼好多水| 春色校园在线视频观看| 2021少妇久久久久久久久久久| 亚洲欧美清纯卡通| 免费高清在线观看视频在线观看| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 亚洲,一卡二卡三卡| 久久久久网色| videos熟女内射| av有码第一页| 国产精品成人在线| 多毛熟女@视频| 99久国产av精品国产电影| 99久久人妻综合| 久久毛片免费看一区二区三区| 国产精品.久久久| av播播在线观看一区| 最黄视频免费看| videos熟女内射| 国产乱人偷精品视频| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 精品卡一卡二卡四卡免费| 视频中文字幕在线观看| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影小说| 狠狠婷婷综合久久久久久88av| 亚洲经典国产精华液单| 在线天堂最新版资源| 国产免费一级a男人的天堂| 亚洲熟女精品中文字幕| 免费av中文字幕在线| 卡戴珊不雅视频在线播放| 男人爽女人下面视频在线观看| 亚洲国产成人一精品久久久| 秋霞伦理黄片| 免费观看在线日韩| 在线看a的网站| 亚洲精品一二三| 亚洲av国产av综合av卡| 最近最新中文字幕免费大全7| 亚洲色图综合在线观看| 水蜜桃什么品种好| 亚洲国产毛片av蜜桃av| 精品国产露脸久久av麻豆| 亚洲熟女精品中文字幕| 欧美国产精品一级二级三级| 韩国av在线不卡| 男人添女人高潮全过程视频| 欧美xxⅹ黑人| 成人国产麻豆网| 欧美性感艳星| 婷婷色综合www| 亚洲欧美色中文字幕在线| 在线天堂中文资源库| a级毛片在线看网站| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩综合在线一区二区| 精品99又大又爽又粗少妇毛片| 高清毛片免费看| 成年动漫av网址| av有码第一页| freevideosex欧美| www.色视频.com| 成人国语在线视频| 天天影视国产精品| 天堂俺去俺来也www色官网| 男人操女人黄网站| 91aial.com中文字幕在线观看| 国产国语露脸激情在线看| 久久ye,这里只有精品| 美女xxoo啪啪120秒动态图| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| av在线播放精品| 国产一区有黄有色的免费视频| 国产黄色免费在线视频| 亚洲综合精品二区| 久久精品国产亚洲av涩爱| 亚洲av男天堂| 欧美亚洲日本最大视频资源| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 精品人妻一区二区三区麻豆| 91国产中文字幕| 精品卡一卡二卡四卡免费| 成年女人在线观看亚洲视频| 精品国产一区二区久久| 国产69精品久久久久777片| 亚洲av电影在线进入| 亚洲欧洲日产国产| 久久久国产欧美日韩av| 美女脱内裤让男人舔精品视频| 精品熟女少妇av免费看| 亚洲国产看品久久| 性高湖久久久久久久久免费观看| 日本黄大片高清| 男的添女的下面高潮视频| 男女啪啪激烈高潮av片| 国产成人91sexporn| 国产亚洲最大av| 欧美人与性动交α欧美软件 | 香蕉精品网在线| 中国美白少妇内射xxxbb| 波野结衣二区三区在线| 性色av一级| 成人亚洲精品一区在线观看| 午夜激情久久久久久久| 丰满饥渴人妻一区二区三| 黑丝袜美女国产一区| 国产视频首页在线观看| 一个人免费看片子| 日本色播在线视频| 午夜激情av网站| 国产在线免费精品| 日本猛色少妇xxxxx猛交久久| 中文字幕制服av| 欧美精品一区二区大全| 啦啦啦视频在线资源免费观看| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 免费日韩欧美在线观看| 免费av不卡在线播放| 男女边吃奶边做爰视频| 高清毛片免费看| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 人妻系列 视频| 插逼视频在线观看| 亚洲精品av麻豆狂野| 国产淫语在线视频| 久久久久久伊人网av| 久久人人爽人人片av| 老司机影院毛片| 在线观看国产h片| 老女人水多毛片| 两性夫妻黄色片 | 久久久久精品人妻al黑| 成人影院久久| 亚洲精品久久成人aⅴ小说| 成人国产麻豆网| 亚洲五月色婷婷综合| 欧美日韩综合久久久久久| 欧美性感艳星| 久久久精品免费免费高清| 亚洲国产av新网站| 一级黄片播放器| 国产av精品麻豆| 观看美女的网站| 欧美97在线视频| av福利片在线| 蜜桃国产av成人99| 亚洲精品久久久久久婷婷小说| 午夜老司机福利剧场| 99re6热这里在线精品视频| 欧美精品国产亚洲| 在线观看人妻少妇| 亚洲av成人精品一二三区| 日韩一区二区三区影片| 熟女电影av网| 欧美国产精品一级二级三级| 亚洲av综合色区一区| 免费看光身美女| 亚洲精品日韩在线中文字幕| 我的女老师完整版在线观看| 美国免费a级毛片| 99久久人妻综合| 亚洲人成77777在线视频| av片东京热男人的天堂| 国产 精品1| 欧美变态另类bdsm刘玥| 日韩av不卡免费在线播放| 欧美国产精品一级二级三级| 国产精品国产三级国产专区5o| 亚洲,欧美,日韩| 成人手机av| 日本av手机在线免费观看| 纯流量卡能插随身wifi吗| 精品人妻熟女毛片av久久网站| 精品国产一区二区久久| 国产精品久久久久成人av| 国产色婷婷99| 在线看a的网站| 国产高清国产精品国产三级| a级毛色黄片| 伦精品一区二区三区| 日本av免费视频播放| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 久久久久久久亚洲中文字幕| 成人毛片a级毛片在线播放| 欧美另类一区| 9热在线视频观看99| 97在线人人人人妻| 少妇高潮的动态图| 91aial.com中文字幕在线观看| 天堂8中文在线网| 久久久久久久国产电影| 老司机影院毛片| 亚洲综合色惰| 久久97久久精品| 天天躁夜夜躁狠狠躁躁| 欧美日本中文国产一区发布| 涩涩av久久男人的天堂| 亚洲av电影在线进入| 亚洲美女视频黄频| 免费高清在线观看日韩| 国产精品偷伦视频观看了| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 最黄视频免费看| 91精品国产国语对白视频| 香蕉精品网在线| 90打野战视频偷拍视频| 成人国产av品久久久| 欧美bdsm另类| 久久久久久人人人人人| 最黄视频免费看| 亚洲成人一二三区av| 91午夜精品亚洲一区二区三区| 亚洲四区av| 精品国产一区二区三区久久久樱花| 日日爽夜夜爽网站| 亚洲中文av在线| 天堂8中文在线网| 亚洲精华国产精华液的使用体验| 欧美精品av麻豆av| 亚洲欧美成人精品一区二区| 亚洲国产精品一区三区| 亚洲国产精品999| 亚洲国产欧美在线一区| 日韩视频在线欧美| 2018国产大陆天天弄谢| 一区二区日韩欧美中文字幕 | 国产精品国产三级国产专区5o| 90打野战视频偷拍视频| 多毛熟女@视频| 国产精品久久久久久精品古装| 日本黄色日本黄色录像| 久久久久久伊人网av| 欧美国产精品va在线观看不卡| 婷婷成人精品国产| 久久这里有精品视频免费| 久久99精品国语久久久| 毛片一级片免费看久久久久| 免费人成在线观看视频色| 最近最新中文字幕大全免费视频 | 亚洲国产精品一区三区| 国产69精品久久久久777片| 香蕉丝袜av| 精品一区在线观看国产| 男人舔女人的私密视频| 男女下面插进去视频免费观看 | 免费人成在线观看视频色| 香蕉国产在线看| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| videosex国产| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| www日本在线高清视频| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| 岛国毛片在线播放| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 五月天丁香电影| 亚洲一码二码三码区别大吗| 欧美xxxx性猛交bbbb| 男女啪啪激烈高潮av片| 日韩一区二区三区影片| 亚洲熟女精品中文字幕| 高清毛片免费看| 亚洲国产av影院在线观看| 亚洲av在线观看美女高潮| 搡女人真爽免费视频火全软件| 亚洲美女搞黄在线观看| 桃花免费在线播放| 国产免费又黄又爽又色| 日本猛色少妇xxxxx猛交久久| 久久精品aⅴ一区二区三区四区 | 亚洲精品av麻豆狂野| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| av.在线天堂| 色婷婷久久久亚洲欧美| a级毛片在线看网站| 一级黄片播放器| 亚洲精品,欧美精品| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 午夜精品国产一区二区电影| 国产成人91sexporn| 丝袜喷水一区| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 有码 亚洲区| 少妇被粗大的猛进出69影院 | 久久国产精品男人的天堂亚洲 | a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 18禁动态无遮挡网站| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 国产色爽女视频免费观看| 精品福利永久在线观看| 日本爱情动作片www.在线观看| 欧美成人精品欧美一级黄| 亚洲成色77777| 777米奇影视久久| 一级黄片播放器| 熟女电影av网| 人人妻人人添人人爽欧美一区卜| 国产一级毛片在线| 中文字幕另类日韩欧美亚洲嫩草| 欧美性感艳星| 久久狼人影院| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| 国产免费现黄频在线看| 天堂8中文在线网| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 亚洲婷婷狠狠爱综合网| 日本黄大片高清| 亚洲人与动物交配视频| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| 亚洲av.av天堂| 国产又爽黄色视频| 制服人妻中文乱码| 性高湖久久久久久久久免费观看| 狠狠婷婷综合久久久久久88av| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡| 久久久久视频综合| 精品久久国产蜜桃| 三上悠亚av全集在线观看| 日韩av不卡免费在线播放| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 一区二区av电影网| 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级专区第一集| 亚洲精品日本国产第一区| 最近中文字幕2019免费版| 成年美女黄网站色视频大全免费| 一级毛片电影观看| 夜夜爽夜夜爽视频| 99香蕉大伊视频| 秋霞在线观看毛片| 国产福利在线免费观看视频| 99九九在线精品视频| 亚洲中文av在线| 久久精品久久精品一区二区三区| 免费看不卡的av| 午夜久久久在线观看| 男女无遮挡免费网站观看| 青春草亚洲视频在线观看| 伦理电影大哥的女人| 国产在视频线精品| 婷婷色麻豆天堂久久| 纯流量卡能插随身wifi吗| 亚洲精品乱久久久久久| 日韩在线高清观看一区二区三区| 午夜福利视频精品| 精品熟女少妇av免费看| 青春草国产在线视频| 日本wwww免费看| 日韩精品免费视频一区二区三区 | 激情视频va一区二区三区| 人人妻人人澡人人看| 久久国产精品男人的天堂亚洲 | 国产精品一区二区在线观看99| 2021少妇久久久久久久久久久| freevideosex欧美| 99久久人妻综合| 午夜久久久在线观看| 午夜视频国产福利| 男女高潮啪啪啪动态图| 日韩成人伦理影院| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 美女国产高潮福利片在线看| 美女大奶头黄色视频| 欧美亚洲日本最大视频资源| 免费不卡的大黄色大毛片视频在线观看| 久久久欧美国产精品| 日日摸夜夜添夜夜爱| 寂寞人妻少妇视频99o| 国产69精品久久久久777片| 久久久久久伊人网av| 久久毛片免费看一区二区三区| 国产成人免费无遮挡视频| 亚洲一码二码三码区别大吗| 欧美亚洲日本最大视频资源| 国产一区亚洲一区在线观看| 亚洲成av片中文字幕在线观看 | 亚洲国产精品专区欧美| 亚洲美女搞黄在线观看| 99热国产这里只有精品6| 熟妇人妻不卡中文字幕| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 制服诱惑二区| 欧美xxxx性猛交bbbb| 久久久久久久久久久久大奶| 嫩草影院入口| 久久亚洲国产成人精品v| 精品一区在线观看国产| 国产av一区二区精品久久| xxx大片免费视频| 十八禁高潮呻吟视频| 两性夫妻黄色片 | 精品亚洲乱码少妇综合久久| 久久精品久久久久久噜噜老黄| 妹子高潮喷水视频| av免费观看日本| 狠狠精品人妻久久久久久综合| 搡女人真爽免费视频火全软件| 日韩制服丝袜自拍偷拍| www.色视频.com| 国产一区有黄有色的免费视频| 国产成人精品婷婷| a级片在线免费高清观看视频| 日韩欧美精品免费久久| 这个男人来自地球电影免费观看 | 韩国高清视频一区二区三区| 99久久中文字幕三级久久日本| 国产伦理片在线播放av一区| 一区二区三区乱码不卡18| 亚洲精品,欧美精品| 少妇精品久久久久久久| 视频中文字幕在线观看| 男女下面插进去视频免费观看 | 亚洲综合色网址| 欧美日本中文国产一区发布| 精品国产国语对白av| 日本免费在线观看一区| 2021少妇久久久久久久久久久| 在线看a的网站| 少妇 在线观看| 亚洲一区二区三区欧美精品| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 亚洲欧美日韩另类电影网站| 欧美精品一区二区大全| 下体分泌物呈黄色| 国产免费一级a男人的天堂| 欧美日韩av久久| 91午夜精品亚洲一区二区三区| 久久久久网色| 亚洲国产精品一区二区三区在线| 一本大道久久a久久精品| 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 国产 精品1| 日本与韩国留学比较| 18禁动态无遮挡网站| 亚洲av男天堂| 免费少妇av软件| 搡老乐熟女国产| 国产一区二区三区综合在线观看 | 寂寞人妻少妇视频99o| 午夜精品国产一区二区电影| 激情五月婷婷亚洲| 亚洲成人av在线免费| 亚洲av综合色区一区| 有码 亚洲区| 大陆偷拍与自拍| 国产精品久久久久久精品古装| 日韩av免费高清视频| 人人妻人人澡人人爽人人夜夜| 欧美成人午夜精品| xxx大片免费视频| 成人免费观看视频高清| 国产乱来视频区| 中文精品一卡2卡3卡4更新| 性高湖久久久久久久久免费观看| 99热全是精品| 777米奇影视久久| 亚洲成色77777| 免费看av在线观看网站|