• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    YAU’S UNIFORMIZATION CONJECTURE FOR MANIFOLDS WITH NON-MAXIMAL VOLUME GROWTH?

    2018-11-22 09:23:38BinglongCHEN陳兵龍XipingZHU朱熹平
    關(guān)鍵詞:朱熹

    Binglong CHEN(陳兵龍)Xiping ZHU(朱熹平)

    Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,China

    E-mail:mcscbl@mail.sysu.edu.cn;stszxp@mail.sysu.edu.cn

    Abstract The well-known Yau’s uniformization conjecture states that any complete noncompact K?hler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space.The conjecture for the case of maximal volume growth has been recently con firmed by G.Liu in[23].In the first part,we will give a survey on the progress.In the second part,we will consider Yau’s conjecture for manifolds with non-maximal volume growth.We will show that the finiteness of the first Chern number is an essential condition to solve Yau’s conjecture by using algebraic embedding method.Moreover,we prove that,under bounded curvature conditions,is automatically finite provided that there exists a positive line bundle with finite Chern number.In particular,we obtain a partial answer to Yau’s uniformization conjecture on K?hler manifolds with minimal volume growth.

    Key words uniformization conjecture;non-maximal volume growth;Chern number

    1 Introduction

    In K?hler geometry,there is a well-known uniformization conjecture due to Yau[38]:

    Conjecture 1.1Let(Mn,g)be a complete noncompact K?hler manifold with positive bisectional curvature of complex dimension n.Then Mnis biholomorphic to Cn.

    This conjecture was motivated,on the one hand,by the classical uniformization theorem for Riemann surfaces,and by a famous result in Riemannian geometry due to Gromoll-Meyer which says that a complete noncompact Riemannian manifold with positive sectional curvature is di ff eomorphic to the Euclidean space.This conjecture has aroused a great interest in mathematics since it was introduced,it stimulated a lot of researches during the past decades(see[4,5,14,17,23,26,29,34]or references therein).Although there already have been many accomplishments,even breakthroughs for maximal volume growth case,it is an embarrassing fact that presently we even do not know if a complete noncompact K?hler manifold with positive bisectional curvature is Stein or di ff eomorphic to the Euclidean space.

    1.1 Main techniques

    In principle,we have two approaches to solve Conjecture 1.1:

    a)construct a complete flat K?hler metric on Mn,

    b)directly construct a biholomorphic map from Mnto Cn.

    For a),one may use geometric flows to deform the initial metric(e.g.Ricci flow),roughly speaking,we hope that the limit will provide a desired flat K?hler metric on Mn.Ricci flow is the following deformation equation on metrics:

    For b),we need to construct holomorphic functions or holomorphic sections of some line bundles.A conservative way is first to embed Mnto CNor CPNas an affine or quasi-projective variety for some large N,this process is called compacti fication.In views of complex analysis,the key point for this process is to find a pluri-subharmonic functionthat the L2estimate for?equation of H?rmander[19]and Andreotti-Vesentini[1]could be applied.

    The construction of the holomorphic map in b)depends on the geometry of the background manifold,in practical applications,one can combine a)and b),i.e.,deform the background geometry,and accomplish b)by using the geometric informations from a family of deformed metrics(see[4,14]).

    Geometric construction from triangle comparison theorem usually only gives a Lipschitz continuous auxiliary function satisfying certain convexity conditions.To obtain a smooth one,one can use heat equation to deform it:

    The point is that the Levi-form(on K?hler manifold)satis fies a parabolic Lichnerowicz equation:

    Under certain growth condition of the solution u,for instance,orif the bisectional curvature is nonnegative,i.e.,one can show thatis preserved by the heat equation(if it holds initially),moreover it becomes strictly positive for t>0,i.e.,unless the universal cover of the manifold splits isometrically as a nontrivial product M=N×L,see[32].Surely,the splitting can not happen if we assume the bisectional curvature or Ricci curvature is strictly positive.

    So we have two kinds of deformations available,(1.1)and(1.2),one is for metics,the other is for functions.

    In[12],Cheeger-Gromoll proved that a complete Riemannian manifold with nonnegative sectional curvature is di ff eomorphic to the normal bundle of a compact totally geodesic submanifold.The K?hler analogue was obtained in[13](Page 60-65):

    Theorem 1.2(Cao-Chen-Zhu[13])Let M be a complete noncompact K?hler manifold with bounded and nonnegative holomorphic bisectional curvature.Then one of the following holds:

    (i)M admits a K?hler metric with bounded and positive bisectional curvature;

    where k,l1,l2are nonnegative integers,Ckis the complex Euclidean space with flat metric,Mi,1 ≤ i≤ l1,are complete(compact or noncompact)K?hler manifolds with bounded and nonnegative bisectional curvature admitting a K?hler metric with bounded and positive bisectional curvature,Nj,1≤j≤l2,are irreducible compact Hermitian symmetric spaces of rank≥2 with the canonical metrics.

    In the above theorem,the manifold(passing to the universal cover in case ii)is a metric product,not only a fiber bundle.The argument is a delicate maximum principle type argument,which was used by Gu[21]to give an alternative and transcendental proof of generalized Frankel conjecture due to Mok[28],see[13](Page 60-65)for details.This theorem reduces the study of the case of nonnegative bisectional curvature to the strictly positive one,if we assume the curvature is bounded.

    Let us begin with a theorem of Mok-Siu-Yau[29]in 1981:

    Theorem 1.3(Mok-Siu-Yau[29])Let M be a complete non-compact K?hler manifold of non-negative holomorphic bisectional curvature of complex dimension n≥2.Suppose there exist positive constants C1,C2such that for a fixed base point x0and some ?>0,

    (i)Vol(B(x0,r))≥C1r2n,0≤r<+∞,

    (ii)R(x)≤ C2/d(x0,x)2+?on M,

    where Vol(B(x0,r))denotes the volume of the geodesic ball B(x0,r)centered at x0with radius r,R(x)denotes the scalar curvature and d(x0,x)denotes the geodesic distance between x0and x.Then,M is isometrically biholomorphic to Cnwith the flat metric.

    The seminal idea to find a pluri-subharmonic function in Mok-Siu-Yau[29]is to solve the Poincare-Lelong equation:

    The conditions(i)and(ii)guarantee a bounded solution u to the Poincare-Lelong equation(1.4).This bounded pluri-subharmonic function u must be constant by the virtue of Yau’s Liouville theorem,whence the manifold is actually flat.This result is called a gap theorem,which means that there is a gap on the order of the curvature decay on a nonnegatively curved manifold,more precisely,it is actually flat if the curvature decays faster than quadratic.

    Except the curvature sign,the conditions in Mok-Siu-Yau’s theorem consist of two things:i)volume growth,ii)curvature decay.All the subsequent works trying to solve the uniformization conjecture assumed conditions of the above two types.We have to mention that,from the recent result of Liu[23],Yau’s conjecture is true if the manifold has nonnegative bisectional curvature and maximal volume growth.In previous works,under the maximal volume growth and bounded curvature conditions,Yau’s conjecture has been con firmed in Chen-Tang-Zhu[14](for complex dimension 2)and Chau-Tam[4](for all dimensions).However,not much is known when the volume growth is not maximal.In some sense,the maximal volume growth more or less forces the geometry of the manifold at in finity to approximate to that of the Euclidean space.In the non-maximal volume growth case,the geometry at in finity is complicated.

    1.2 Geometry of bisectional curvature

    In[17],we proved the following theorems on the volume growth and curvature decay of any complete K?hler manifold with positive bisectional curvature:

    Theorem 1.4(Chen-Zhu[17])Let Mnbe a complex n-dimensional complete noncompact K?hler manifold with positive holomorphic bisectional curvature.Then the volume growth of M satis fies

    for all 1≤r<∞,where c is some positive constant depending on x0and the dimension n.

    Theorem 1.5(Chen-Zhu[17]) Let Mnbe a complete noncompact K?hler manifold with positive holomorphic bisectional curvature.Then for any x0∈Mn,there exists a positive constant C such that

    for all 0≤r<∞,where R(x)is the scalar curvature of Mn.

    Roughly,it says that the volume of a geodesic ball of radius r grows at least as fast as rn,where 2n is the real dimension of the manifold,the average of the curvature decays at least linearly.It is surprising that these two results are sharp,in the sense that we do have a lot of examples satisfying these minimal volume growth and curvature decay conditions,e.g.Klembeck’s examples,Cao’s static K?hler-Ricci solitons with positive bisectional curvature,see[3].

    Let P ∈ Mn,γ :[0,∞)be geodesic ray with γ(0)=P,and be the Buseman function associated to γ.From comparison theorem,bγis a pluri-subharmonic function.Moreover,by a standard convolution technique or heat equation deformation on bγ(1.2),we obtain a smooth strictly pluri-subharmonic function u of linear growth:

    Theorem 1.4 follows from calculating the Monge-Ampere measure

    and integration by parts([17]).The proof of Theorem 1.5 is a little involved.It based on the following L2-estimates ofoperator(see[1,19]):

    Theorem 1.6(Andreotti-Vesentini[1],H?mander[19]) On a complete K?hler manifold(M,ω),suppose we have a function ?,a Hermitian holomorphic line bundlewith curvature(1,1)-form C1()such that

    where c(x)is a positive function on M,ω the K?hler form;suppose we also have a-closed-valued(0,1)form f on M such that

    Then the equation

    admits a smooth solution u(section of)such that

    Take L=K be the canonical line bundle,then C(L)=?Ric.On some coordinate system|z|<1 around a point P,choose ?=Cu+log|z|2n+2be a strictly psh weight function,then(1.6)holds.Choosefor some smooth compact supported section of L which is holomorphic near P and non-vanishing at P.Then the above L2estimate gives a nontrivial holomorphic section E=S?ξ of L satisfying

    On the other hand,the Poincare-Lelong equation:

    holds in the sense of distributions.The integral average of R over geodesic balls can be derived from the growth of E(see[17]).

    Theorem 1.5 is crucial in proving the maximal volume growth condition is preserved during the Ricci flow(see[4,14]).It yields that the volume growth ratio of the manifold at in finity remains invariant.We know that this ratio is monotonically decreasing as the radius goes to in finity,which follows from the volume comparison theorem since Ric≥0.

    2 Maximal Volume Growth

    The first breakthrough was made by Mok[26].

    Theorem 2.1(Mok[26]) Let M be a complete non-compact K?hler manifold of complex dimension n with positive holomorphic bisectional curvature.Suppose there exist positive constants C1,C2such that for a fixed base point x0,

    then M is biholomorphic to an affine algebraic variety.Moreover,if in addition the complex dimension n=2 and(iii)the Riemannian sectional curvature of M is positive,then M is biholomorphic to C2.

    We recall brie fly the scheme of Mok’s proof.We consider the algebra P(X)of holomorphic functions of polynomial growth and its quotient field R(X)of“rational functions”.We use the solution of(1.4)and L2-estimates(Theorem 1.6)to prove there are many functions in P(X).Then,we prove Siegel’s theorem for R(X),i.e.,R(X)=C(fI···fn;g/h)is a finite extension field of a purely transcendental extension of C of degree n.We do this by establishing a multiplicity estimate for P(X).Then,we use Skoda’s L2-estimates for the ideal problem to prove the “almost-surjectivity”of F=(f1···fn,g,h)of X into an affine algebraic variety.By establishing a uniform multiplicity estimate(i.e.,independent of base points)for P(X),we prove a finiteness theorem for desingularizing F.Finally we use the convexity of X with respect to P(X)to complete F to a proper embedding.

    In[34],Shi obtained the following

    Theorem 2.2(Shi[34]) Let M be a complete non-compact K?hler manifold of complex dimension n with bounded and positive holomorphic bisectional curvature.Suppose there exist positive constants C1,C2such that for a fixed base point x0,

    then M is biholomorphic to a pseudo-convex domain in Cn.

    In[34],Shi initiated the study of Ricci flow on Yau’s uniformization conjecture.He proved that,under the conditions(i)(ii)in his theorem,the K?hler condition,the positivity of bisectional curvature and the maximal volume growth are all preserved.Moreover,he showed that Ricci flow exists for all time t>0,and the curvature decays to zero as t→∞in the following way(Theorem 8.7 in[34]):

    Using the estimate(2.3),Shi proved that there is a smooth positive function u(t)∈C∞[0,∞),such thatwill converge in C∞? topology to a flat K?hler metric.Because it is not known whether the limit is complete,Shi could only conclude that the manifold is a pseudo-convex domain(see also[16]).

    In complex dimension 2,in[14],an affirmative answer to Yau’s uniformization conjecture under the maximal volume condition was obtained:

    Theorem 2.3(Chen-Tang-Zhu[14]) Let M be a complete non-compact K?hler manifold of complex dimension 2 with bounded and positive holomorphic bisectional curvature.Suppose there exist a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to C2.

    Our proof of the theorem consists of three parts.In the first part,we showed that M is a Stein manifold homeomorphic to R4.Since the maximal volume growth condition is preserved(with same constant,Theorem 1.5),we proved that the curvature of the evolving metric decays linearly in time,via a blow up and blow down argument:

    This implies that the injectivity radius of the evolving metric is greater thanand any geodesic ball with radiusis pseudoconvex.From this,one can show that Mnis a Stein manifold homeomorphic to R4.

    In the second part,we considered the algebra P(M)of holomorphic functions of polynomial growth on M and we proved that its quotient field has transcendental degree 2 over C.For this,we first need to construct two algebraically independent holomorphic functions in the algebra P(M).Using the L2estimates in Theorem 1.6,it suffices to construct a strictly plurisubharmonic function of logarithmic growth on M.If the scalar curvature decays in space(at time t=0)at least quadratically as in Theorem 2.1,it was known that such a strictly plurisubharmonic function of logarithmic growth can be obtained by solving the Poincare-Lelong equation(1.4).But we do not assume the curvature decay condition.Here the novel idea is to transform the time decay estimate(2.5)of evolving metrics to the space decay at t=0,via apriori estimates for(nonlinear)heat equations.Roughly speaking,the time decay estimate(2.5)of evolving metrics implies that the curvature of the initial metric must decay quadratically in space in certain average sense:

    The apriori estimate is obtained from integrating the following equation in space and time:

    (2.6)turns out to be enough to solve the Poincare-Lelong equation(1.4)to find a strictly pluri-subharmonic function u of logarithmic growth,

    In the last part,we basically followed the approach of Mok[26]to establish a biholomorphic map from M onto a quasi-affine algebraic variety,by desingularizing certain holomorphic mapping F:M→Z from M to a quasi-affine algebraic variety Z.The essential point is to establish uniform estimates on the multiplicity and the number of irreducible components of the zero divisor of a holomorphic function of polynomial growth.Again,the time decay estimate 2.5 of the Ricci flow plays a crucial role in the arguments.Based on these estimates,we showed that the mapping F:M→Z is almost surjective in the sense that it can miss only a finite number of subvarieties in Z,and can be desingularized by adjoining a finite number of holomorphic functions of polynomial growth.This completes the proof that M is a quasi-affine algebraic variety.Finally,by combining with the fact that M is homeomorphic to R4,we concluded that M is indeed biholomorphic to C2by a classical theorem of Ramanujam on algebraic surfaces.

    In 2006,Chau-Tam[4]extended the above theorem to higher dimensions:

    Theorem 2.4(Chau-Tam[4]) Let M be a complete non-compact K?hler manifold of complex dimension n with bounded and nonnegative holomorphic bisectional curvature.Suppose there exists a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to Cn.

    A result due to Rosay-Rudin([33])and its generalization by Varolin([37])on attractive basins say the following:Let F be a biholomorphism from a complex manifold Nnto itself and let p∈Nnbe a fixed point,andbe the basin of attraction of p.Suppose ? contains an open neighborhood of p.Then ? is biholomorphic toThis result was used by Chau-Tam in[6]to prove that a gradient K?hler Ricci soliton is biholomorphic to Cnif it is either steady with positive Ricci curvature and the scalar curvature achieves its maximum at some point,or expanding with nonnegative Ricci curvature.The gradient K?hler Ricci soliton involves a family of biholomorphisms φtin its de finition,pick one of them(for t>0,so that it is shrinking)to be F in the result of Rosay-Rudin-Varolin([33]and[37]).For more general solutions of K?hler Ricci flow,one usually only have local biholomorphisms,instead of one particular global biholomorphism F.

    We give a sketch of the proof of Theorem 2.4 in[4].They used Ricci flow to deform the initial metric.As explained before,the K?hlerity,nonnegativity of bisectional curvature,maximal volume growth(same constant)are preserved by the Ricci flow as long as the curvature of the solution is bounded.The first crucial thing is to prove that the curvature decays linearly in time,i.e.,(2.5).If the curvature operator is nonnegative,in[17],we proved that(2.5)still holds for all dimensions n by using a blowing up and blowing down argument as in[14].In[31],Ni proved(2.5)holds when bisectional curvature is nonnegative.Letsatis fies a new equation for all t∈(?∞,∞).The estimate(2.5)implies that the curvature of?g(t)is uniformlly bounded independent of t.

    Combining with the maximal volume growth, fix a point P∈M,we have a uniform injectivity radius estimate for allat P.From standard L2-estimate,there is a fixed r>0 such that for each i∈ N,one can construct a holomorphic map Φi:B(r)→ M,where B(r)=is the ball of the radius r in the Euclidean space,such that Φiis a biholomorphic map onto its image Φi(B(r))which contains a geodesic ball of radiusaround P of the metric.Moreover,is close to the Euclidean metric.Fix a large N,let Fibe a family of biholomorphisms from B(r)onto its image which is inside B(r)such thatTo imitate the proof of Rosay-Rudin-Varolin’s result([33]and[37]),one should prove that asymptotically this family of Fibehaves close to a single map F.The authors observed that the eigenvalues of Ricci curvature ofis non-decreasing(it is bounded from above by the estimate),and for any sequence tk→ ∞,the solutionbehave close to a K?hler Ricci soliton.Cao’s Li-Yau-Hamilton inequality[2]and[3]plays a key role in the argument.Here,the idea is that the closeness of the solution with K?hler Ricci soliton is enough to imply the closeness of the family of Fito some single map F.For more details,we refer to[4]and the survey[5].

    In a preprint“On Yau’s uniformization conjecture” arXiv:1606.08958,Liu[23]claimed that he could remove the boundedness of the curvature assumption in Chau-Tam’s theorem[5]:

    Theorem 2.5(Liu[23]) Let M be a complete non-compact K?hler manifold of complex dimension n with nonnegative holomorphic bisectional curvature.Suppose there exists a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to Cn.

    Liu introduced some new ideas with three circles theorems and Cheeger-Colding theory,see[23–25].In[24],he proved that the ring of holomorphic functions of polynomial growth on a complete manifold with nonnegative bisectional curvature is finitely generated,and such a manifold is affine provided it has maximal volume growth,con firming another conjecture of Yau.

    On the other hand,in a recent paper Lee-Tam[22],Lee-Tam proved that on a complete noncompact K?ahler manifold with nonnegative bisectional curvature and maximal volume growth,the K?ahler-Ricci flow exists at least for a short time,and it preserves all these conditions,more importantly,the curvature becomes bounded for t>0.Combining with the previous result in Chau-Tam[4],this yields an alternative proof of Yau’s uniformization conjecture for the maximal volume growth case.

    3 Non-maximal Volume Growth

    As we have seen,there are important progress on Yau’s uniformization conjecture for manifolds with maximal volume growth.Nevertheless,many examples of positively curved K?hler manifolds with non-maximal volume growth were discovered.It is likely that non-maximal volume growth is typical for complete K?hler manifolds with positive bisectional curvature.

    For Conjecture 1.1,the non-maximal volume growth case has also been considered in the literatures(see[18,36]).In[36],W.K.To considered the compacti fication of complete manifolds with non-maximal volume growth,motivated by the work of Mok[27],Mok-Zhong[30].He assumed the finiteness of the first Chern number and the condition of a mixture of the curvature decay and volume growth,more precisely:

    Theorem 3.1(To[36]) Let X be an n-dimensional noncompact complete K?hler manifold of positive Ricci curvature and of finite topological type.Suppose for some base point x0∈X that there exist positive constants k1,k2,k3and a positive real number p such that for a>0

    for all unit tangent vectors v,w ∈ T′(X)and x ∈ X.Then X is biholomorphic to a quasiprojective variety.Moreover,if p≥2,the theorem is valid without assuming condition(iii).

    Corollary 3.2(To[36]) Let X be a two-dimensional noncompact complete K?hler manifold of positive sectional curvature.Suppose X satis fies conditions(i),(ii),and(iii)of the above theorem.Then X is biholomorphic to C2.Moreover,if p>2,the corollary is valid without assuming condition(iii)of the Theorem 3.2.

    In[18],we proved that when sectional curvature is positive and bounded,the finiteness of the Chern numberis sufficient to ensure that the manifold is quasi-projective.

    Theorem 3.3(Chen-Zhu[18]) Let Mnbe a complete noncompact K?hler manifold with bounded and positive sectional curvature,and

    Then Mnis biholomorphic to a quasi-projective variety.In the case of complex dimension n=2,M2is biholomorphic to C2.

    4 Finite Chern Numbers

    Note that in K?hler geometry,positive sectional curvature is stronger than positive bisectional curvature.

    More precisely,we will prove the following:

    Theorem 4.1Let Mnbe a complete K?hler manifold with bounded sectional curvature and positive Ricci curvature.Suppose Mnadmits a Hermitian holomorphic line bundle L such that the curvature C1(L)of L is positive and bounded and satis fies

    Combining Theorems 3.3 and 4.1,we get the following:

    Corollary 4.2Let Mnbe a complete noncompact K?hler manifold with bounded and positive sectional curvature.Suppose Mnadmits a Hermitian holomorphic line bundle L such that the curvature C1(L)of L is positive and bounded and satis fies

    Then Mnis biholomorphic to a quasi-projective variety.In the case of complex dimension n=2,M2is biholomorphic to C2.

    Several remarks are in order.

    Remark 4.3Let Mnbe a complete K?hler manifold with bounded sectional curvature and positive Ricci curvature.Suppose Mnadmits a strictly pluri-subharmonic function ? such thatis bounded and

    This can be obtained by taking L to be the trivial line bundle M×C equipped with the Hermitian metric e??.

    Remark 4.4Let Mnbe a complete K?hler manifold with bounded positive bisectional curvature.Suppose Mnhas minimal volume growth in the sense of Theorem 1.4,i.e.,there exists x0∈Mnand C>0 such that

    for all a>0,where n is the complex dimension of the manifold.Then

    This can be obtained in the following way.It is well-known the Buseman function on this manifold is a pluri-subharmonic function with Lipschitz constant 1.Making use of the heat equation deformation of the Buseman function,we get a smooth strictly pluri-subharmonic function ψ with bounded gradient.The boundedness ofis ensured by the Bernstein estimate.is derived from the minimal volume growth condition(see[17]).

    5 Proof of Theorem 4.1

    Let M be a complete K?hler manifold,L a Hermitian holomorphic line bundle with positive curvaturelocal holomorphic coordinates around x0,z1(x0)= ···=zn(x0)=0;e be a local holomorphic section(nowhere vanishing on1 be a smooth cuto fffunction onSince C1(L)>0,we may choose sufficiently large positive integer p0such that

    The integrability forces uito vanish at x0at least to the 2nd order,i.e.,ifnontrivial holomorphic section of Lp0?K.We summarize the results in the following proposition:

    Proposition 5.1Let M be a complex n-dimensional complete K?hler manifold,L a Hermitian holomorphic line bundle with positive curvature C1(L)>0 on M.Then for any x0∈M,there exists positive integer p0and n nontrivial holomorphic sections siof Lp0?K such that

    Let M and the line bundle L be assumed as in Theorem 4.1.Fix x0∈M.Denote by Γ(Lp0?K)the space of L2? integrable holomorphic sections of Lp0?K.For s∈ Γ(Lp0?K),direct computations lead to

    where trg(C1(Lp0?K))=p0trg(C1(L))?R is bounded by our assumption.

    Multiplying both sides of(5.6)by a cut-o fffunction,integrating by parts,and making use of Cauchy-Schwarz inequality,we have

    Applying mean value inequality to(5.6),we have

    where we used the boundedness of trg(C1(Lp0?K)).By volume comparison theorem,we have vol(B(x,1))≥ (1+d(x,x0)2n)?1vol(B(x0,1)),hence

    where C may depend on s and x0.

    For applications in sequel,we need to fix an auxiliary function ψ on Mnwhich may be used to construct cut-o fffunctions.ψ satis fies

    where C is some constant depending only on the curvature bound.The easiest way to construct ψ is smoothing the distance function by convolutions in a suitable ball(of tangent space)of uniform size.

    Proposition 5.2For anyhave

    Theorem 4.1 is a corollary of Proposition 5.2.

    Proof of Theorem 4.1Take n nontrival sections s1,s2,···,sn∈ Γ(L?p0? K),(this is possible by Proposition(1.6),and let ε1,ε2,···,εk→ 0,the limitinf of the left hand side of(5.13)is not less thanRMnRicnby(5.12).Hence

    and the Theorem 4.1 is proved.

    So we only need to show Proposition 5.2.The method is a modi fication of the standard Bezout estimate(see[18,27,36]).First of all,we need a lemma:

    Lemma 5.3For anywe have

    The first term in the right hand side of(5.16)is just i)k?1.Integrate by parts the second term and use Cauchy-Schwarz,it can be controlled from above by

    where we have used(5.10).The first and second terms in(5.17)are controlled by ii)k?1.By(5.10)(5.9)and induction assumption i)k?1,the third term in(5.17)can be controlled from above by

    Taking a sequence of regular values a → ∞ of ψ,we find the third term of(5.17)converges to zero,and we have estimated i)kby i)k?1and ii)k?1.

    To derive ii)k,we consider

    by integration by parts and Cauchy-Schwarz.Combining(5.19)and(5.20),we get

    Taking a sequence of a→∞,we have estimated ii)kin terms of i)k,i.e.,

    The proof of the lemma is completed.

    Now we are ready to prove Proposition 5.2.

    Proof of Proposition 5.2The case k=0 is trivial.When k=1,for any big regular value a of ψ,we have

    猜你喜歡
    朱熹
    朱熹《春日》
    從習總書記考察朱熹園說起
    中華詩詞(2021年5期)2021-12-31 08:27:00
    春日
    漢字漢語研究(2019年2期)2019-08-27 00:48:02
    武夷山
    EnglishReadingTeachingBasedonSchemaTheory
    博白·客家·朱熹
    文史春秋(2016年1期)2016-12-01 05:41:53
    論朱熹詩歌的沖雅之風
    論朱熹對孟子思想的工具化注解
    西南學林(2016年2期)2016-11-08 12:16:34
    “朱子深衣”與朱熹
    海峽姐妹(2016年4期)2016-02-27 15:18:14
    日韩欧美免费精品| 999久久久精品免费观看国产| 美女cb高潮喷水在线观看| 99热只有精品国产| 黄色视频,在线免费观看| 3wmmmm亚洲av在线观看| 国产成人啪精品午夜网站| 国产精品伦人一区二区| 亚洲无线观看免费| 成人特级黄色片久久久久久久| 精品久久久久久,| 免费看a级黄色片| 午夜福利在线观看免费完整高清在 | 亚洲,欧美精品.| 午夜福利免费观看在线| 亚洲aⅴ乱码一区二区在线播放| 欧美成人性av电影在线观看| 18禁在线播放成人免费| 精品久久久久久久久亚洲 | 日本黄色视频三级网站网址| 又粗又爽又猛毛片免费看| www.色视频.com| 久久久精品欧美日韩精品| 天天躁日日操中文字幕| 欧美成狂野欧美在线观看| 色视频www国产| 国产在视频线在精品| 国产精品亚洲美女久久久| 动漫黄色视频在线观看| 999久久久精品免费观看国产| 此物有八面人人有两片| 男人舔奶头视频| 最新中文字幕久久久久| 国产三级黄色录像| 亚洲精华国产精华精| 国产中年淑女户外野战色| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合久久99| 真实男女啪啪啪动态图| 国产精品99久久久久久久久| 国产极品精品免费视频能看的| 国产一区二区在线观看日韩| 亚州av有码| 亚洲最大成人av| 嫩草影院入口| 亚洲黑人精品在线| 成人鲁丝片一二三区免费| 欧美最黄视频在线播放免费| 在线天堂最新版资源| 成人高潮视频无遮挡免费网站| 每晚都被弄得嗷嗷叫到高潮| 我的女老师完整版在线观看| 国内毛片毛片毛片毛片毛片| 俺也久久电影网| 极品教师在线视频| 国产伦精品一区二区三区四那| 在线观看66精品国产| 五月伊人婷婷丁香| 国产一区二区激情短视频| 99久久无色码亚洲精品果冻| x7x7x7水蜜桃| 蜜桃亚洲精品一区二区三区| 日本三级黄在线观看| 亚洲,欧美,日韩| 97碰自拍视频| 热99在线观看视频| 丰满人妻一区二区三区视频av| 一二三四社区在线视频社区8| 美女大奶头视频| 91麻豆精品激情在线观看国产| 国产三级黄色录像| 日本一二三区视频观看| 99热这里只有是精品在线观看 | 亚洲精品亚洲一区二区| 成人三级黄色视频| 亚洲国产欧洲综合997久久,| 男女视频在线观看网站免费| 欧美黄色淫秽网站| 久久国产精品人妻蜜桃| 小蜜桃在线观看免费完整版高清| 中文亚洲av片在线观看爽| 国产精品久久久久久亚洲av鲁大| av天堂在线播放| 丰满人妻一区二区三区视频av| 男女视频在线观看网站免费| 成年免费大片在线观看| 观看免费一级毛片| 婷婷亚洲欧美| 精品久久久久久,| 久久久久久久午夜电影| 性色av乱码一区二区三区2| 两人在一起打扑克的视频| 高潮久久久久久久久久久不卡| 少妇高潮的动态图| 国产精品综合久久久久久久免费| 亚洲av成人不卡在线观看播放网| 九九久久精品国产亚洲av麻豆| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 欧美+日韩+精品| 国内精品美女久久久久久| 91午夜精品亚洲一区二区三区 | 久久精品人妻少妇| 一区福利在线观看| 18禁在线播放成人免费| 麻豆国产av国片精品| 校园春色视频在线观看| av专区在线播放| av天堂中文字幕网| 男人舔奶头视频| 久久中文看片网| 欧美性猛交黑人性爽| 女人十人毛片免费观看3o分钟| 久久性视频一级片| 国产真实乱freesex| 夜夜躁狠狠躁天天躁| 欧美激情国产日韩精品一区| 精品一区二区三区人妻视频| 免费av毛片视频| 变态另类丝袜制服| 黄色视频,在线免费观看| 69人妻影院| 午夜激情欧美在线| 免费在线观看日本一区| 变态另类成人亚洲欧美熟女| 久久国产乱子免费精品| av国产免费在线观看| 色综合亚洲欧美另类图片| 欧美黄色片欧美黄色片| 午夜老司机福利剧场| 极品教师在线视频| 欧美激情国产日韩精品一区| 欧美又色又爽又黄视频| 少妇的逼好多水| 亚洲精华国产精华精| 午夜精品在线福利| 狂野欧美白嫩少妇大欣赏| 日韩欧美国产在线观看| 亚洲成人免费电影在线观看| 99久久精品热视频| 黄色视频,在线免费观看| 青草久久国产| 老司机福利观看| netflix在线观看网站| 国产精品1区2区在线观看.| 最新中文字幕久久久久| av在线天堂中文字幕| 午夜精品在线福利| 国产成人欧美在线观看| 99热这里只有是精品50| 国产精品一区二区三区四区免费观看 | 国产真实伦视频高清在线观看 | 国产黄a三级三级三级人| 午夜精品在线福利| 怎么达到女性高潮| 波野结衣二区三区在线| 亚洲国产精品合色在线| 精品一区二区三区视频在线观看免费| av欧美777| 热99在线观看视频| 亚洲18禁久久av| 国产国拍精品亚洲av在线观看| 长腿黑丝高跟| 国产伦人伦偷精品视频| 一级黄片播放器| 一本精品99久久精品77| 国产精品亚洲美女久久久| 自拍偷自拍亚洲精品老妇| 深爱激情五月婷婷| 中文字幕精品亚洲无线码一区| 成人美女网站在线观看视频| 国产精品乱码一区二三区的特点| 2021天堂中文幕一二区在线观| 国产一区二区三区在线臀色熟女| 国产视频内射| 赤兔流量卡办理| 人妻夜夜爽99麻豆av| 精品一区二区三区人妻视频| 国产精品久久久久久精品电影| 日韩欧美免费精品| aaaaa片日本免费| 中文字幕av在线有码专区| 国产亚洲精品久久久久久毛片| 男人舔女人下体高潮全视频| 国产精品自产拍在线观看55亚洲| 午夜精品在线福利| 精品久久久久久成人av| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 俄罗斯特黄特色一大片| 日本撒尿小便嘘嘘汇集6| 亚洲,欧美,日韩| 嫩草影视91久久| 综合色av麻豆| 一级黄片播放器| 国产精品亚洲美女久久久| 国产精品影院久久| 久久人人爽人人爽人人片va | 亚洲avbb在线观看| 国产探花在线观看一区二区| 精品福利观看| avwww免费| 韩国av一区二区三区四区| 久久久国产成人免费| 免费一级毛片在线播放高清视频| 国产一区二区三区视频了| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 成人美女网站在线观看视频| 国产高潮美女av| 久久精品影院6| 男女视频在线观看网站免费| 男人狂女人下面高潮的视频| a级一级毛片免费在线观看| 99久久久亚洲精品蜜臀av| 久久中文看片网| 日韩高清综合在线| 免费观看精品视频网站| av天堂在线播放| 女人十人毛片免费观看3o分钟| 极品教师在线视频| 白带黄色成豆腐渣| 99久久成人亚洲精品观看| 99久久成人亚洲精品观看| 91狼人影院| 国内揄拍国产精品人妻在线| 夜夜爽天天搞| www.熟女人妻精品国产| 黄色日韩在线| 热99在线观看视频| 91久久精品国产一区二区成人| 99热这里只有精品一区| 人妻制服诱惑在线中文字幕| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| 亚洲成a人片在线一区二区| 国产精品99久久久久久久久| 一a级毛片在线观看| 中亚洲国语对白在线视频| 直男gayav资源| 久久香蕉精品热| 美女黄网站色视频| 国产精品嫩草影院av在线观看 | www.www免费av| 男女那种视频在线观看| 免费在线观看影片大全网站| 成年女人永久免费观看视频| 18禁黄网站禁片午夜丰满| 欧美高清性xxxxhd video| 亚洲国产色片| 又黄又爽又刺激的免费视频.| 国产黄片美女视频| 日本五十路高清| 日韩欧美三级三区| 美女cb高潮喷水在线观看| 国产aⅴ精品一区二区三区波| 国产精品98久久久久久宅男小说| 精品一区二区免费观看| 精品久久久久久久末码| 国产综合懂色| 我的老师免费观看完整版| 床上黄色一级片| 少妇人妻精品综合一区二区 | 性欧美人与动物交配| 亚洲欧美日韩东京热| 久久精品久久久久久噜噜老黄 | 成年女人毛片免费观看观看9| 国产精品一区二区性色av| 免费搜索国产男女视频| 亚洲无线观看免费| 亚洲内射少妇av| 高清在线国产一区| 亚洲自拍偷在线| 久99久视频精品免费| 麻豆成人av在线观看| 免费看美女性在线毛片视频| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 亚洲精品乱码久久久v下载方式| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 757午夜福利合集在线观看| 九九热线精品视视频播放| 日本一本二区三区精品| 国产主播在线观看一区二区| 成熟少妇高潮喷水视频| 色在线成人网| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 亚洲欧美清纯卡通| 熟女电影av网| 国产精品久久视频播放| 精品福利观看| 夜夜爽天天搞| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 婷婷亚洲欧美| 亚洲国产精品成人综合色| 欧美高清成人免费视频www| 国产欧美日韩精品亚洲av| 一本精品99久久精品77| 欧美午夜高清在线| 99久久成人亚洲精品观看| 18禁黄网站禁片免费观看直播| 少妇人妻精品综合一区二区 | 亚洲五月婷婷丁香| 女同久久另类99精品国产91| 日韩欧美精品免费久久 | 亚洲精品久久国产高清桃花| .国产精品久久| 一区二区三区四区激情视频 | 在线观看午夜福利视频| 黄色一级大片看看| 两个人视频免费观看高清| 亚洲无线观看免费| 免费看美女性在线毛片视频| 国产伦在线观看视频一区| 色综合站精品国产| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 91麻豆精品激情在线观看国产| 亚洲男人的天堂狠狠| 亚洲欧美日韩无卡精品| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品sss在线观看| 美女 人体艺术 gogo| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 精品国产亚洲在线| 久久久色成人| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 国产视频一区二区在线看| 中文字幕熟女人妻在线| 很黄的视频免费| 性插视频无遮挡在线免费观看| 黄色丝袜av网址大全| 欧美三级亚洲精品| 女生性感内裤真人,穿戴方法视频| 极品教师在线视频| 特级一级黄色大片| 色5月婷婷丁香| 亚洲美女视频黄频| 亚洲成a人片在线一区二区| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 超碰av人人做人人爽久久| 国产大屁股一区二区在线视频| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| 窝窝影院91人妻| 亚洲片人在线观看| 在线免费观看不下载黄p国产 | 久久久久久久久久成人| 88av欧美| 中出人妻视频一区二区| 国内少妇人妻偷人精品xxx网站| 欧美成人a在线观看| 国产av麻豆久久久久久久| 中文字幕人成人乱码亚洲影| 午夜精品久久久久久毛片777| 白带黄色成豆腐渣| 色综合站精品国产| 欧美国产日韩亚洲一区| 97碰自拍视频| 我的女老师完整版在线观看| 18禁黄网站禁片午夜丰满| 国语自产精品视频在线第100页| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 国产高潮美女av| 亚洲五月天丁香| 色5月婷婷丁香| 亚洲熟妇中文字幕五十中出| 成熟少妇高潮喷水视频| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 亚洲美女搞黄在线观看 | 婷婷丁香在线五月| 两个人的视频大全免费| 久久久久久久精品吃奶| 午夜视频国产福利| 国产欧美日韩一区二区三| 在线看三级毛片| 亚洲第一区二区三区不卡| 欧美zozozo另类| 久久久久久久久中文| 久久中文看片网| 性欧美人与动物交配| 国产精品综合久久久久久久免费| 老鸭窝网址在线观看| 色5月婷婷丁香| 波多野结衣高清作品| 亚洲国产精品久久男人天堂| 亚洲精品一区av在线观看| 国产淫片久久久久久久久 | 婷婷六月久久综合丁香| 一进一出抽搐动态| 免费av不卡在线播放| 一个人免费在线观看电影| av专区在线播放| 国产蜜桃级精品一区二区三区| 最新在线观看一区二区三区| 国产精品一区二区性色av| 欧美黑人巨大hd| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 精品日产1卡2卡| 男人舔奶头视频| 男人和女人高潮做爰伦理| 国产探花极品一区二区| 国产精品日韩av在线免费观看| 久久国产精品人妻蜜桃| 欧美bdsm另类| 国内精品久久久久久久电影| 国产极品精品免费视频能看的| 性插视频无遮挡在线免费观看| netflix在线观看网站| 天堂动漫精品| 中文字幕免费在线视频6| 国内少妇人妻偷人精品xxx网站| 日韩高清综合在线| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| 久久久久久久亚洲中文字幕 | 国产精品久久电影中文字幕| 亚洲美女黄片视频| 熟女人妻精品中文字幕| 757午夜福利合集在线观看| 亚洲片人在线观看| 国内精品久久久久久久电影| 日本黄大片高清| 欧美激情在线99| 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 国产精品久久视频播放| 99国产精品一区二区三区| 丰满人妻一区二区三区视频av| 麻豆国产av国片精品| 国产精品女同一区二区软件 | 成人一区二区视频在线观看| 久久精品国产清高在天天线| 亚洲精品久久国产高清桃花| 99热6这里只有精品| 看十八女毛片水多多多| 噜噜噜噜噜久久久久久91| 脱女人内裤的视频| 欧美bdsm另类| 欧美丝袜亚洲另类 | 黄色日韩在线| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 草草在线视频免费看| 如何舔出高潮| 国产午夜精品久久久久久一区二区三区 | 免费在线观看成人毛片| 一区二区三区高清视频在线| a在线观看视频网站| 伦理电影大哥的女人| 国产精品爽爽va在线观看网站| av在线老鸭窝| 黄色女人牲交| 国产成人啪精品午夜网站| 深夜a级毛片| 午夜激情欧美在线| 国产免费一级a男人的天堂| 97热精品久久久久久| 亚洲色图av天堂| 69人妻影院| 欧美激情国产日韩精品一区| 舔av片在线| 小蜜桃在线观看免费完整版高清| 亚洲av电影在线进入| 小蜜桃在线观看免费完整版高清| 亚洲精品色激情综合| 乱码一卡2卡4卡精品| 国产主播在线观看一区二区| 久久久国产成人精品二区| 午夜免费成人在线视频| 一本一本综合久久| 小说图片视频综合网站| 老鸭窝网址在线观看| 在线国产一区二区在线| 88av欧美| 午夜久久久久精精品| 黄色女人牲交| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 麻豆成人午夜福利视频| 免费无遮挡裸体视频| а√天堂www在线а√下载| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 久久人妻av系列| 国产精品久久久久久精品电影| 亚洲av电影不卡..在线观看| 91av网一区二区| 欧美3d第一页| 女人十人毛片免费观看3o分钟| 国产精品不卡视频一区二区 | 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 乱码一卡2卡4卡精品| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 人人妻人人澡欧美一区二区| 国内精品久久久久久久电影| 日韩欧美国产一区二区入口| 国产成人av教育| 久久久久亚洲av毛片大全| 国产麻豆成人av免费视频| 国产亚洲精品久久久久久毛片| 在线观看美女被高潮喷水网站 | 神马国产精品三级电影在线观看| 国产成人aa在线观看| 亚洲 国产 在线| 美女 人体艺术 gogo| 身体一侧抽搐| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 1024手机看黄色片| 日韩欧美 国产精品| 久久久国产成人免费| 久久久久久九九精品二区国产| 日韩欧美精品免费久久 | 男女之事视频高清在线观看| 国产精品亚洲美女久久久| 观看美女的网站| 免费看光身美女| 女人十人毛片免费观看3o分钟| 成年版毛片免费区| 18美女黄网站色大片免费观看| 亚洲专区国产一区二区| 亚洲欧美日韩卡通动漫| 亚洲最大成人中文| 久久人人爽人人爽人人片va | 91字幕亚洲| 一进一出抽搐动态| 男人舔奶头视频| 日本黄色片子视频| 亚洲国产精品sss在线观看| 一级av片app| 亚洲精品成人久久久久久| 精品日产1卡2卡| 搡女人真爽免费视频火全软件 | 成人毛片a级毛片在线播放| 一级作爱视频免费观看| 悠悠久久av| 日韩 亚洲 欧美在线| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 91午夜精品亚洲一区二区三区 | 桃色一区二区三区在线观看| 久久久久久九九精品二区国产| 无人区码免费观看不卡| 一级黄色大片毛片| 久久6这里有精品| 99国产精品一区二区三区| 欧美在线一区亚洲| 中文亚洲av片在线观看爽| 午夜精品久久久久久毛片777| 91字幕亚洲| 欧美丝袜亚洲另类 | 少妇熟女aⅴ在线视频| 久久久久久大精品| 亚洲最大成人av| 欧美乱色亚洲激情| 69人妻影院| 亚洲av二区三区四区| 最近最新免费中文字幕在线| 国产亚洲精品久久久久久毛片| 日韩亚洲欧美综合| 男人舔奶头视频| 亚洲精品456在线播放app | 国产欧美日韩一区二区三| 欧美一级a爱片免费观看看| 国产精品日韩av在线免费观看| 国产熟女xx| 两个人视频免费观看高清| 成年版毛片免费区| 午夜老司机福利剧场| 国产精品久久久久久久电影| 精品一区二区三区视频在线| 男人舔奶头视频| 如何舔出高潮| 久久久久久久久大av| 午夜精品一区二区三区免费看| 麻豆国产97在线/欧美| 国产亚洲精品av在线| 欧美激情在线99| 亚洲中文字幕日韩| 精品人妻熟女av久视频| 日韩欧美精品v在线| 色尼玛亚洲综合影院| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 欧美一区二区亚洲| .国产精品久久| 亚洲人成电影免费在线| 久久人人精品亚洲av| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 亚洲成av人片在线播放无| 99国产精品一区二区蜜桃av| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| eeuss影院久久| 久久久久久久亚洲中文字幕 | netflix在线观看网站| 免费搜索国产男女视频| 欧美日韩黄片免|