• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    YAU’S UNIFORMIZATION CONJECTURE FOR MANIFOLDS WITH NON-MAXIMAL VOLUME GROWTH?

    2018-11-22 09:23:38BinglongCHEN陳兵龍XipingZHU朱熹平
    關(guān)鍵詞:朱熹

    Binglong CHEN(陳兵龍)Xiping ZHU(朱熹平)

    Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,China

    E-mail:mcscbl@mail.sysu.edu.cn;stszxp@mail.sysu.edu.cn

    Abstract The well-known Yau’s uniformization conjecture states that any complete noncompact K?hler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space.The conjecture for the case of maximal volume growth has been recently con firmed by G.Liu in[23].In the first part,we will give a survey on the progress.In the second part,we will consider Yau’s conjecture for manifolds with non-maximal volume growth.We will show that the finiteness of the first Chern number is an essential condition to solve Yau’s conjecture by using algebraic embedding method.Moreover,we prove that,under bounded curvature conditions,is automatically finite provided that there exists a positive line bundle with finite Chern number.In particular,we obtain a partial answer to Yau’s uniformization conjecture on K?hler manifolds with minimal volume growth.

    Key words uniformization conjecture;non-maximal volume growth;Chern number

    1 Introduction

    In K?hler geometry,there is a well-known uniformization conjecture due to Yau[38]:

    Conjecture 1.1Let(Mn,g)be a complete noncompact K?hler manifold with positive bisectional curvature of complex dimension n.Then Mnis biholomorphic to Cn.

    This conjecture was motivated,on the one hand,by the classical uniformization theorem for Riemann surfaces,and by a famous result in Riemannian geometry due to Gromoll-Meyer which says that a complete noncompact Riemannian manifold with positive sectional curvature is di ff eomorphic to the Euclidean space.This conjecture has aroused a great interest in mathematics since it was introduced,it stimulated a lot of researches during the past decades(see[4,5,14,17,23,26,29,34]or references therein).Although there already have been many accomplishments,even breakthroughs for maximal volume growth case,it is an embarrassing fact that presently we even do not know if a complete noncompact K?hler manifold with positive bisectional curvature is Stein or di ff eomorphic to the Euclidean space.

    1.1 Main techniques

    In principle,we have two approaches to solve Conjecture 1.1:

    a)construct a complete flat K?hler metric on Mn,

    b)directly construct a biholomorphic map from Mnto Cn.

    For a),one may use geometric flows to deform the initial metric(e.g.Ricci flow),roughly speaking,we hope that the limit will provide a desired flat K?hler metric on Mn.Ricci flow is the following deformation equation on metrics:

    For b),we need to construct holomorphic functions or holomorphic sections of some line bundles.A conservative way is first to embed Mnto CNor CPNas an affine or quasi-projective variety for some large N,this process is called compacti fication.In views of complex analysis,the key point for this process is to find a pluri-subharmonic functionthat the L2estimate for?equation of H?rmander[19]and Andreotti-Vesentini[1]could be applied.

    The construction of the holomorphic map in b)depends on the geometry of the background manifold,in practical applications,one can combine a)and b),i.e.,deform the background geometry,and accomplish b)by using the geometric informations from a family of deformed metrics(see[4,14]).

    Geometric construction from triangle comparison theorem usually only gives a Lipschitz continuous auxiliary function satisfying certain convexity conditions.To obtain a smooth one,one can use heat equation to deform it:

    The point is that the Levi-form(on K?hler manifold)satis fies a parabolic Lichnerowicz equation:

    Under certain growth condition of the solution u,for instance,orif the bisectional curvature is nonnegative,i.e.,one can show thatis preserved by the heat equation(if it holds initially),moreover it becomes strictly positive for t>0,i.e.,unless the universal cover of the manifold splits isometrically as a nontrivial product M=N×L,see[32].Surely,the splitting can not happen if we assume the bisectional curvature or Ricci curvature is strictly positive.

    So we have two kinds of deformations available,(1.1)and(1.2),one is for metics,the other is for functions.

    In[12],Cheeger-Gromoll proved that a complete Riemannian manifold with nonnegative sectional curvature is di ff eomorphic to the normal bundle of a compact totally geodesic submanifold.The K?hler analogue was obtained in[13](Page 60-65):

    Theorem 1.2(Cao-Chen-Zhu[13])Let M be a complete noncompact K?hler manifold with bounded and nonnegative holomorphic bisectional curvature.Then one of the following holds:

    (i)M admits a K?hler metric with bounded and positive bisectional curvature;

    where k,l1,l2are nonnegative integers,Ckis the complex Euclidean space with flat metric,Mi,1 ≤ i≤ l1,are complete(compact or noncompact)K?hler manifolds with bounded and nonnegative bisectional curvature admitting a K?hler metric with bounded and positive bisectional curvature,Nj,1≤j≤l2,are irreducible compact Hermitian symmetric spaces of rank≥2 with the canonical metrics.

    In the above theorem,the manifold(passing to the universal cover in case ii)is a metric product,not only a fiber bundle.The argument is a delicate maximum principle type argument,which was used by Gu[21]to give an alternative and transcendental proof of generalized Frankel conjecture due to Mok[28],see[13](Page 60-65)for details.This theorem reduces the study of the case of nonnegative bisectional curvature to the strictly positive one,if we assume the curvature is bounded.

    Let us begin with a theorem of Mok-Siu-Yau[29]in 1981:

    Theorem 1.3(Mok-Siu-Yau[29])Let M be a complete non-compact K?hler manifold of non-negative holomorphic bisectional curvature of complex dimension n≥2.Suppose there exist positive constants C1,C2such that for a fixed base point x0and some ?>0,

    (i)Vol(B(x0,r))≥C1r2n,0≤r<+∞,

    (ii)R(x)≤ C2/d(x0,x)2+?on M,

    where Vol(B(x0,r))denotes the volume of the geodesic ball B(x0,r)centered at x0with radius r,R(x)denotes the scalar curvature and d(x0,x)denotes the geodesic distance between x0and x.Then,M is isometrically biholomorphic to Cnwith the flat metric.

    The seminal idea to find a pluri-subharmonic function in Mok-Siu-Yau[29]is to solve the Poincare-Lelong equation:

    The conditions(i)and(ii)guarantee a bounded solution u to the Poincare-Lelong equation(1.4).This bounded pluri-subharmonic function u must be constant by the virtue of Yau’s Liouville theorem,whence the manifold is actually flat.This result is called a gap theorem,which means that there is a gap on the order of the curvature decay on a nonnegatively curved manifold,more precisely,it is actually flat if the curvature decays faster than quadratic.

    Except the curvature sign,the conditions in Mok-Siu-Yau’s theorem consist of two things:i)volume growth,ii)curvature decay.All the subsequent works trying to solve the uniformization conjecture assumed conditions of the above two types.We have to mention that,from the recent result of Liu[23],Yau’s conjecture is true if the manifold has nonnegative bisectional curvature and maximal volume growth.In previous works,under the maximal volume growth and bounded curvature conditions,Yau’s conjecture has been con firmed in Chen-Tang-Zhu[14](for complex dimension 2)and Chau-Tam[4](for all dimensions).However,not much is known when the volume growth is not maximal.In some sense,the maximal volume growth more or less forces the geometry of the manifold at in finity to approximate to that of the Euclidean space.In the non-maximal volume growth case,the geometry at in finity is complicated.

    1.2 Geometry of bisectional curvature

    In[17],we proved the following theorems on the volume growth and curvature decay of any complete K?hler manifold with positive bisectional curvature:

    Theorem 1.4(Chen-Zhu[17])Let Mnbe a complex n-dimensional complete noncompact K?hler manifold with positive holomorphic bisectional curvature.Then the volume growth of M satis fies

    for all 1≤r<∞,where c is some positive constant depending on x0and the dimension n.

    Theorem 1.5(Chen-Zhu[17]) Let Mnbe a complete noncompact K?hler manifold with positive holomorphic bisectional curvature.Then for any x0∈Mn,there exists a positive constant C such that

    for all 0≤r<∞,where R(x)is the scalar curvature of Mn.

    Roughly,it says that the volume of a geodesic ball of radius r grows at least as fast as rn,where 2n is the real dimension of the manifold,the average of the curvature decays at least linearly.It is surprising that these two results are sharp,in the sense that we do have a lot of examples satisfying these minimal volume growth and curvature decay conditions,e.g.Klembeck’s examples,Cao’s static K?hler-Ricci solitons with positive bisectional curvature,see[3].

    Let P ∈ Mn,γ :[0,∞)be geodesic ray with γ(0)=P,and be the Buseman function associated to γ.From comparison theorem,bγis a pluri-subharmonic function.Moreover,by a standard convolution technique or heat equation deformation on bγ(1.2),we obtain a smooth strictly pluri-subharmonic function u of linear growth:

    Theorem 1.4 follows from calculating the Monge-Ampere measure

    and integration by parts([17]).The proof of Theorem 1.5 is a little involved.It based on the following L2-estimates ofoperator(see[1,19]):

    Theorem 1.6(Andreotti-Vesentini[1],H?mander[19]) On a complete K?hler manifold(M,ω),suppose we have a function ?,a Hermitian holomorphic line bundlewith curvature(1,1)-form C1()such that

    where c(x)is a positive function on M,ω the K?hler form;suppose we also have a-closed-valued(0,1)form f on M such that

    Then the equation

    admits a smooth solution u(section of)such that

    Take L=K be the canonical line bundle,then C(L)=?Ric.On some coordinate system|z|<1 around a point P,choose ?=Cu+log|z|2n+2be a strictly psh weight function,then(1.6)holds.Choosefor some smooth compact supported section of L which is holomorphic near P and non-vanishing at P.Then the above L2estimate gives a nontrivial holomorphic section E=S?ξ of L satisfying

    On the other hand,the Poincare-Lelong equation:

    holds in the sense of distributions.The integral average of R over geodesic balls can be derived from the growth of E(see[17]).

    Theorem 1.5 is crucial in proving the maximal volume growth condition is preserved during the Ricci flow(see[4,14]).It yields that the volume growth ratio of the manifold at in finity remains invariant.We know that this ratio is monotonically decreasing as the radius goes to in finity,which follows from the volume comparison theorem since Ric≥0.

    2 Maximal Volume Growth

    The first breakthrough was made by Mok[26].

    Theorem 2.1(Mok[26]) Let M be a complete non-compact K?hler manifold of complex dimension n with positive holomorphic bisectional curvature.Suppose there exist positive constants C1,C2such that for a fixed base point x0,

    then M is biholomorphic to an affine algebraic variety.Moreover,if in addition the complex dimension n=2 and(iii)the Riemannian sectional curvature of M is positive,then M is biholomorphic to C2.

    We recall brie fly the scheme of Mok’s proof.We consider the algebra P(X)of holomorphic functions of polynomial growth and its quotient field R(X)of“rational functions”.We use the solution of(1.4)and L2-estimates(Theorem 1.6)to prove there are many functions in P(X).Then,we prove Siegel’s theorem for R(X),i.e.,R(X)=C(fI···fn;g/h)is a finite extension field of a purely transcendental extension of C of degree n.We do this by establishing a multiplicity estimate for P(X).Then,we use Skoda’s L2-estimates for the ideal problem to prove the “almost-surjectivity”of F=(f1···fn,g,h)of X into an affine algebraic variety.By establishing a uniform multiplicity estimate(i.e.,independent of base points)for P(X),we prove a finiteness theorem for desingularizing F.Finally we use the convexity of X with respect to P(X)to complete F to a proper embedding.

    In[34],Shi obtained the following

    Theorem 2.2(Shi[34]) Let M be a complete non-compact K?hler manifold of complex dimension n with bounded and positive holomorphic bisectional curvature.Suppose there exist positive constants C1,C2such that for a fixed base point x0,

    then M is biholomorphic to a pseudo-convex domain in Cn.

    In[34],Shi initiated the study of Ricci flow on Yau’s uniformization conjecture.He proved that,under the conditions(i)(ii)in his theorem,the K?hler condition,the positivity of bisectional curvature and the maximal volume growth are all preserved.Moreover,he showed that Ricci flow exists for all time t>0,and the curvature decays to zero as t→∞in the following way(Theorem 8.7 in[34]):

    Using the estimate(2.3),Shi proved that there is a smooth positive function u(t)∈C∞[0,∞),such thatwill converge in C∞? topology to a flat K?hler metric.Because it is not known whether the limit is complete,Shi could only conclude that the manifold is a pseudo-convex domain(see also[16]).

    In complex dimension 2,in[14],an affirmative answer to Yau’s uniformization conjecture under the maximal volume condition was obtained:

    Theorem 2.3(Chen-Tang-Zhu[14]) Let M be a complete non-compact K?hler manifold of complex dimension 2 with bounded and positive holomorphic bisectional curvature.Suppose there exist a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to C2.

    Our proof of the theorem consists of three parts.In the first part,we showed that M is a Stein manifold homeomorphic to R4.Since the maximal volume growth condition is preserved(with same constant,Theorem 1.5),we proved that the curvature of the evolving metric decays linearly in time,via a blow up and blow down argument:

    This implies that the injectivity radius of the evolving metric is greater thanand any geodesic ball with radiusis pseudoconvex.From this,one can show that Mnis a Stein manifold homeomorphic to R4.

    In the second part,we considered the algebra P(M)of holomorphic functions of polynomial growth on M and we proved that its quotient field has transcendental degree 2 over C.For this,we first need to construct two algebraically independent holomorphic functions in the algebra P(M).Using the L2estimates in Theorem 1.6,it suffices to construct a strictly plurisubharmonic function of logarithmic growth on M.If the scalar curvature decays in space(at time t=0)at least quadratically as in Theorem 2.1,it was known that such a strictly plurisubharmonic function of logarithmic growth can be obtained by solving the Poincare-Lelong equation(1.4).But we do not assume the curvature decay condition.Here the novel idea is to transform the time decay estimate(2.5)of evolving metrics to the space decay at t=0,via apriori estimates for(nonlinear)heat equations.Roughly speaking,the time decay estimate(2.5)of evolving metrics implies that the curvature of the initial metric must decay quadratically in space in certain average sense:

    The apriori estimate is obtained from integrating the following equation in space and time:

    (2.6)turns out to be enough to solve the Poincare-Lelong equation(1.4)to find a strictly pluri-subharmonic function u of logarithmic growth,

    In the last part,we basically followed the approach of Mok[26]to establish a biholomorphic map from M onto a quasi-affine algebraic variety,by desingularizing certain holomorphic mapping F:M→Z from M to a quasi-affine algebraic variety Z.The essential point is to establish uniform estimates on the multiplicity and the number of irreducible components of the zero divisor of a holomorphic function of polynomial growth.Again,the time decay estimate 2.5 of the Ricci flow plays a crucial role in the arguments.Based on these estimates,we showed that the mapping F:M→Z is almost surjective in the sense that it can miss only a finite number of subvarieties in Z,and can be desingularized by adjoining a finite number of holomorphic functions of polynomial growth.This completes the proof that M is a quasi-affine algebraic variety.Finally,by combining with the fact that M is homeomorphic to R4,we concluded that M is indeed biholomorphic to C2by a classical theorem of Ramanujam on algebraic surfaces.

    In 2006,Chau-Tam[4]extended the above theorem to higher dimensions:

    Theorem 2.4(Chau-Tam[4]) Let M be a complete non-compact K?hler manifold of complex dimension n with bounded and nonnegative holomorphic bisectional curvature.Suppose there exists a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to Cn.

    A result due to Rosay-Rudin([33])and its generalization by Varolin([37])on attractive basins say the following:Let F be a biholomorphism from a complex manifold Nnto itself and let p∈Nnbe a fixed point,andbe the basin of attraction of p.Suppose ? contains an open neighborhood of p.Then ? is biholomorphic toThis result was used by Chau-Tam in[6]to prove that a gradient K?hler Ricci soliton is biholomorphic to Cnif it is either steady with positive Ricci curvature and the scalar curvature achieves its maximum at some point,or expanding with nonnegative Ricci curvature.The gradient K?hler Ricci soliton involves a family of biholomorphisms φtin its de finition,pick one of them(for t>0,so that it is shrinking)to be F in the result of Rosay-Rudin-Varolin([33]and[37]).For more general solutions of K?hler Ricci flow,one usually only have local biholomorphisms,instead of one particular global biholomorphism F.

    We give a sketch of the proof of Theorem 2.4 in[4].They used Ricci flow to deform the initial metric.As explained before,the K?hlerity,nonnegativity of bisectional curvature,maximal volume growth(same constant)are preserved by the Ricci flow as long as the curvature of the solution is bounded.The first crucial thing is to prove that the curvature decays linearly in time,i.e.,(2.5).If the curvature operator is nonnegative,in[17],we proved that(2.5)still holds for all dimensions n by using a blowing up and blowing down argument as in[14].In[31],Ni proved(2.5)holds when bisectional curvature is nonnegative.Letsatis fies a new equation for all t∈(?∞,∞).The estimate(2.5)implies that the curvature of?g(t)is uniformlly bounded independent of t.

    Combining with the maximal volume growth, fix a point P∈M,we have a uniform injectivity radius estimate for allat P.From standard L2-estimate,there is a fixed r>0 such that for each i∈ N,one can construct a holomorphic map Φi:B(r)→ M,where B(r)=is the ball of the radius r in the Euclidean space,such that Φiis a biholomorphic map onto its image Φi(B(r))which contains a geodesic ball of radiusaround P of the metric.Moreover,is close to the Euclidean metric.Fix a large N,let Fibe a family of biholomorphisms from B(r)onto its image which is inside B(r)such thatTo imitate the proof of Rosay-Rudin-Varolin’s result([33]and[37]),one should prove that asymptotically this family of Fibehaves close to a single map F.The authors observed that the eigenvalues of Ricci curvature ofis non-decreasing(it is bounded from above by the estimate),and for any sequence tk→ ∞,the solutionbehave close to a K?hler Ricci soliton.Cao’s Li-Yau-Hamilton inequality[2]and[3]plays a key role in the argument.Here,the idea is that the closeness of the solution with K?hler Ricci soliton is enough to imply the closeness of the family of Fito some single map F.For more details,we refer to[4]and the survey[5].

    In a preprint“On Yau’s uniformization conjecture” arXiv:1606.08958,Liu[23]claimed that he could remove the boundedness of the curvature assumption in Chau-Tam’s theorem[5]:

    Theorem 2.5(Liu[23]) Let M be a complete non-compact K?hler manifold of complex dimension n with nonnegative holomorphic bisectional curvature.Suppose there exists a positive constant C1such that for a fixed base point x0,

    then M is biholomorphic to Cn.

    Liu introduced some new ideas with three circles theorems and Cheeger-Colding theory,see[23–25].In[24],he proved that the ring of holomorphic functions of polynomial growth on a complete manifold with nonnegative bisectional curvature is finitely generated,and such a manifold is affine provided it has maximal volume growth,con firming another conjecture of Yau.

    On the other hand,in a recent paper Lee-Tam[22],Lee-Tam proved that on a complete noncompact K?ahler manifold with nonnegative bisectional curvature and maximal volume growth,the K?ahler-Ricci flow exists at least for a short time,and it preserves all these conditions,more importantly,the curvature becomes bounded for t>0.Combining with the previous result in Chau-Tam[4],this yields an alternative proof of Yau’s uniformization conjecture for the maximal volume growth case.

    3 Non-maximal Volume Growth

    As we have seen,there are important progress on Yau’s uniformization conjecture for manifolds with maximal volume growth.Nevertheless,many examples of positively curved K?hler manifolds with non-maximal volume growth were discovered.It is likely that non-maximal volume growth is typical for complete K?hler manifolds with positive bisectional curvature.

    For Conjecture 1.1,the non-maximal volume growth case has also been considered in the literatures(see[18,36]).In[36],W.K.To considered the compacti fication of complete manifolds with non-maximal volume growth,motivated by the work of Mok[27],Mok-Zhong[30].He assumed the finiteness of the first Chern number and the condition of a mixture of the curvature decay and volume growth,more precisely:

    Theorem 3.1(To[36]) Let X be an n-dimensional noncompact complete K?hler manifold of positive Ricci curvature and of finite topological type.Suppose for some base point x0∈X that there exist positive constants k1,k2,k3and a positive real number p such that for a>0

    for all unit tangent vectors v,w ∈ T′(X)and x ∈ X.Then X is biholomorphic to a quasiprojective variety.Moreover,if p≥2,the theorem is valid without assuming condition(iii).

    Corollary 3.2(To[36]) Let X be a two-dimensional noncompact complete K?hler manifold of positive sectional curvature.Suppose X satis fies conditions(i),(ii),and(iii)of the above theorem.Then X is biholomorphic to C2.Moreover,if p>2,the corollary is valid without assuming condition(iii)of the Theorem 3.2.

    In[18],we proved that when sectional curvature is positive and bounded,the finiteness of the Chern numberis sufficient to ensure that the manifold is quasi-projective.

    Theorem 3.3(Chen-Zhu[18]) Let Mnbe a complete noncompact K?hler manifold with bounded and positive sectional curvature,and

    Then Mnis biholomorphic to a quasi-projective variety.In the case of complex dimension n=2,M2is biholomorphic to C2.

    4 Finite Chern Numbers

    Note that in K?hler geometry,positive sectional curvature is stronger than positive bisectional curvature.

    More precisely,we will prove the following:

    Theorem 4.1Let Mnbe a complete K?hler manifold with bounded sectional curvature and positive Ricci curvature.Suppose Mnadmits a Hermitian holomorphic line bundle L such that the curvature C1(L)of L is positive and bounded and satis fies

    Combining Theorems 3.3 and 4.1,we get the following:

    Corollary 4.2Let Mnbe a complete noncompact K?hler manifold with bounded and positive sectional curvature.Suppose Mnadmits a Hermitian holomorphic line bundle L such that the curvature C1(L)of L is positive and bounded and satis fies

    Then Mnis biholomorphic to a quasi-projective variety.In the case of complex dimension n=2,M2is biholomorphic to C2.

    Several remarks are in order.

    Remark 4.3Let Mnbe a complete K?hler manifold with bounded sectional curvature and positive Ricci curvature.Suppose Mnadmits a strictly pluri-subharmonic function ? such thatis bounded and

    This can be obtained by taking L to be the trivial line bundle M×C equipped with the Hermitian metric e??.

    Remark 4.4Let Mnbe a complete K?hler manifold with bounded positive bisectional curvature.Suppose Mnhas minimal volume growth in the sense of Theorem 1.4,i.e.,there exists x0∈Mnand C>0 such that

    for all a>0,where n is the complex dimension of the manifold.Then

    This can be obtained in the following way.It is well-known the Buseman function on this manifold is a pluri-subharmonic function with Lipschitz constant 1.Making use of the heat equation deformation of the Buseman function,we get a smooth strictly pluri-subharmonic function ψ with bounded gradient.The boundedness ofis ensured by the Bernstein estimate.is derived from the minimal volume growth condition(see[17]).

    5 Proof of Theorem 4.1

    Let M be a complete K?hler manifold,L a Hermitian holomorphic line bundle with positive curvaturelocal holomorphic coordinates around x0,z1(x0)= ···=zn(x0)=0;e be a local holomorphic section(nowhere vanishing on1 be a smooth cuto fffunction onSince C1(L)>0,we may choose sufficiently large positive integer p0such that

    The integrability forces uito vanish at x0at least to the 2nd order,i.e.,ifnontrivial holomorphic section of Lp0?K.We summarize the results in the following proposition:

    Proposition 5.1Let M be a complex n-dimensional complete K?hler manifold,L a Hermitian holomorphic line bundle with positive curvature C1(L)>0 on M.Then for any x0∈M,there exists positive integer p0and n nontrivial holomorphic sections siof Lp0?K such that

    Let M and the line bundle L be assumed as in Theorem 4.1.Fix x0∈M.Denote by Γ(Lp0?K)the space of L2? integrable holomorphic sections of Lp0?K.For s∈ Γ(Lp0?K),direct computations lead to

    where trg(C1(Lp0?K))=p0trg(C1(L))?R is bounded by our assumption.

    Multiplying both sides of(5.6)by a cut-o fffunction,integrating by parts,and making use of Cauchy-Schwarz inequality,we have

    Applying mean value inequality to(5.6),we have

    where we used the boundedness of trg(C1(Lp0?K)).By volume comparison theorem,we have vol(B(x,1))≥ (1+d(x,x0)2n)?1vol(B(x0,1)),hence

    where C may depend on s and x0.

    For applications in sequel,we need to fix an auxiliary function ψ on Mnwhich may be used to construct cut-o fffunctions.ψ satis fies

    where C is some constant depending only on the curvature bound.The easiest way to construct ψ is smoothing the distance function by convolutions in a suitable ball(of tangent space)of uniform size.

    Proposition 5.2For anyhave

    Theorem 4.1 is a corollary of Proposition 5.2.

    Proof of Theorem 4.1Take n nontrival sections s1,s2,···,sn∈ Γ(L?p0? K),(this is possible by Proposition(1.6),and let ε1,ε2,···,εk→ 0,the limitinf of the left hand side of(5.13)is not less thanRMnRicnby(5.12).Hence

    and the Theorem 4.1 is proved.

    So we only need to show Proposition 5.2.The method is a modi fication of the standard Bezout estimate(see[18,27,36]).First of all,we need a lemma:

    Lemma 5.3For anywe have

    The first term in the right hand side of(5.16)is just i)k?1.Integrate by parts the second term and use Cauchy-Schwarz,it can be controlled from above by

    where we have used(5.10).The first and second terms in(5.17)are controlled by ii)k?1.By(5.10)(5.9)and induction assumption i)k?1,the third term in(5.17)can be controlled from above by

    Taking a sequence of regular values a → ∞ of ψ,we find the third term of(5.17)converges to zero,and we have estimated i)kby i)k?1and ii)k?1.

    To derive ii)k,we consider

    by integration by parts and Cauchy-Schwarz.Combining(5.19)and(5.20),we get

    Taking a sequence of a→∞,we have estimated ii)kin terms of i)k,i.e.,

    The proof of the lemma is completed.

    Now we are ready to prove Proposition 5.2.

    Proof of Proposition 5.2The case k=0 is trivial.When k=1,for any big regular value a of ψ,we have

    猜你喜歡
    朱熹
    朱熹《春日》
    從習總書記考察朱熹園說起
    中華詩詞(2021年5期)2021-12-31 08:27:00
    春日
    漢字漢語研究(2019年2期)2019-08-27 00:48:02
    武夷山
    EnglishReadingTeachingBasedonSchemaTheory
    博白·客家·朱熹
    文史春秋(2016年1期)2016-12-01 05:41:53
    論朱熹詩歌的沖雅之風
    論朱熹對孟子思想的工具化注解
    西南學林(2016年2期)2016-11-08 12:16:34
    “朱子深衣”與朱熹
    海峽姐妹(2016年4期)2016-02-27 15:18:14
    精品久久久久久久久久久久久| 成人三级黄色视频| 中文亚洲av片在线观看爽| 精品久久久久久成人av| 午夜爱爱视频在线播放| 欧美性感艳星| av免费在线看不卡| 亚洲精品成人久久久久久| 色在线成人网| 欧美+亚洲+日韩+国产| 永久网站在线| 久久久a久久爽久久v久久| av女优亚洲男人天堂| 国产黄a三级三级三级人| 精华霜和精华液先用哪个| 国产黄片美女视频| 国产精品一区二区免费欧美| 欧美3d第一页| 日本欧美国产在线视频| 欧美一区二区亚洲| 欧美日韩精品成人综合77777| 欧美日韩一区二区视频在线观看视频在线 | 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 十八禁网站免费在线| 亚洲av中文av极速乱| 少妇的逼水好多| 99热这里只有是精品在线观看| 精品免费久久久久久久清纯| 欧美日韩在线观看h| 人妻丰满熟妇av一区二区三区| 18禁在线无遮挡免费观看视频 | 最近中文字幕高清免费大全6| 国内揄拍国产精品人妻在线| 精品一区二区三区人妻视频| 亚洲中文日韩欧美视频| 麻豆av噜噜一区二区三区| 亚洲精品国产成人久久av| 日本色播在线视频| 小说图片视频综合网站| 在线国产一区二区在线| 国产av一区在线观看免费| 国产人妻一区二区三区在| 亚洲高清免费不卡视频| 久久精品综合一区二区三区| 国产成人91sexporn| 永久网站在线| 一个人看的www免费观看视频| 女的被弄到高潮叫床怎么办| 亚洲av免费高清在线观看| 变态另类丝袜制服| 日韩av不卡免费在线播放| 亚洲成人久久性| 精品久久久久久久久久久久久| 久久人人爽人人片av| 黄色视频,在线免费观看| 搡老岳熟女国产| 一级黄色大片毛片| 免费观看精品视频网站| 精品午夜福利视频在线观看一区| 一边摸一边抽搐一进一小说| 色吧在线观看| 少妇人妻一区二区三区视频| 国产精品一区二区三区四区免费观看 | 精品久久久久久久末码| 最新中文字幕久久久久| 99热这里只有是精品50| videossex国产| 久久久精品欧美日韩精品| 久久99热这里只有精品18| 久久九九热精品免费| 丰满乱子伦码专区| 亚洲精品日韩在线中文字幕 | 熟女人妻精品中文字幕| 搡老妇女老女人老熟妇| 精品乱码久久久久久99久播| 亚洲精品在线观看二区| 免费无遮挡裸体视频| 老女人水多毛片| 在线看三级毛片| 亚洲国产精品成人综合色| 97超视频在线观看视频| 久久久成人免费电影| 婷婷色综合大香蕉| 国产一区二区三区av在线 | 国语自产精品视频在线第100页| 亚洲,欧美,日韩| 在线播放无遮挡| 国产av麻豆久久久久久久| 欧美高清成人免费视频www| 中文字幕av在线有码专区| 久久久欧美国产精品| 亚洲av中文字字幕乱码综合| 免费观看精品视频网站| 乱码一卡2卡4卡精品| 一卡2卡三卡四卡精品乱码亚洲| 熟女人妻精品中文字幕| 日韩高清综合在线| 国产黄色小视频在线观看| 久久中文看片网| 国产精品久久久久久精品电影| 国产精品无大码| 嫩草影视91久久| 大香蕉久久网| 免费一级毛片在线播放高清视频| 亚洲在线自拍视频| 国产日本99.免费观看| 给我免费播放毛片高清在线观看| 国产精品精品国产色婷婷| 国产私拍福利视频在线观看| 精品久久久久久久久亚洲| 亚洲精品一区av在线观看| 日产精品乱码卡一卡2卡三| 一区二区三区高清视频在线| 欧美最新免费一区二区三区| 97超碰精品成人国产| 日韩在线高清观看一区二区三区| 日韩大尺度精品在线看网址| 久久久a久久爽久久v久久| 中文字幕免费在线视频6| 国产在视频线在精品| 欧美国产日韩亚洲一区| 韩国av在线不卡| 国内精品宾馆在线| 在现免费观看毛片| 国产精华一区二区三区| 69av精品久久久久久| 黄色视频,在线免费观看| 亚洲国产欧美人成| 99久久精品热视频| 婷婷六月久久综合丁香| 成人av一区二区三区在线看| 国内精品美女久久久久久| 亚洲国产精品合色在线| 成人永久免费在线观看视频| 欧美日本视频| av在线亚洲专区| 99久久精品一区二区三区| 老女人水多毛片| 91在线观看av| 亚洲中文字幕日韩| 久久久午夜欧美精品| 国产乱人视频| 搡老岳熟女国产| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久噜噜老黄 | 亚洲婷婷狠狠爱综合网| 国产精品久久视频播放| 日韩成人av中文字幕在线观看 | 中文亚洲av片在线观看爽| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 一本一本综合久久| 校园春色视频在线观看| 99热这里只有精品一区| 国产伦精品一区二区三区四那| 亚洲,欧美,日韩| 又黄又爽又免费观看的视频| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 在线播放无遮挡| 99热精品在线国产| 99久久九九国产精品国产免费| 国内少妇人妻偷人精品xxx网站| 精品熟女少妇av免费看| 最好的美女福利视频网| 久久99热这里只有精品18| 国产黄a三级三级三级人| 日韩欧美免费精品| 99久国产av精品国产电影| 精品无人区乱码1区二区| 亚洲美女搞黄在线观看 | 免费电影在线观看免费观看| 最近中文字幕高清免费大全6| 又爽又黄无遮挡网站| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 久久精品国产99精品国产亚洲性色| 白带黄色成豆腐渣| 国产成人福利小说| 色av中文字幕| 神马国产精品三级电影在线观看| 国产精品久久视频播放| 欧美+日韩+精品| 久久精品国产亚洲av香蕉五月| 简卡轻食公司| 在线观看免费视频日本深夜| 天美传媒精品一区二区| 真人做人爱边吃奶动态| www.色视频.com| 人妻少妇偷人精品九色| 黄色日韩在线| 听说在线观看完整版免费高清| 在线播放国产精品三级| 免费看a级黄色片| 在线观看午夜福利视频| 成人精品一区二区免费| 久久精品国产清高在天天线| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 无遮挡黄片免费观看| 亚洲va在线va天堂va国产| 97超碰精品成人国产| 久久99热这里只有精品18| 51国产日韩欧美| 亚洲国产精品合色在线| 嫩草影院精品99| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 卡戴珊不雅视频在线播放| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 国产精品久久久久久久电影| 亚洲七黄色美女视频| 国产成人a区在线观看| 少妇人妻一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 99在线人妻在线中文字幕| 男人狂女人下面高潮的视频| ponron亚洲| 欧美成人a在线观看| a级一级毛片免费在线观看| 久久精品国产自在天天线| 久久午夜亚洲精品久久| 成人亚洲欧美一区二区av| 乱人视频在线观看| 免费观看精品视频网站| 99热网站在线观看| 成人鲁丝片一二三区免费| 成人特级黄色片久久久久久久| 成人漫画全彩无遮挡| 天堂影院成人在线观看| avwww免费| 可以在线观看的亚洲视频| 欧美不卡视频在线免费观看| 乱人视频在线观看| a级一级毛片免费在线观看| 亚洲美女视频黄频| 女人被狂操c到高潮| 三级国产精品欧美在线观看| 精品久久久久久久末码| 黄色配什么色好看| 激情 狠狠 欧美| 午夜久久久久精精品| av在线观看视频网站免费| 男插女下体视频免费在线播放| 国产探花极品一区二区| 激情 狠狠 欧美| 国产成人a区在线观看| 看非洲黑人一级黄片| 欧美xxxx性猛交bbbb| .国产精品久久| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 18禁黄网站禁片免费观看直播| 可以在线观看的亚洲视频| 日本成人三级电影网站| 少妇猛男粗大的猛烈进出视频 | 大型黄色视频在线免费观看| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 成人鲁丝片一二三区免费| 免费在线观看影片大全网站| 俺也久久电影网| 国产精品99久久久久久久久| 久久久久久大精品| 精品国内亚洲2022精品成人| 久久中文看片网| 老司机福利观看| 久久热精品热| 欧美性猛交黑人性爽| 一本精品99久久精品77| 久久久成人免费电影| 日韩欧美精品免费久久| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲网站| 国产黄片美女视频| 在线观看美女被高潮喷水网站| 欧美潮喷喷水| 十八禁网站免费在线| 欧美国产日韩亚洲一区| 国产不卡一卡二| 非洲黑人性xxxx精品又粗又长| 日本-黄色视频高清免费观看| 久久6这里有精品| 在线播放无遮挡| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 又粗又爽又猛毛片免费看| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| 听说在线观看完整版免费高清| 一级毛片aaaaaa免费看小| 日韩制服骚丝袜av| 色尼玛亚洲综合影院| 婷婷色综合大香蕉| 亚洲欧美精品综合久久99| 男人舔奶头视频| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| av在线亚洲专区| 国产精品日韩av在线免费观看| 久久久精品大字幕| 波多野结衣高清作品| 国产综合懂色| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 国内久久婷婷六月综合欲色啪| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品国产精品| 久久这里只有精品中国| 日本三级黄在线观看| 深夜a级毛片| 日本撒尿小便嘘嘘汇集6| 悠悠久久av| 亚洲av第一区精品v没综合| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 午夜免费男女啪啪视频观看 | 国产成人freesex在线 | 国产成人精品久久久久久| 毛片一级片免费看久久久久| 波野结衣二区三区在线| 午夜福利在线观看吧| 成年版毛片免费区| 亚洲高清免费不卡视频| 在线a可以看的网站| 丝袜美腿在线中文| 一个人看的www免费观看视频| av视频在线观看入口| 一个人看视频在线观看www免费| 日韩强制内射视频| 中文资源天堂在线| 美女xxoo啪啪120秒动态图| 国产亚洲精品综合一区在线观看| 中国国产av一级| 午夜日韩欧美国产| 欧美性感艳星| 一个人看视频在线观看www免费| 18禁在线播放成人免费| 亚洲性久久影院| 亚洲精品国产成人久久av| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 99热这里只有是精品50| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| 色尼玛亚洲综合影院| 国产精品av视频在线免费观看| 女的被弄到高潮叫床怎么办| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜福利在线观看视频| 精品人妻视频免费看| 亚洲成a人片在线一区二区| 久久精品人妻少妇| 在线看三级毛片| 日本免费一区二区三区高清不卡| 国产黄色视频一区二区在线观看 | 欧美日韩综合久久久久久| 久久天躁狠狠躁夜夜2o2o| 波野结衣二区三区在线| 亚洲欧美清纯卡通| 免费在线观看影片大全网站| 成人av在线播放网站| 久久精品91蜜桃| 久久国内精品自在自线图片| 不卡一级毛片| 最近2019中文字幕mv第一页| 此物有八面人人有两片| 麻豆精品久久久久久蜜桃| 免费看a级黄色片| 日本黄色片子视频| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 在线观看一区二区三区| 国产久久久一区二区三区| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 亚洲综合色惰| 国产色婷婷99| 露出奶头的视频| 国产精品不卡视频一区二区| 日本a在线网址| 国产成人freesex在线 | 日韩一本色道免费dvd| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 欧美丝袜亚洲另类| 亚洲成人中文字幕在线播放| 成熟少妇高潮喷水视频| 精华霜和精华液先用哪个| 一卡2卡三卡四卡精品乱码亚洲| 国内揄拍国产精品人妻在线| 老师上课跳d突然被开到最大视频| 亚州av有码| 国产探花在线观看一区二区| or卡值多少钱| 亚洲欧美日韩东京热| 两个人视频免费观看高清| 国产白丝娇喘喷水9色精品| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 亚洲精品久久国产高清桃花| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器| 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 丰满的人妻完整版| 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看| 亚洲av第一区精品v没综合| 免费无遮挡裸体视频| 日韩高清综合在线| ponron亚洲| 韩国av在线不卡| 亚洲国产精品sss在线观看| 色av中文字幕| 国产精品国产三级国产av玫瑰| 亚洲人成网站高清观看| 九九热线精品视视频播放| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 最近2019中文字幕mv第一页| 美女大奶头视频| 成人亚洲精品av一区二区| 亚洲丝袜综合中文字幕| 久久精品影院6| 看黄色毛片网站| 一级毛片久久久久久久久女| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩东京热| 亚洲高清免费不卡视频| 免费在线观看影片大全网站| 麻豆av噜噜一区二区三区| 最新中文字幕久久久久| 亚洲在线自拍视频| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 国产日本99.免费观看| 精品久久久久久久久亚洲| 天堂影院成人在线观看| 国国产精品蜜臀av免费| 日韩,欧美,国产一区二区三区 | av在线播放精品| .国产精品久久| 最近在线观看免费完整版| 男人舔奶头视频| 欧美成人精品欧美一级黄| 久久久久久久久大av| 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 成人永久免费在线观看视频| videossex国产| 12—13女人毛片做爰片一| 亚洲成a人片在线一区二区| avwww免费| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 99久久精品国产国产毛片| 嫩草影视91久久| 老司机福利观看| 99热只有精品国产| 亚洲av中文字字幕乱码综合| av在线播放精品| 成人特级黄色片久久久久久久| 欧美xxxx性猛交bbbb| 日韩中字成人| 亚洲欧美日韩高清在线视频| 超碰av人人做人人爽久久| 三级经典国产精品| 好男人在线观看高清免费视频| 最好的美女福利视频网| 国产在视频线在精品| 国产精品日韩av在线免费观看| 精品欧美国产一区二区三| av天堂在线播放| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 色5月婷婷丁香| 中国美女看黄片| 精品人妻偷拍中文字幕| 中文字幕免费在线视频6| 天堂动漫精品| 色5月婷婷丁香| 亚洲精品久久国产高清桃花| 此物有八面人人有两片| 国产久久久一区二区三区| 国产黄a三级三级三级人| 免费看光身美女| 国产亚洲精品久久久com| 免费看a级黄色片| 国产乱人偷精品视频| 色综合站精品国产| 大香蕉久久网| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 一本精品99久久精品77| 最近视频中文字幕2019在线8| 亚洲精品一卡2卡三卡4卡5卡| 乱系列少妇在线播放| 久久国产乱子免费精品| 天堂网av新在线| 国产黄色小视频在线观看| 久久精品91蜜桃| 啦啦啦啦在线视频资源| 亚洲av免费在线观看| 91狼人影院| 在线观看午夜福利视频| av在线观看视频网站免费| av黄色大香蕉| 乱人视频在线观看| 国产精品久久久久久久电影| 啦啦啦啦在线视频资源| 日本精品一区二区三区蜜桃| 国产探花在线观看一区二区| 久久久久久久午夜电影| 日韩成人伦理影院| а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 人人妻人人看人人澡| 久久精品影院6| 免费人成在线观看视频色| 亚洲精品色激情综合| av在线老鸭窝| 黑人高潮一二区| 成人综合一区亚洲| 精品久久国产蜜桃| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 99久久精品一区二区三区| 亚洲精品国产成人久久av| 亚洲国产日韩欧美精品在线观看| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放 | 搞女人的毛片| 最近中文字幕高清免费大全6| 国内精品一区二区在线观看| 日韩av在线大香蕉| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 亚洲最大成人手机在线| 国产女主播在线喷水免费视频网站 | 久久久欧美国产精品| 国模一区二区三区四区视频| 欧美日本亚洲视频在线播放| 精品久久久噜噜| 亚洲av第一区精品v没综合| 两个人的视频大全免费| 欧美高清性xxxxhd video| or卡值多少钱| 日本-黄色视频高清免费观看| 国产v大片淫在线免费观看| 国产黄a三级三级三级人| 亚洲经典国产精华液单| 99热这里只有是精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 长腿黑丝高跟| 又黄又爽又免费观看的视频| 久久精品夜色国产| 免费电影在线观看免费观看| 日本熟妇午夜| 国产真实乱freesex| 日韩制服骚丝袜av| 国产伦在线观看视频一区| 国产片特级美女逼逼视频| 亚洲美女视频黄频| 久久久久免费精品人妻一区二区| 禁无遮挡网站| 男人舔女人下体高潮全视频| 午夜日韩欧美国产| 亚洲四区av| 婷婷色综合大香蕉| 午夜免费男女啪啪视频观看 | 国产男靠女视频免费网站| 淫妇啪啪啪对白视频| 免费人成视频x8x8入口观看| 蜜臀久久99精品久久宅男| 天堂网av新在线| 毛片一级片免费看久久久久| 国产男靠女视频免费网站| 人妻丰满熟妇av一区二区三区| 男女视频在线观看网站免费| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久免费视频| 91久久精品国产一区二区成人| 嫩草影视91久久| 又黄又爽又刺激的免费视频.| 美女xxoo啪啪120秒动态图| 成人av一区二区三区在线看| 久久久久精品国产欧美久久久| 校园人妻丝袜中文字幕| 日韩av不卡免费在线播放| 十八禁国产超污无遮挡网站| av视频在线观看入口| 婷婷精品国产亚洲av在线| 人妻丰满熟妇av一区二区三区| 精品久久久久久久末码|