• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Hole Injection Property of Solution-Processed MoO3 with UV-Ozone Treatment

    2018-11-16 02:58:50DONGDanMINZhiyuanLIUJunHEGufeng
    物理化學(xué)學(xué)報(bào) 2018年11期

    DONG Dan, MIN Zhiyuan, LIU Jun, HE Gufeng

    National Engineering Lab for TFT-LCD Materials and Technologies, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

    Abstract: The hole injection layer (HIL) plays a significant role in determining the performances of organic light-emitting diodes(OLEDs), especially when hole transport materials with deep highest occupied molecular orbital levels (HOMOs) are employed.Intensive efforts have been devoted to exploring novel hole injection materials with good solution-processing abilities in recent years. In this study, the solution-processed molybdenum trioxide(s-MoO3) is prepared via an ultra-facile method. Three different s-MoO3 layers prepared by three different methods, viz. layers annealed at 150 °C (s-MoO3 (150)), layers annealed at 150 °C and then processed in UV-ozone for 15 min (s-MoO3 (150, UVO)), and layers processed in UV-ozone for 15 min without annealing (s-MoO3 (UVO)), are obtained to investigate their influences on hole injection. The device with the s-MoO3 (150)layer has the lowest current density and the largest driving voltage, showing poor hole injection ability. In contrast, with the s-MoO3 (150, UVO) layer as HIL, the OLED produces a greatly enhanced current and sharply reduced driving voltage,comparable to the device using vacuum-evaporated MoO3. Similar results are obtained for the device with the s-MoO3(UVO) film, suggesting that high-temperature annealing is not essential for the s-MoO3 film with UV-ozone treatment. Hole injection efficiencies of MoO3 films are quantitatively characterized by analyzing the space-charge-limited current of holeonly devices; the hole injection efficiencies of s-MoO3 (150, UVO) and s-MoO3 (UVO)-based devices are ~0.1, far exceeding that of the s-MoO3 (150)-based device (10-5). XPS analysis is performed to detect the impact of the above treatments on the surface electronic properties of the s-MoO3 films. A typical characteristic of Mo5+ species is obtained for the s-MoO3 (150) film and a high-binding-energy shoulder appears in the O 1s peak of the s-MoO3 (150) film, indicating the existence of oxygen vacancies and oxygen adsorbed at the surface of s-MoO3 (150) film. When UV-ozone treatment is applied to this s-MoO3 (150) film, it produces a decrease of Mo5+ state and elimination of oxygen-rich adsorbates,resulting in MoO3 stoichiometry similar to that of the vacuum-evaporated MoO3 film. Consequently, a maximum current efficiency of 48.3 cd·A-1 is realized with the optimized UV-ozone treated s-MoO3 HIL. It This UV-ozone treated s-MoO3 should have widespread applications in low-cost solution-processed OLEDs as an excellent hole injection layer.

    Key Words: Hole injection property; Solution process; Organic light-emitting diode; Stoichiometry; UV-ozone treatment

    1 Introduction

    Organic light-emitting diode (OLEDs) have attracted significant attention in display and lighting fields, due to their potentials for homogenous large-area emission, light weight and flexibility1–4. With the development of emitting materials and the optimization of the device structures, the current efficiency of OLEDs can reach nearly 200 cd·A-15. Enormous efforts have been devoted to improve the device performances by introducing novel OLED structures and tuning the charge carrier balance. Xu et al.6demonstrated a highly efficient and wide color-range tunable fluorescent OLED using two complementary undoped ultrathin emitters with an interlayer between them. A novel exciplex-forming host is employed in highly simplified device7.Besides, an efficient OLED is realized with substitutionally Boron-doped graphene anode8. However, many of these high efficiency devices are fabricated by thermal evaporation, which need high costs and have limit on large area panels. In contrast,solution processing, such as spin-coating, screen printing and inkjet printing can effectively avoid these drawbacks9–11. In order to facilitate hole injection and reduce the operating voltage, an effective strategy is to obtain a good energetic match at the electrode-organic interface by inserting an interfacial layer12,13. Poly(3,4-ethylenedioxyth-iophene):poly(styrenesulfonate) (PEDOT:PSS) is widely used as a hole injection layer(HIL) in solution-processed OLEDs because of its easily solution-processable ability, the smooth character of the resulting interlayer and suitable work function (4.8–5.2 eV)14.However, there still exists a large hole injection barrier from PEDOT:PSS when some hole transport materials (HTMs) with deep highest occupied molecular orbital (HOMO) levels are employed, such as 4,4’-bis(9-carbazolyl)-biphenyl (CBP) (-6.1 eV)15, resulting in high driving voltage and low current efficiency (CE). Moreover, the acidity and hygroscopicity of PEDOT:PSS will cause the problem of device stability16,17.

    As an alternative to PEDOT:PSS, transition metal oxides(TMOs) have been a research focus due to their high work function and marked hole injection property, such as molybdenum oxide (MoO3)18–25, vanadium oxide (V2O5)26–29,and nickel oxide (NiO)30,31. In general, thermally-evaporated MoO3is an n-type semiconductor with very deep lying electronic states, whose work function is about 6.9 eV18.However, air-exposure will contaminate the surface of the metal oxide film and reduce its work function. Irfan et al.25demonstrated a sharp reduction on the work function of MoO3 from 6.8 to 5.6 eV after being exposed in air for one hour.Hancox et al.29found that the atmosphere of spin-coating and annealing could seriously affect the work function and stoichiometry of V2O5. Our group19introduced an ultra-facile synthetic route for solution-processed MoO3anode buffer layer and its work function is only 5.35 eV with air exposure, which is not high enough to improve the hole injection to the HTM with deep HOMO levels. Hence, the work functions of solutionprocessed TMOs are mostly decreased compared to those of their vacuum-evaporated counterparts. Recently, the surface treatment has been proposed to recover the work functions of TMOs, such as annealing in vacuum or nitrogen25,31,32, and oxygen plasma treatment24. Unfortunately, those processes usually require high temperature (200–400 °C) and complicate the fabrication, which is not conductive to reduce cost.

    In this paper, we investigated the influences of different treatments on solution-processed MoO3(s-MoO3) HIL. It is found that the UV-ozone treated s-MoO3 film exhibits a decrease of Mo5+state and elimination of oxygen-rich adsorbates,resulting in a similar MoO3stoichiometry and hole injection efficiency to the vacuum evaporated MoO3film. The green phosphorescent OLED (PHOLED) with UV-ozone treated s-MoO3HIL shows a maximum current efficiency of 48.3 cd?A-1,which is comparable to the device with evaporated MoO3(e-MoO3) (50.6 cd·A-1).

    2 Experimental

    The MoO3solution was prepared by dissolving 175 mg MoO3powder (Sigma-Aldrich) into 1 mL ammonia-water (Shanghai Lingfeng Chem. Reagent Co., Ltd., AR) in an ultrasonic bath(HangZhou BoKe Ultrasonic Equipment Co., Ltd.) for one minute. And then it was diluted by deionized water to a concentration of 10 mg·mL-119.

    The chemicals were purchased from commercial sources and used as received. Hole transporting materials of 4,4’-bis[N-(1-naphthyl)-N-phenylamino] (NPB) and CBP and the electron transporting material of 1,3,5-tri(phenyl-2-benzimidazole)benzene (TPBi) were purchased from Taiwan Nichem Fine Technology Co., Ltd. The phosphorescent emitter of tris(2-phenyl-pyridine)iridium (III) (Ir(ppy)3), the electron injection material of lithium fluoride (LiF) were purchased from Beijing Aglaia Technology Co., Ltd. The Al cathode was purchased from ZhongNuoXinCai Co., Ltd.

    OLEDs were fabricated on ITO-coated glass substrates(KINTEC Company) which were cleaned successively using deionized water, acetone (CMOS) and isopropanol (CMOS)under an ultrasonic bath for 15 min each time, then dried with nitrogen. To eliminate the adsorbate and solvent on ITO, the substrates were heated at 150 °C for 15 min, followed by being exposed to UV ozone (Sunmonde Electric Light Source Technology (Shanghai) Co., Ltd.) for 10 min. The basic configuration of the green phosphorescent OLED is ITO/HIL/NPB or CBP (40 nm)/CBP:(Ir(ppy)3) (8%, 20 nm)/TPBi (60 nm)/LiF (1 nm)/Al (100 nm). The s-MoO3layer was spin coated from the previously prepared solution at 9000 r·min-1for 60 s and the films were annealed at 150 °C for 10 min in air. Then,the annealed films were treated with UV ozone for different time.Subsequently, the samples were transferred into a high vacuum deposition system, and the organic layers were thermally deposited at a base pressure of 6.7 × 10-4Pa. The deposition rate was measured with quartz crystal. The evaporated MoO3was deposited at a rate of 0.01–0.05 nm·s-1and the total thickness is 3 nm, whereas the organic materials, except for the dopants,were evaporated at a rate of 0.1–0.15 nm·s-1. At the end, 100-nm-thick aluminum was deposited as the cathode. The proposed energy level of materials used is shown in Fig. 1.

    The current density–voltage–luminance (J–V–L)characteristics of devices were measured using a computer controlled Keithley 2400 and Topcon BM-7A measurement system under ambient atmosphere. The XPS measurement was carried out in a Kratos AXIS Ultra DLD ultrahigh vacuum surface analysis system with a monochromatic aluminum Kαsource (1486.6 eV) under a base pressure of 1.33 × 10-7Pa. The samples of MoO3film were deposited on ITO-coated glass substrates.

    Fig. 1 The proposed energy levels of the materials used in devices.

    3 Results and discussion

    Firstly, to explore the hole injection property of our prepared s-MoO3, green phosphorescent OLEDs employing the s-MoO3with HTMs (NPB and CBP) which have different HOMO levels are fabricated, and the e-MoO3/HTL one is also fabricated for comparison. The current density-voltage characteristics of the devices are shown in Fig. 2a. Obviously, the device with s-MoO3/NPB has a low onset voltage of 2.2 V, indicating that the hole could inject into NPB from s-MoO3effectively19. When NPB is replaced by CBP with a deeper HOMO level (-6.1 eV)as HTM, the device exhibits a much lower current density and higher onset voltage (5.0 V), showing a poor hole injection property. This is consistent with the larger energy barrier between s-MoO3and CBP. However, the e-MoO3HIL can inject holes to CBP quite well, and significantly larger current and lower onset voltage of 2.6 V is obtained. This significant difference may be attributed to the higher work function of e-MoO3 (6.9 eV) as reported by Kr?ger18. Accordingly, the maximum current efficiencies of the s-MoO3/NPB, s-MoO3/CBP, and e-MoO3/CBP-based devices are about 35.5, 0.4,and 43.0 cd·A-1, respectively. The above results demonstrate that our s-MoO3does possess an effective hole injection property.Besides, the s-MoO3has poorer hole injection ability to HTMs with deeper HOMO levels than the evaporated MoO3. As a result, to improve the hole injection and the performances of such OLEDs, it is essential to increase the work function of s-MoO3.

    Fig. 2 (a) Current density–voltage and (b) current efficiency characteristics of the OLEDs with s-MoO3/NPB, s-MoO3/CBP,e-MoO3/CBP.

    Various treatment processes including annealing in air and exposure in UV-ozone are applied on s-MoO3film to investigate their influences on hole injection. To be concise, the three different methods are abbreviated as following: layers annealed at 150 °C, s-MoO3(150); layers annealed at 150 °C and then processed in UV-ozone for 15 min, s-MoO3(150, UVO); layers processed in UV-ozone for 15 min without annealing, s-MoO3(UVO). Correspondingly, these differently treated s-MoO3films combined with CBP HTM are employed in the green PHOLED.For comparison, a control device with e-MoO3 HIL is fabricated as well.

    Fig. 3 (a) Current density–voltage and (b) current efficiency–current density characteristics of the OLEDs with s-MoO3 (150), s-MoO3(150, UVO), s-MoO3 (UVO) and e-MoO3 HTL.

    Table 1 Summarized performances of the solution-processed OLEDs incorporating e-MoO3 HIL and s-MoO3 HILs with different treatments.

    Fig. 3 shows the J–V and CE–J characteristics of these devices with differently treated MoO3films, and Table 1 summarizes the detailed results. The reference device with e-MoO3reveals a high current density, along with a low onset voltage of 2.6 V as mentioned above. In contrast, the device with s-MoO3 directly annealed at 150 °C under ambient shows a much higher onset voltage (5.0 V), suggesting that this treated s-MoO3 film has a relatively low work function and hence a large hole injection barrier exists. However, with UV-ozone treatment for 15 min on the s-MoO3(150) HIL, the current density of device is significantly enhanced and the onset voltage sharply decreases to 2.6 V, showing a great improvement on the hole injection ability. The maximum current efficiency of the device with s-MoO3(150, UVO) markedly increases from 0.7 to 48.3 cd?A-1,which approaches that of e-MoO3-based device (50.6 cd?A-1).More surprisingly, if the s-MoO3film is just directly treated with UV-ozone for 15 min without the 150 °C annealing process, the OLED with s-MoO3 (UVO) HIL has a comparable performance(Vonset = 2.6 V, CEmax = 46.1 cd?A-1) to the device with s-MoO3(150, UVO). This suggests that high temperature annealing process is inessential for the s-MoO3film with UV-ozone treatment. The UV-ozone treatment is of great importance for the s-MoO3film as HIL in solution-processed OLEDs.

    To unravel the origin of the significant enhancement on the performances of s-MoO3based devices with UV-ozone treatment, the impact of different treatments on the surface electronic properties of the s-MoO3films was analyzed using XPS measurement. Fig. 4a shows the full scan spectrum of the e-MoO3 and s-MoO3 (150, UVO) films. O 1s and Mo 3d peaks are characteristics of MoO3. Additional sharp peaks of In 3d, Sn 3d, attributed to the ITO, are also detected, indicating that the MoO3 films are very thin (less than 5 nm). In Fig. 4b, the four MoO3films with different treatments have the identical Mo 3d5/2peak at 233.05 eV, and Mo 3d3/2peak at 236.15 eV,corresponding to the Mo6+state, suggesting these MoO3 films are almost stoichiometric MoO3composition33. Differently, a secondary Mo 3d doublet (Mo 3d5/2at 231.2 eV and Mo 3d3/2at 234.3 eV) exists in s-MoO3 (150) film, which is the typical characteristic of Mo5+species. This indicates that oxygen vacancies exist in the s-MoO3(150) film, resulting in the gap states caused by the partial filling of unoccupied Mo 4d levels34,35.In addition, Fig. 4c depicts that a high binding energy shoulder appears in O 1s peak of the s-MoO3(150) film, and a fit of this shoulder yields a peak of 532.9 eV, which is attributed to oxygen adsorbed at the surface of s-MoO3film21. When UV-ozone treatment is applied on this s-MoO3(150) film, the shoulder disappears, suggesting that oxygen-rich adsorbates are effectively removed.

    Fig. 4 XPS spectra of e-MoO3 and s-MoO3 films with different treatments.(a) Full scan, (b) O 1s core level, (c) Mo 3d core level.

    These results indicate that UV-ozone treatment can effectively tune the surface electronic properties of the s-MoO3films,increasing the Mo5+films to Mo6+and decreasing the oxygenrich adsorbates in the s-MoO3(150), making the almost same stoichiometric s-MoO3composition with the e-MoO3film. As a result, a considerable enhancement is obtained in device performance with the UV-ozone treatment.

    Fig. 5 (a) Current density–voltage, (b) luminance–voltage characteristics of the devices with different UV-ozone treatment time of s-MoO3 and the s-MoO3 (150) as reference.

    To investigate the effect of UV-ozone treatment to s-MoO3 thin film in detail, the performances of devices with different UV-ozone treatment time are compared in Fig. 5. The device with s-MoO3(150) HIL is also chosen as a reference. It is clearly seen that the hole injection is remarkedly improved when the s-MoO3is treated by UV-ozone and the onset voltage decreases from 5.0 V to below 3 V. Besides, the current density increases as increasing the treatment time up to 15 min. However, a longer UV-ozone treatment time (30 min) hardly shows any further improvement, meaning that the improvement on work function and hole injection property are saturated when the treatment time increases to 15 min. The luminance characteristic shows a similar trend. The luminance of UV-ozone treated devices are increased to 33000–46000 cd·m-2at 10 V due to the enhancement on the hole injection and more balanced charge carriers, far exceeding that of the s-MoO3(150) one (27 cd·m-2).

    The hole injection property of MoO3 films can be quantitatively characterized by analyzing the space charge limited current of hole-only devices. Fig. 6a shows the J–V characteristic of hole-only devices with configuration of ITO/HIL/CBP (345 nm)/e-MoO3 (10 nm)/Al (100 nm). The s-MoO3 films are treated with different methods as mentioned above and the e-MoO3 is also included for comparison. The theoretical space-charge-limited current density (JSCLC) is calculated from equation (1)36.

    where μ0 is the zero-field mobility of CBP (set to be 10-3cm2·(V·s)-1)37, ?0is the permittivity in free-space (8.85 × 10-14C·(V·cm)-1), ?r is the dielectric constant (assumed to be 3.0), E is the applied electric field and d is the cavity length. The Poole-Frenkel slope β is the field-dependent mobility coefficient. β can be obtained from independent time-of-flight experiments, and is found to be 1.3 × 10-3(cm·V)-1/213.

    Fig. 6 (a) Current density–electric field and (b) hole injection efficiency–electric field characteristics of the hole-only devices with e-MoO3 and s-MoO3 films of different UV-ozone treatment time.

    The current density is enhanced with the time of UV-ozone treatment increased from 0 min to 15 min and close to that of e-MoO3device. Moreover, the device with s-MoO3(UVO) has a comparable hole injection property to the device with s-MoO3(150, UVO). These results coincide with the performances of devices presented in Fig. 3 and Fig. 5. Additionally, the current densities of all devices are much lower compared to the theoretical JSCLC, suggesting that the hole injection contacts in those devices are not ohmic. Hence, the hole injection efficiency(?INJ) can be obtained from equation (2).

    where JINJis the measured steady-state current density. The e-MoO3shows a hole injection efficiency of ~0.1, consistent with the results previous reported13,19. The injection efficiencies of s-MoO3(150, UVO) and s-MoO3(UVO)-based devices are about 0.1, as shown in Fig. 6b, while the maximum injection efficiency of s-MoO3(150)-based device is at the order of 10-5. It demonstrates that the optimized s-MoO3films with UV-ozone treatment have superior hole injection property, comparable to the e-MoO3.

    4 Conclusions

    In summary, by introducing different treatments on solutionprocessed MoO3films, the influences on modifying the hole injection ability to HTMs with deep HOMO levels in OLEDs are investigated. The UV-ozone treatment can effectively tune Mo5+to more highly oxidized Mo6+state and remove some oxygenrich adsorbates in the solution-processed MoO3films even without annealing process. Besides, such effects are more pronounced at longer treatment time up to 15 min. As a result,the reduced work function of solution-processed MoO3films can be enhanced and hence improve the hole injection property,making it comparable to the evaporated MoO3film. The work provides a simple and effective way to realize efficient hole injection for solution-processed MoO3in OLEDs whose HTM has a deep HOMO level by UV-ozone treatment.

    少妇猛男粗大的猛烈进出视频 | 免费黄网站久久成人精品| 18禁在线播放成人免费| 大型黄色视频在线免费观看| 久久久久久久久久成人| 精品日产1卡2卡| 91精品国产九色| 午夜激情福利司机影院| 天堂√8在线中文| 夜夜夜夜夜久久久久| 成人午夜高清在线视频| 我的女老师完整版在线观看| 国产精品久久久久久久电影| 国产一级毛片七仙女欲春2| 黄色日韩在线| 赤兔流量卡办理| 成人美女网站在线观看视频| 亚洲熟妇熟女久久| 一区二区三区免费毛片| 精品一区二区免费观看| avwww免费| 18禁黄网站禁片免费观看直播| 麻豆久久精品国产亚洲av| 国产精品1区2区在线观看.| 午夜精品一区二区三区免费看| 一级黄片播放器| 欧美色视频一区免费| 午夜爱爱视频在线播放| 午夜福利高清视频| 国产高清激情床上av| av在线天堂中文字幕| 人妻少妇偷人精品九色| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 国产精品av视频在线免费观看| 亚洲精品粉嫩美女一区| 我要看日韩黄色一级片| 88av欧美| 天堂影院成人在线观看| 日韩 亚洲 欧美在线| 别揉我奶头~嗯~啊~动态视频| 国产精品美女特级片免费视频播放器| 高清毛片免费观看视频网站| 99久久无色码亚洲精品果冻| 性色avwww在线观看| 日本 欧美在线| 黄色女人牲交| 亚洲精品成人久久久久久| 国产三级在线视频| 亚洲欧美日韩高清专用| 在线免费十八禁| 欧美色视频一区免费| 国产精华一区二区三区| 成人午夜高清在线视频| 久久久久国内视频| 日本一二三区视频观看| 99精品久久久久人妻精品| 国产成人aa在线观看| 联通29元200g的流量卡| 国产精品一区二区性色av| 精品一区二区免费观看| 亚洲精品国产成人久久av| 国产精品精品国产色婷婷| 人妻丰满熟妇av一区二区三区| 亚洲中文日韩欧美视频| 欧美三级亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 精华霜和精华液先用哪个| 麻豆国产97在线/欧美| www.www免费av| 久久精品国产亚洲网站| 尤物成人国产欧美一区二区三区| 韩国av一区二区三区四区| 精品国内亚洲2022精品成人| 看十八女毛片水多多多| 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 日韩中字成人| 俄罗斯特黄特色一大片| 亚洲七黄色美女视频| 女人被狂操c到高潮| 久久精品国产鲁丝片午夜精品 | 亚洲,欧美,日韩| 国产高清不卡午夜福利| 日韩欧美一区二区三区在线观看| 99riav亚洲国产免费| 黄色丝袜av网址大全| 久久久久久久久久成人| 一进一出好大好爽视频| 午夜精品久久久久久毛片777| 老师上课跳d突然被开到最大视频| 国产毛片a区久久久久| 精品久久久久久久久亚洲 | 女同久久另类99精品国产91| 亚州av有码| 久久精品影院6| 色精品久久人妻99蜜桃| 国产色婷婷99| 三级男女做爰猛烈吃奶摸视频| 精品一区二区免费观看| av女优亚洲男人天堂| 99热这里只有是精品50| 国产老妇女一区| 在线免费观看的www视频| 午夜免费激情av| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 久久久精品大字幕| 亚洲av中文av极速乱 | 又黄又爽又免费观看的视频| 3wmmmm亚洲av在线观看| 久久午夜福利片| 中文字幕人妻熟人妻熟丝袜美| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 一区二区三区免费毛片| 日日夜夜操网爽| av在线蜜桃| 波多野结衣高清作品| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 久久人人精品亚洲av| 亚洲国产欧美人成| 欧美色欧美亚洲另类二区| 亚洲,欧美,日韩| 在线观看一区二区三区| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 色哟哟哟哟哟哟| 亚洲国产欧美人成| 亚洲欧美精品综合久久99| 黄色配什么色好看| 99热只有精品国产| 亚洲成a人片在线一区二区| 一个人看视频在线观看www免费| 欧美日韩精品成人综合77777| 91久久精品国产一区二区成人| 人妻久久中文字幕网| 又黄又爽又免费观看的视频| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| 精品一区二区三区av网在线观看| 午夜福利在线在线| 男女视频在线观看网站免费| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看 | 亚洲成人免费电影在线观看| 国产黄a三级三级三级人| 国产中年淑女户外野战色| 国产免费男女视频| 久久99热这里只有精品18| 男人的好看免费观看在线视频| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 成人美女网站在线观看视频| 亚洲精品一区av在线观看| 91在线精品国自产拍蜜月| 国产精品永久免费网站| 国产三级中文精品| 搡老妇女老女人老熟妇| 国内精品久久久久精免费| 97碰自拍视频| 一区二区三区免费毛片| 在线国产一区二区在线| 久久久成人免费电影| 真人一进一出gif抽搐免费| 国产精品人妻久久久久久| 在线观看一区二区三区| 三级毛片av免费| 久久精品国产亚洲av涩爱 | 男人舔奶头视频| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 精品人妻视频免费看| 久久天躁狠狠躁夜夜2o2o| av在线老鸭窝| av国产免费在线观看| www.www免费av| 亚洲中文日韩欧美视频| 国产精品,欧美在线| 欧美色视频一区免费| 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 精品人妻熟女av久视频| .国产精品久久| 天堂√8在线中文| 干丝袜人妻中文字幕| 变态另类成人亚洲欧美熟女| 免费大片18禁| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 亚洲人与动物交配视频| 麻豆成人av在线观看| 精品久久国产蜜桃| 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 嫩草影院精品99| 久久精品国产亚洲网站| 在线免费观看不下载黄p国产 | 国产一区二区激情短视频| 可以在线观看的亚洲视频| 内地一区二区视频在线| 亚洲三级黄色毛片| 国内精品美女久久久久久| 九九久久精品国产亚洲av麻豆| 69av精品久久久久久| 亚洲av不卡在线观看| 内射极品少妇av片p| 国产高清视频在线播放一区| 欧美精品国产亚洲| 国产成人aa在线观看| 国产精品人妻久久久久久| 日韩中文字幕欧美一区二区| 人人妻人人澡欧美一区二区| 日韩欧美三级三区| 99九九线精品视频在线观看视频| 啪啪无遮挡十八禁网站| 国产视频内射| 亚洲在线观看片| 看十八女毛片水多多多| 男人舔奶头视频| 亚洲av免费在线观看| 嫩草影院入口| 精品人妻一区二区三区麻豆 | 男女啪啪激烈高潮av片| 禁无遮挡网站| 黄色一级大片看看| 国产精品爽爽va在线观看网站| 国产精品永久免费网站| 美女免费视频网站| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 欧美一区二区国产精品久久精品| 十八禁国产超污无遮挡网站| 久久亚洲精品不卡| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 国产成人一区二区在线| 色综合站精品国产| 国产av一区在线观看免费| 久久久午夜欧美精品| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 天堂动漫精品| 欧美成人免费av一区二区三区| 国产女主播在线喷水免费视频网站 | 日本-黄色视频高清免费观看| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 午夜a级毛片| 午夜激情福利司机影院| 日本黄大片高清| 日日干狠狠操夜夜爽| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 别揉我奶头 嗯啊视频| 国产aⅴ精品一区二区三区波| 熟女电影av网| 啪啪无遮挡十八禁网站| 一个人看视频在线观看www免费| 少妇的逼好多水| 亚洲美女搞黄在线观看 | 日韩强制内射视频| 国产在线精品亚洲第一网站| 久久久成人免费电影| 色视频www国产| 国产午夜福利久久久久久| 69人妻影院| 99久久精品一区二区三区| 草草在线视频免费看| 国产视频内射| 日韩欧美国产一区二区入口| 国内精品宾馆在线| 国产精品久久久久久久电影| videossex国产| 免费av观看视频| 国产一区二区在线观看日韩| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 免费人成视频x8x8入口观看| 国产精品电影一区二区三区| 久久亚洲精品不卡| 中国美女看黄片| 人人妻人人看人人澡| 精品久久久久久,| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 免费无遮挡裸体视频| 亚洲av成人av| 女的被弄到高潮叫床怎么办 | 少妇被粗大猛烈的视频| 成人午夜高清在线视频| 国产又黄又爽又无遮挡在线| 91午夜精品亚洲一区二区三区 | 又紧又爽又黄一区二区| 久久久久久国产a免费观看| 久久久久性生活片| 韩国av一区二区三区四区| 三级国产精品欧美在线观看| 97超视频在线观看视频| 夜夜爽天天搞| 国产精品一区二区免费欧美| 在线观看av片永久免费下载| 舔av片在线| 精品久久久久久成人av| 一区二区三区激情视频| 亚洲无线在线观看| 国产单亲对白刺激| 国产精品久久久久久久电影| a级毛片a级免费在线| aaaaa片日本免费| 欧美日本视频| 最好的美女福利视频网| 69人妻影院| 久久久久久久亚洲中文字幕| 午夜免费成人在线视频| 亚洲国产精品成人综合色| 窝窝影院91人妻| 精品国产三级普通话版| 男人的好看免费观看在线视频| 国产精品一区二区三区四区免费观看 | 国产精品女同一区二区软件 | 最近中文字幕高清免费大全6 | 亚洲熟妇熟女久久| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 老师上课跳d突然被开到最大视频| 久久精品久久久久久噜噜老黄 | 久久中文看片网| 日韩欧美在线二视频| www日本黄色视频网| 免费在线观看成人毛片| av天堂在线播放| av女优亚洲男人天堂| 免费观看在线日韩| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 日本爱情动作片www.在线观看 | 国产 一区精品| 亚洲成人久久爱视频| av在线蜜桃| 美女cb高潮喷水在线观看| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 成人永久免费在线观看视频| 免费看美女性在线毛片视频| 久久精品国产亚洲av涩爱 | 变态另类丝袜制服| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 免费人成在线观看视频色| 波多野结衣高清作品| 国产成人a区在线观看| 国产精品一及| 亚洲天堂国产精品一区在线| 亚州av有码| av在线老鸭窝| 国产av不卡久久| 黄色欧美视频在线观看| 亚洲av免费在线观看| 久久人妻av系列| 在线免费观看的www视频| 国产 一区 欧美 日韩| 精品一区二区免费观看| 国产又黄又爽又无遮挡在线| 国产精品一区二区三区四区久久| 窝窝影院91人妻| 精品久久久久久久久av| 色综合婷婷激情| 欧美性猛交黑人性爽| a级一级毛片免费在线观看| 国产一区二区亚洲精品在线观看| 亚洲精华国产精华液的使用体验 | 亚洲国产欧洲综合997久久,| 国产精品电影一区二区三区| 国产精品爽爽va在线观看网站| 18+在线观看网站| 欧美一区二区国产精品久久精品| 中国美白少妇内射xxxbb| 欧美性感艳星| 亚洲最大成人中文| 久久亚洲真实| 日本黄色视频三级网站网址| 别揉我奶头~嗯~啊~动态视频| 一区二区三区高清视频在线| 精品无人区乱码1区二区| 久久欧美精品欧美久久欧美| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 麻豆av噜噜一区二区三区| av中文乱码字幕在线| 最新在线观看一区二区三区| 久久精品国产自在天天线| 亚洲欧美精品综合久久99| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 色吧在线观看| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 韩国av一区二区三区四区| 免费看美女性在线毛片视频| 国产精品一区二区三区四区免费观看 | 18禁裸乳无遮挡免费网站照片| 日本成人三级电影网站| 一本一本综合久久| 亚洲av中文av极速乱 | 日韩欧美一区二区三区在线观看| 亚洲人成网站高清观看| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 免费观看人在逋| 老司机深夜福利视频在线观看| 狠狠狠狠99中文字幕| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 日本黄大片高清| 18禁黄网站禁片午夜丰满| 日韩精品青青久久久久久| aaaaa片日本免费| 少妇人妻一区二区三区视频| 国产精品永久免费网站| 国产精品一区二区三区四区久久| 午夜日韩欧美国产| 69人妻影院| 亚洲av二区三区四区| 午夜免费激情av| 国产女主播在线喷水免费视频网站 | 午夜福利视频1000在线观看| 亚洲国产精品合色在线| 琪琪午夜伦伦电影理论片6080| 久久6这里有精品| av黄色大香蕉| 国产亚洲精品av在线| 有码 亚洲区| 九色国产91popny在线| 一区福利在线观看| 特大巨黑吊av在线直播| 亚洲精品日韩av片在线观看| 一进一出抽搐gif免费好疼| 丰满人妻一区二区三区视频av| 久久草成人影院| 波多野结衣高清无吗| 男人和女人高潮做爰伦理| 麻豆成人av在线观看| 99国产精品一区二区蜜桃av| 午夜精品在线福利| 午夜日韩欧美国产| 国产一区二区亚洲精品在线观看| 国产色爽女视频免费观看| 久久久久久久久大av| 日本三级黄在线观看| 最好的美女福利视频网| 精品人妻熟女av久视频| 亚洲电影在线观看av| 超碰av人人做人人爽久久| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 精品久久久久久成人av| 亚洲精品日韩av片在线观看| 国产亚洲欧美98| 日韩一本色道免费dvd| 最近在线观看免费完整版| 全区人妻精品视频| 高清毛片免费观看视频网站| 免费av不卡在线播放| 91久久精品国产一区二区成人| 欧美绝顶高潮抽搐喷水| 亚洲av日韩精品久久久久久密| 成人美女网站在线观看视频| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看 | 成人国产一区最新在线观看| 麻豆国产av国片精品| 欧美三级亚洲精品| 色播亚洲综合网| 亚洲欧美日韩东京热| 国产精品精品国产色婷婷| 看片在线看免费视频| 亚洲18禁久久av| 窝窝影院91人妻| 男女之事视频高清在线观看| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| av国产免费在线观看| 男女那种视频在线观看| 我要看日韩黄色一级片| 三级男女做爰猛烈吃奶摸视频| 成人性生交大片免费视频hd| 一级a爱片免费观看的视频| 精品人妻一区二区三区麻豆 | av天堂在线播放| xxxwww97欧美| 国产精品无大码| 特大巨黑吊av在线直播| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式| 日韩精品有码人妻一区| www.www免费av| 99热这里只有是精品50| 午夜a级毛片| 黄色丝袜av网址大全| 丰满人妻一区二区三区视频av| 国产精品一区二区免费欧美| 五月玫瑰六月丁香| 波多野结衣巨乳人妻| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 亚洲五月天丁香| 国产老妇女一区| 日本欧美国产在线视频| 国产熟女欧美一区二区| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 亚洲人与动物交配视频| 国产三级在线视频| 91精品国产九色| 日本 av在线| 国产精品久久久久久久久免| 一进一出好大好爽视频| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久av| 成人一区二区视频在线观看| 欧美一区二区国产精品久久精品| 真人做人爱边吃奶动态| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 尾随美女入室| 超碰av人人做人人爽久久| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说| 动漫黄色视频在线观看| 美女cb高潮喷水在线观看| 亚洲第一区二区三区不卡| 国产精品美女特级片免费视频播放器| 国内少妇人妻偷人精品xxx网站| 麻豆精品久久久久久蜜桃| 国产精品福利在线免费观看| 久久草成人影院| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 欧美性猛交黑人性爽| 国产探花极品一区二区| 国产黄色小视频在线观看| 黄色一级大片看看| 亚洲欧美清纯卡通| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| 久久国产乱子免费精品| 欧美另类亚洲清纯唯美| 国产高清激情床上av| 久久人妻av系列| 床上黄色一级片| 国产精品不卡视频一区二区| 精品免费久久久久久久清纯| 亚洲经典国产精华液单| 免费观看的影片在线观看| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 全区人妻精品视频| 麻豆国产av国片精品| 久久精品人妻少妇| aaaaa片日本免费| 日韩欧美精品v在线| 色av中文字幕| 男人舔女人下体高潮全视频| 亚洲av熟女| 日韩,欧美,国产一区二区三区 | 日本爱情动作片www.在线观看 | 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 全区人妻精品视频| 国产精品美女特级片免费视频播放器| 亚洲精品一区av在线观看| 成年女人毛片免费观看观看9| 村上凉子中文字幕在线| 十八禁网站免费在线| 免费在线观看日本一区| 欧美三级亚洲精品| 国产高清有码在线观看视频| 精品一区二区三区av网在线观看| 黄色视频,在线免费观看| 亚洲欧美日韩东京热| 高清毛片免费观看视频网站| 成年女人看的毛片在线观看| a在线观看视频网站| 国产极品精品免费视频能看的| 三级毛片av免费| 日本色播在线视频| 尤物成人国产欧美一区二区三区| 欧美日本亚洲视频在线播放| 亚洲一级一片aⅴ在线观看| 又黄又爽又刺激的免费视频.| 久久精品影院6| 国产精品99久久久久久久久| 亚洲精华国产精华精| 国产一区二区三区视频了| 麻豆精品久久久久久蜜桃| 少妇丰满av| 99精品在免费线老司机午夜| 99九九线精品视频在线观看视频| 波野结衣二区三区在线|