• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coordinate Bond Breaking Induced by Collapse of Poly(N-isopropyl acrylamide)as Ligands of a Rare Earth Complex

    2018-11-09 06:53:30TianyuSongYanyangZhuShuofengLiangGangZouQijinZhang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Tian-yu SongYan-yang ZhuShuo-feng LiangGang ZouQi-jin Zhang

    CAS Key Laboratory of Soft Matter Chemistry,Key Laboratory of Optoelectronic Science and Technology,Innovation Centre of Chemistry for Energy Materials,Department of Polymer Science and Engineering,University of Science and Technology of China,Hefei 230026,China

    Key words:Thermo-responsive polymer,Thermal quenching,Reversiblity

    I.INTRODUCTION

    Water-soluble rare earth complexes have been a longstanding goal for many research teams.Various functional groups have been introduced into the rare earth complex in order to achieve peculiar properties that respond to external stimuli,such as photo,pH and thermal responsive,and so on,which are essential for applications in the biological system[1–3].Rodrigues research group found that two water-soluble lanthanide luminescent complexes with ionophilic ligands can be used as a fluorescence imaging probe for invasive detection of mammal cancer cells[4].

    It is well known that rare earth complexes have advantages of narrow band emission,good monochromatic character,strong UV absorption ability and long fluorescence life[5–10]and diketone is one kind of organic ligands that has been used in many complexes[11,12].Diketonate as ligands can sensitize Eu3+to emit fluorescence and the sensitization process is that the diketonate ligand absorbs energy,undergoes intersystem crossing into a triplet state,and transfers its energy to the Eu3+ion subsequently[13,14].Diketone chemical structure exists in two isomers:keto and enol types.Due to the activity of methylene hydrogen,the isomer is apt to enol structure.In generalβ-diketones can be coordinated with metal ions in the form of the chelating bidentates to form a six-membered chelate ring.

    When water-soluble rare earth complexes are applied to ion detection by many research teams[15–17],it has been found that the fluorescence of the watersoluble rare earth complexes is easily quenched by water molecules.It is still a challenge to synthesize rare earth complexes that can both sensitize Eu3+emission and dissolve in water by improvement in molecular structure.Methods including grafting other functional groups on the complexes,blending semiconducting conjugated polymers with the complexes and introducing synergistic ligands to rare earth ions have been reported in many researches[18–20].In these studies,hydrophilic segments are introduced into the complexes to enable fluorescence of the complexes in aqueous solution.

    Scheme 1 Synthetic routine of Eu(ally-dbm)3-2Tppo-6PNIPAM.

    Poly(N-isopropylacrylamide)(PNIPAM)represents one of the most widely investigated thermal-responsive polymers and has been utilized as drug controlled release material,enzyme solid material,dehydrating agent,and so on[21,22].Owing to its hydrophilic amide group,under the temperature below the lower critical solution temperature(LCST),the polymer is in swollen conformation,while above the LCST,due to hydrophobic isopropyl group,it is in collapsed state.The collapse behavior of PNIPAM chains is affected by the molecular structure of PNIPAM above the LCST.For instance,for highly cross-linked PNIPAM,the temperature range of the process broadens remarkably,which has been studied before[23,24].Besides,the effect of sodium salts on LCST of PNIPAM was investigated by Bergbreiteret al.[25].In this work,PNIPAM is chosen to modify the diketone to achieve diketone sensitized Eu3+emission in aqueous solutions.Eu(ally-dbm)3-2Tppo-6PNIPAM was synthesized via a multistep procedure outlined in Scheme 1.Thermal-responsive PNIPAM was prepared via reversible addition fragmentation chain transfer(RAFT)polymerization and PNIPAM chains were introduced into rare earth complexes by click reaction.Fluorescent and thermal-responsive properties of the complex were studied and some novel phenomena were explored in detail.

    II.EXPERIMENTS

    A.Materials

    N-isopropylacrylamide was purchased from Aladdia and purified by recrystallization fromN-hexane.Azobiisobutyronitrile(AIBN)was recrystallized from ethanol prior to use.2-(Dodecylthiocarbonothioylthio)-2-methylpropionicacid(DDMAT)was previously prepared by ourgroup by RAFT.Acetophenone,methyl benzoate,allyl bromide,triphenylphosphine oxide(TPPO)europium(III)chloride hexahydrate,K2CO3,NaH,and isopropylamine were obtained from Aladdiar.

    B.Synthesis of the compounds

    1. Synthesis of(4,4-diallyloxy)-dibenzoylmethane(allydbm)

    (4-Allyloxy)-acetophenone(1.77 g,0.01 mol)was dissolved in anhydrous THF(100 mL).After addition of sodium hydride(0.8 g,0.02 mol),the mixture was stirred in an ice bath for 0.5 h.After addition of(4-allyloxy)-benzoic acid methyl ester,the mixture was slowly heated to 70?C and reacted at a nitrogen atmosphere protection for 72 h.After solvent was evaporated,the mixture was dissolved in water and extracted with ethylacetate and the reaction was repeated twice.The crude product was purified by column chromatography on silica gel(ethyl acetate:petroleum ether=1:12V/V)to obtain a yellow solid.Then the product was recrystallized from absolute ethanol(43.2%).

    2.Synthesis of Eu(ally-dbm)3-2Tppo

    FIG.11H NMR spectrum of ally-dbm in DMSO.

    1.011 g,0.003 mol(4,4-di-allyloxy)-dibenzoylmethane and triphenylphosphine oxide (Tppo) (0.278 g,0.001 mol)were dissolved in anhydrous THF(20 mL).Europium(III)chloride hexahydrate(0.366 g,0.001 mol)was dissolved in absolute ethanol(20 mL).The europium(III)chloride hexahydrate solution was slowly added dropwise to the ally-dbm and Tppo mixture solution.After addition of sodium hydroxide(0.12 g,0.003 mol)the mixture was stirred at 60?C for 0.5 h.The solvent was evaporated,and the residue was purified by recrystallization from a mixed solution of ethyl acetate and petroleum ether(67.5%).

    3.Synthesis of PNIPAM

    N-isopropylacrylamide was purified by recrystallization fromN-hexane. NIPAM(2.6 g,0.02297 mol),DDMAT (0.1196 g,0.328 mmol),and AIBN(0.5381 mg,0.00328 mmol)were dissolved in anhydrous THF(20 mL)seal tube polymerization.The mixture was stirred at 65?C for 72 h.The mixture was added dropwise to the anhydrous ether to precipitate three times(82.8%).

    4.Synthesis of Eu(ally-dbm)3-2Tppo-6PNIPAM

    PNIPAM-SH was easily obtained by reacting PNIPAM with isopropylamine.PNIPAM-SH(0.0344 g,0.02 mmol),Eu(ally-dbm)3-2Tppo(0.951 g,0.12 mmol)and irgacure819(10 mg,1 wt%)were dissolved in anhydrous THF(20 mL).The mixture was exposed to 365 nm ultraviolet radiation for 1 h.The residue was purified by recrystallization from anhydrous ether two times(73.2%).

    C.Characterization

    Ally-dbm was characterized by 300 MHz1H NMR(FIG.1).Eu(ally-dbm)3-2Tppo was characterized by TGA(Q5000IR)(FIG.2).The residual oxide mass percentage is 18.35%after fully burning.The experimental calculated value is very close to the theoretical calculated value 17.10%.The phosphorus pentoxide hygroscopicity in the combustion ash resulted in a smaller theoretical value than actual value.

    FIG.2 TGA of Eu(ally-dbm)3-2Tppo.

    FIG.31H NMR spectrum of PNIPAM in CDCl3.

    The thermal-responsive polymer PNIPAM was prepared via reversible addition fragmentation chain transfer(RAFT)polymerization and characterized by1H NMR(300 MHz)and GPC(waters 1515).The molecular weight and polydispersity index of the copolymer are 7200 and 1.175 resulting from the1H NMR(FIG.3)and GPC(FIG.4),respectively.

    Eu(ally-dbm)3-2Tppo-6PNIPAM was characterized by 300 MHz1H NMR and the1H NMR analysis shows the disappearance of all the peaks of double bonds(FIG.5).

    III.RESULTS AND DISCUSSION

    FIG.4 GPC of PNIPAM.

    FIG.5 1H NMR spectrumofEu(ally-dbm)3-2Tppo-6PNIPAM in CDCl3.

    Eu(ally-dbm)3-2Tppo-6PNIPAM can be dissolved into water at room temperature. From absorptions shown in FIG.6(a),it is easily found that two absorptions of Eu(ally-dbm)3-2Tppo-6PNIPAM in aqueous solution:a main absorption is located at about 365 nm and a shoulder peak appears at about 390 nm.The former is thought to be due to aπ-π?type transition associated with the conjugated system of the complex benzene ring[26],and the latter is possibly fromn-π?transition or singlet-triplet(1π-3π?)transition.From excitation spectra shown in FIG.6(b),it is seen that the excitation is located at 365 nm in aqueous solution,which is not distinguished from the absorption[27].The similarity between two kind spectra shows that the energy transfer from ligands to rare earth ions is mainly in fluenced by the absorbance of the complex.It is worth pointing out that there are two characteristic emissions in FIG.6(b),corresponding to fluorescence at 613 nm from Eu3+ion(FIG.6(b))and 455 nm from ligands(FIG.6(b)).Because the emission of the europium complexes is easily quenched in an acid environment,these emissions was used to probe the tumoral acidic pH microenvironment[28,29].

    As we all know,PNIPAM is a thermal-responsive polymer with a low critical solution temperature(LCST)at around 32?C due to its reversible hydrogen bonding with water in aqueous solution.When PNIPAM is introduced into the complex,such a thermal sensitive property would cause a change in the fluorescence of the complex.FIG.7 shows a relationship between temperature and fluorescence intensity of the complex in aqueous solution(λex=365 nm).As shown in FIG.6(b),there are two emission peaks in the fluorescence spectrum of the complex,one of which is at 613 nm from Eu3+.In FIG.7(a)the strength of the emission at 613 nm decreases along with temperature rising.Such a phenomenon called thermal quenching has been well realized in the previous reports[28,30].

    FIG.6 (a)Absorption spectrum ofEu(ally-dbm)3-2Tppo-6PNIPAM in aqueous solution. (b)Excitation(λem=613 nm)and fluorescence(λex=365 nm)spectra of Eu(ally-dbm)3-2Tppo-6PNIPAM in aqueous solution(c=5×10?5mol/L).

    Fluorescence intensity at 455 nm from ligands was also measured at different temperatures as shown in FIG.7(b). Fluorescence intensity ratios(I40/I20)of 40?C to 20?C are used to describe fluorescence quenching at 613 and 455 nm in FIG.7(a).From results shown in FIG.7,the ratio equals to 30.0%for the emission at 613 nm and 600%for the emission at 455 nm,respectively.Such a large difference is from the difference in two fluorescent processes of Eu3+and ligands.The former is an energy transfer process through intersystem crossing,and the latter is an intramolecular process.On the other hand,the large change in fluorescence intensity at 455 nm means that there is another mechanism responsible for the fluorescence quenching of the complex in aqueous solution along with the normal thermal quenching.

    FIG.7 Temperature dependent fluorescence intensity of Eu(ally-dbm)3-2Tppo-6PNIPAM(a)at 613 nm from Eu3+and(b)at 455 nm from ligands in aqueous solution(λex=365 nm)(c=5×10?5mol/L).

    It is well known that,in fluorescent process of rare earth complexes,the ligand,which is PNIPAM modified-diketone in this work,is usually thought to be firstly excited into the singlet excited state of the ligand and generates a ligand-based triplet state through fast inter-system crossing.Then,this triplet state transfers its energy to the central rare earth ion to produce a luminescent f-f state through a Dexter double electronexchange mechanism.The necessary condition for this mechanism is direct contact between aromatic ligand and rare earth ion,which facilitates the Dexter energy transfer process[31].According to this realization,the result shown in FIG.7(b)means part of the ligands can’t sensitize europium ion when PNIPAM chains collapse in aqueous solution.This deduction makes us hypothesize that the intramolecular cohesion of PNIPAM chains collapse pulls the ligand to disassociate from the europium ions,and the ligand fails to transfer energy to the europium ions through Dexter energy transfer,as a result,the fluorescence of the ligards increases.

    In order to con firm the hypothesis,the change of the coordinate bonding was investigated by IR spectrum measurements,and results are shown in FIG.8.IR spectra of PNIPAM,Eu(ally-dbm)3-2Tppo-6PNIPAM below LCST and above LCST show a peak at 1645 cm?1,which is assigned to absorption of C=O groups in three compounds.It has been known that the absorption of the C=O group would split into a doublet peak when there was the coordination between the group and Eu3+in small molecule complexes(FIG.9)[32].The C=O of PNIPAM in three compounds is so strong that split peak is not observed in three IR spectra.Two differential spectra are made by subtracting the spectrum of PNIPAM in the spectra of Eu(ally-dbm)3-2Tppo-6PNIPAM below LCST and above LCST,which are shown in FIG.8(d)and(e),respectively.Results show that a split peak appears when the complex is at temperature below LCST,and above LCST,the split peak disappears,indicating the breaking of the coordinate bonding.As the discussion on result of FIG.7,the breaking of the coordinate bonding means that the energy transfer from the ligand to Eu3+can’t be carried on,resulting in a self-body fluorescence of ligands.

    FIG.8 IR spectra of Eu(ally-dbm)3-2Tppo-6PNIPAM(a)above LCST and(b)below LCST,and(c)IR spectra of PNIPAM,IR differential spectra of Eu(ally-dbm)3-2Tppo-6PNIPAM(d)above LCST and(e)below LCST obtained by subtracting(c)in(a)and(b),respectively.

    FIG.9 IR spectra of complex Eu(ally-dbm)3-2Tppo and ligand ally-dbm.

    Thermal-responsive fluorescence of the complex is dependent on the temperature because there is dynamic equilibrium between temperature and collapse of PNIPAM.Relationship between temperature and fluorescence intensity of the complex is shown in FIG.10.For each measurement in FIG.10,at five-minute time interval the temperature reached a stable value.From curves shown in FIG.10,it is found that along with the increasing of the temperature,the florescence intensity decreases and there is a transition at about LCST of PNIPAM at 32?C.More interesting,the temperature-dependent process is reversible,and after a circulation fluorescence intensity is nearly restored with 96.5%of the initial value.This phenomenon means that the breaking of the coordinate bonding can be restored when temperature falls back to below LCST.This circulation has a potential application for the complex to be used as a probe in biological imaging and collapse studying of PNIPAM.It is worth exploring whether the circulation is reversible during repeatedly heating and cooling the aqueous solution of the complex.

    FIG.10 Temperature dependent fluorescence intensity of Eu(ally-dbm)3-2Tppo-6PNIPAM in aqueous solution at 613 nm(λex=365 nm)during heating and cooling processes(c=5×10?5mol/L).

    A circulating experiment was designed as follows:the aqueous solution of the complex is first heated to 40?C,at which PNPAM chains are in collapse,for fluorescence measurement,and then,the solution is cooled down to 20?C,at which PNPAM chains are stretched,for fluorescence measurement again.From circulating experimental results shown in FIG.11,it is found that the emission intensity at 613 nm from Eu3+is circulated along with temperature changing from 20?C to 40?C,and at the same time,the emission at 455 nm from ligand has the same changing tendency with contrary values.From these experimental observation it is easily deduced that when temperature changes from one above LCST to another below LCST,coordinate bonding between rare earth ions and ligands has a reversible breaking and recovering process. The reversibility shown in FIG.11 means that this thermal-responsive macromolecular complex has good thermal circulating stability in fluorescence intensity.

    IV.CONCLUSION

    A new macromolecular rare earth complex is synthesized and characterized,in which thermal-responsive PNIPAM is used as a ligand.The fluorescent intensity from this complex shows a reversible changing along with temperature changing.Below LCST of PNIPAM,the fluorescent intensity from the ligand is found increasing along with the decreasing of the fluorescent

    FIG.11 Fluorescence intensities of Eu(ally-dbm)3-2Tppo-6PNIPAM in aqueoussolution (a)at613nm and(b)at 455 nm circulating at 20 and 40?C,respectively.(λex=365 nm and c=5×10?5mol/L).

    intensity from rare earth ions.Analysis on IR spectra of complexes below and above LCST reveals that such a phenomenon is caused by breaking of coordinate bonding between ions and ligands.Circulate experiments show that there is a breaking-recovering process of the bond along with temperature changing from one above LCST to another below LCST.The complex with such a reversible thermal-responsive fluorescence can be used as a molecular probe not only for biological imaging,but also for collapse studying of PNIPAM.

    V.ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China(No.51673178,No.51273186,No.21574120,and No.11404087),the Basic Research Fund for the Central Universities(WK2060200012),the Science and Technological Fund of Anhui Province for Outstanding Youth (No.1608085J01),and the Fundamental Research Funds for the Central Universities, China PostdoctoralScience Foundation(No.2015M571918 and No.2017T100442).

    [1]J.Wu,Z.Ye,G.Wang,D.Jin,J.Yuan,Y.Guan,and J.Piper,J.Mater.Chem.19,1258(2009).

    [2]X.Xie,F.Tang,X.Shangguan,S.Che,J.Niu,Y.Xiao,X.Wang,and B.Tang,Chem.Commun.49,6520(2017)

    [3]Q.Wang,K.Ogawa,K.Toma,and H.Tamiaki,J.Photochem.Photobiol.A 201,87(2009).

    [4]J.R.Diniz,J.R.Correa,D.d.A.Moreira,R.S.Fontenele,A.L.de Oliveira,P.V.Abdelnur,J.D.Dutra,R.O.Freire,M.O.Rodrigues,and B.A.Neto,Inorg.Chem.52,10199(2013).

    [5]L.Aboshyan-Sorgho,H.Nozary,A.Aebischer,J.C.G.B¨unzli,P.Y.Morgantini,K.R.Kittilstved,A.Hauser,S.V.Eliseeva,S.p.Petoud,and C.Piguet,J.Am.Chem.Soc.134,12675(2012).

    [6]D.A.Raj,B.Francis,M.Reddy,R.R.Butorac,V.M.Lynch,and A.H.Cowley,Inorg.Chem.49,9055(2010).

    [7]Y.Ding,Y.Wang,H.Li,Z.Duan,H.Zhang,and Y.Zheng,J.Mater.Chem.21,14755(2011).

    [8]D.A.Raj,S.Biju,and M.Reddy,J.Mater.Chem.19,7976(2009).

    [9]S.Biju,D.A.Raj,M.Reddy,C.Jayasankar,A.H.Cowley,and M.Findlater,J.Mater.Chem.19,1425(2009).

    [10]M.D.McGehee,T.Bergstedt,C.Zhang,A.P.Saab,M.B.O’Regan,G.C.Bazan,V.I.Srdanov,and A.J.Heeger,Adv.Mater.11,1349(1999).

    [11]E.S.Andreiadis,N.Gauthier,D.Imbert,R.Demadrille,J.P′ecaut,and M.Mazzanti,Inorg.Chem.52,14382(2013).

    [12]V.Divya and M.Reddy,J.Mater.Chem.C 1,160(2013).

    [13]S.I.Klink,G.A.Hebbink,L.Grave,P.G.Oude Alink,F.C.Van Veggel,and M.H.Werts,J.Phys.Chem.A 106,3681(2002).

    [14]M.Bhaumik and M.El-Sayed,J.Chem.Phys.42,787(1965).

    [15]J.N.Hao and B.Yan,Chem.Commun.51,7737(2015).

    [16]A.de Bettencourt-Dias,P.S.Barber,and S.Bauer,J.Am.Chem.Soc.134,6987(2012).

    [17]C.C.Mi,Z.H.Tian,B.F.Han,C.B.Mao,and S.K.Xu,J.Alloys Compd.525,154(2012).

    [18]M.Reddy,V.Divya,and R.Pavithran,J.Chem.Soc.,Dalton Trans.42,15249(2013).

    [19]B.Francis,D.A.Raj,and M.Reddy,J.Chem.Soc.,Dalton Trans.39,8084(2010).

    [20]A.P.Bassett,S.W.Magennis,P.B.Glover,D.J.Lewis,N.Spencer,S.Parsons,R.M.Williams,L.De Cola,and Z.Pikramenou,J.Am.Chem.Soc.126,9413(2004).

    [21]Y.Guan and Y.Zhang,Soft Matter 7,6375(2011).

    [22]Y.Z.You,K.K.Kalebaila,S.L.Brock,and D.Oupicky,Chem.Mater.20,3354(2008).

    [23]Y.Qiu and K.Park,Adv.Drug Delivery Rev.53,321(2001).

    [24]C.De las Heras Alarcón,S.Pennadam,and C.Alexander,Chem.Soc.Rev.34,276(2005).

    [25]Y.Zhang,S.Furyk,D.E.Bergbreiter,and P.S.Cremer,J.Am.Chem.Soc.127,14505(2005).

    [26]W.Sager,N.Filipescu,and F.Sera fin,J.Phys.Chem.69,1092(1965).

    [27]R.Holm and F.Cotton,J.Am.Chem.Soc.80,5658(1958).

    [28]Y.Zhao,C.Shi,X.Yang,B.Shen,Y.Sun,Y.Chen,X.Xu,H.Sun,K.Yu,and B.Yang,10,5856(2016).

    [29]Y.Dai,P.A.Ma,Z.Cheng,X.Kang,X.Zhang,Z.Hou,C.Li,D.Yang,X.Zhai,and J.Lin,ACS Nano 6,3327(2009).

    [30]S.Sato and M.Wada,Bull.Chem.Soc.Jpn.43,1955(1970).

    [31]M.D.Ward,Coordination Chem.Rev.254,2634(2010).

    [32]D.Liu and Z.Wang,Polymer 49,4960(2008).

    免费女性裸体啪啪无遮挡网站| 久久精品国产鲁丝片午夜精品| 亚洲精品色激情综合| 黑人巨大精品欧美一区二区蜜桃 | 国产一区二区三区av在线| 狂野欧美激情性bbbbbb| 搡女人真爽免费视频火全软件| 夜夜爽夜夜爽视频| 曰老女人黄片| 女人精品久久久久毛片| 久久久a久久爽久久v久久| 亚洲成人手机| 最黄视频免费看| 亚洲精品久久成人aⅴ小说| 18禁在线无遮挡免费观看视频| 国产福利在线免费观看视频| 一个人免费看片子| 天堂8中文在线网| 色网站视频免费| 久久精品久久久久久久性| 日韩三级伦理在线观看| 国产免费现黄频在线看| 欧美 日韩 精品 国产| 黑人猛操日本美女一级片| 国产成人精品久久久久久| 久久久久久人妻| xxxhd国产人妻xxx| 制服诱惑二区| 国产毛片在线视频| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 伦精品一区二区三区| 深夜精品福利| 国产片内射在线| 超色免费av| a级毛片在线看网站| 男人舔女人的私密视频| 一级毛片电影观看| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区国产| 九色成人免费人妻av| 国产成人精品无人区| 两个人免费观看高清视频| 99热全是精品| 国产日韩一区二区三区精品不卡| 制服丝袜香蕉在线| 老女人水多毛片| 国产 精品1| 国产国拍精品亚洲av在线观看| 久久国产精品大桥未久av| 精品人妻一区二区三区麻豆| 好男人视频免费观看在线| 777米奇影视久久| 精品人妻偷拍中文字幕| 男人添女人高潮全过程视频| 日本欧美国产在线视频| 女人精品久久久久毛片| 成人亚洲欧美一区二区av| 国产色爽女视频免费观看| 久久久久网色| 国产一区二区在线观看日韩| 伦理电影大哥的女人| 香蕉精品网在线| av国产精品久久久久影院| 精品国产乱码久久久久久小说| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文字幕免费在线视频6| 色视频在线一区二区三区| 亚洲天堂av无毛| 九草在线视频观看| 丁香六月天网| 美女国产高潮福利片在线看| 久久97久久精品| 亚洲美女视频黄频| 亚洲欧美一区二区三区黑人 | 免费人妻精品一区二区三区视频| 国产毛片在线视频| 国产乱人偷精品视频| 欧美人与性动交α欧美软件 | 丝袜美足系列| 日韩大片免费观看网站| 男女啪啪激烈高潮av片| 国产又色又爽无遮挡免| 18禁动态无遮挡网站| 亚洲国产最新在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 91午夜精品亚洲一区二区三区| 国产探花极品一区二区| 老女人水多毛片| 国产精品久久久久久精品电影小说| 国产片内射在线| 精品国产乱码久久久久久小说| 免费av不卡在线播放| 亚洲国产看品久久| 国产日韩欧美视频二区| 视频中文字幕在线观看| 少妇被粗大猛烈的视频| 人人妻人人澡人人爽人人夜夜| 国产高清三级在线| 丝袜脚勾引网站| 久久青草综合色| 精品国产乱码久久久久久小说| 欧美最新免费一区二区三区| 晚上一个人看的免费电影| 国产免费视频播放在线视频| 中国三级夫妇交换| 男女下面插进去视频免费观看 | 免费黄频网站在线观看国产| 女性被躁到高潮视频| 亚洲国产av影院在线观看| 久久99热这里只频精品6学生| 亚洲国产av新网站| 亚洲伊人久久精品综合| 亚洲国产日韩一区二区| 丝袜喷水一区| 久久99热6这里只有精品| 大片免费播放器 马上看| 午夜久久久在线观看| 伦理电影大哥的女人| 日韩视频在线欧美| 超碰97精品在线观看| 婷婷色综合www| 成人漫画全彩无遮挡| 亚洲伊人久久精品综合| 国产成人精品无人区| 久久久久国产网址| 欧美精品高潮呻吟av久久| 另类精品久久| av不卡在线播放| 日本av手机在线免费观看| 大码成人一级视频| 一级,二级,三级黄色视频| 黄色配什么色好看| 亚洲丝袜综合中文字幕| 久久人人爽人人片av| 精品久久久精品久久久| 午夜久久久在线观看| 国产精品无大码| 国产精品 国内视频| 五月开心婷婷网| 免费人成在线观看视频色| 18禁动态无遮挡网站| 老司机亚洲免费影院| 18禁在线无遮挡免费观看视频| 国产男女内射视频| 亚洲美女黄色视频免费看| 99国产精品免费福利视频| 国产日韩欧美在线精品| 亚洲国产欧美日韩在线播放| 在线 av 中文字幕| 高清不卡的av网站| √禁漫天堂资源中文www| 少妇人妻 视频| 久久久久久久久久久免费av| 精品少妇黑人巨大在线播放| 91成人精品电影| 妹子高潮喷水视频| 一区二区三区乱码不卡18| 成人影院久久| 婷婷色麻豆天堂久久| 波野结衣二区三区在线| 久久久精品免费免费高清| 男人舔女人的私密视频| 少妇人妻精品综合一区二区| 婷婷色综合www| 综合色丁香网| 五月玫瑰六月丁香| 国产一区二区在线观看日韩| 日韩一本色道免费dvd| 美女脱内裤让男人舔精品视频| 在线精品无人区一区二区三| 少妇精品久久久久久久| 久久久久久人人人人人| 黄色视频在线播放观看不卡| 美女内射精品一级片tv| 国产激情久久老熟女| 最新中文字幕久久久久| 亚洲精品久久久久久婷婷小说| 日本-黄色视频高清免费观看| 日韩熟女老妇一区二区性免费视频| 成年女人在线观看亚洲视频| av线在线观看网站| 在线观看www视频免费| www日本在线高清视频| 在线观看免费高清a一片| 久久热在线av| 又粗又硬又长又爽又黄的视频| 日韩伦理黄色片| 精品人妻偷拍中文字幕| 在线天堂最新版资源| 欧美激情极品国产一区二区三区 | 又黄又爽又刺激的免费视频.| 婷婷成人精品国产| 又黄又粗又硬又大视频| 一区二区三区四区激情视频| 又粗又硬又长又爽又黄的视频| 免费播放大片免费观看视频在线观看| 2022亚洲国产成人精品| 日韩一本色道免费dvd| 亚洲三级黄色毛片| 久热久热在线精品观看| 精品人妻一区二区三区麻豆| av不卡在线播放| 热re99久久国产66热| 观看美女的网站| av天堂久久9| 多毛熟女@视频| xxx大片免费视频| av片东京热男人的天堂| 日本vs欧美在线观看视频| 蜜臀久久99精品久久宅男| 日韩一本色道免费dvd| 满18在线观看网站| 高清黄色对白视频在线免费看| 国产av码专区亚洲av| 国产免费现黄频在线看| 女人久久www免费人成看片| 中国美白少妇内射xxxbb| 精品人妻熟女毛片av久久网站| 亚洲精华国产精华液的使用体验| 久久久欧美国产精品| 国产av一区二区精品久久| 久久精品国产a三级三级三级| 日日啪夜夜爽| 老熟女久久久| 在线观看人妻少妇| 男人舔女人的私密视频| 美女国产高潮福利片在线看| 国产精品99久久99久久久不卡 | 久久午夜综合久久蜜桃| 99久久中文字幕三级久久日本| 成人黄色视频免费在线看| 久久精品久久久久久噜噜老黄| 91aial.com中文字幕在线观看| 男女下面插进去视频免费观看 | xxx大片免费视频| 亚洲国产av影院在线观看| 各种免费的搞黄视频| av片东京热男人的天堂| 亚洲成国产人片在线观看| 亚洲伊人久久精品综合| 精品一区二区免费观看| 五月玫瑰六月丁香| 国产国拍精品亚洲av在线观看| 国产在视频线精品| 天堂俺去俺来也www色官网| 国产色爽女视频免费观看| 尾随美女入室| 婷婷色麻豆天堂久久| 色吧在线观看| 国产精品一区二区在线不卡| 亚洲精品国产色婷婷电影| 久久午夜福利片| 国产免费视频播放在线视频| 三级国产精品片| 国产亚洲精品第一综合不卡 | 亚洲av成人精品一二三区| 国产激情久久老熟女| 国产av国产精品国产| 99久久精品国产国产毛片| 亚洲高清免费不卡视频| 99久久综合免费| 久久久精品区二区三区| 激情视频va一区二区三区| 自线自在国产av| 黑人巨大精品欧美一区二区蜜桃 | 国产不卡av网站在线观看| 免费人成在线观看视频色| 免费少妇av软件| 午夜视频国产福利| 久久久欧美国产精品| 九草在线视频观看| 天天操日日干夜夜撸| 久久免费观看电影| 亚洲欧美精品自产自拍| 男人操女人黄网站| 热99久久久久精品小说推荐| 欧美激情国产日韩精品一区| 制服丝袜香蕉在线| 日韩一本色道免费dvd| 制服诱惑二区| 99热国产这里只有精品6| 美女国产视频在线观看| 国产男人的电影天堂91| 亚洲av福利一区| 亚洲av电影在线观看一区二区三区| 成人漫画全彩无遮挡| 久久国产亚洲av麻豆专区| 最近中文字幕高清免费大全6| 一本久久精品| 青春草国产在线视频| 在线亚洲精品国产二区图片欧美| 亚洲美女搞黄在线观看| 人妻系列 视频| 晚上一个人看的免费电影| 在线观看人妻少妇| 久久久久久久久久成人| 久久这里有精品视频免费| 18禁国产床啪视频网站| a级毛片在线看网站| 人人妻人人澡人人看| 国产视频首页在线观看| 亚洲,一卡二卡三卡| a级毛片黄视频| 秋霞在线观看毛片| 精品99又大又爽又粗少妇毛片| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 国产又爽黄色视频| 99re6热这里在线精品视频| 久久久久久久久久久免费av| 精品国产露脸久久av麻豆| 永久免费av网站大全| 如日韩欧美国产精品一区二区三区| 国产欧美日韩综合在线一区二区| 少妇人妻 视频| 久久人人爽人人爽人人片va| 看免费av毛片| 又黄又粗又硬又大视频| 一本大道久久a久久精品| 亚洲人与动物交配视频| 亚洲五月色婷婷综合| 天天躁夜夜躁狠狠躁躁| 十八禁高潮呻吟视频| 精品亚洲成a人片在线观看| 成年动漫av网址| 免费看不卡的av| 黄色配什么色好看| 在线看a的网站| 成人手机av| 人人妻人人澡人人看| 亚洲av福利一区| 在线观看免费高清a一片| 少妇 在线观看| 韩国精品一区二区三区 | 国产一区有黄有色的免费视频| 久久久久久久久久成人| 亚洲人成77777在线视频| 国产在线免费精品| 美女大奶头黄色视频| 哪个播放器可以免费观看大片| 2018国产大陆天天弄谢| 国产片内射在线| 中文字幕精品免费在线观看视频 | 99热这里只有是精品在线观看| 免费看av在线观看网站| 乱码一卡2卡4卡精品| 宅男免费午夜| 精品国产一区二区三区久久久樱花| 久久99蜜桃精品久久| 少妇被粗大猛烈的视频| 日本vs欧美在线观看视频| 制服人妻中文乱码| 高清欧美精品videossex| 欧美成人精品欧美一级黄| 国产免费又黄又爽又色| 国产伦理片在线播放av一区| 精品人妻熟女毛片av久久网站| 日本免费在线观看一区| 欧美精品人与动牲交sv欧美| 日韩中字成人| 在线观看三级黄色| 啦啦啦视频在线资源免费观看| 高清欧美精品videossex| 中文字幕亚洲精品专区| 日韩视频在线欧美| 性高湖久久久久久久久免费观看| 大话2 男鬼变身卡| 亚洲伊人久久精品综合| 美女内射精品一级片tv| 亚洲人与动物交配视频| 丁香六月天网| 国产男女超爽视频在线观看| 午夜日本视频在线| 极品人妻少妇av视频| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 夫妻午夜视频| 国产成人91sexporn| av卡一久久| 日韩在线高清观看一区二区三区| 最新中文字幕久久久久| 99热这里只有是精品在线观看| 久久久久久久久久久久大奶| 国产精品三级大全| 午夜福利乱码中文字幕| 最近最新中文字幕免费大全7| 999精品在线视频| 欧美亚洲 丝袜 人妻 在线| 成人二区视频| 国产永久视频网站| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| av不卡在线播放| 99国产综合亚洲精品| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 视频中文字幕在线观看| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 久久毛片免费看一区二区三区| 久久久国产一区二区| 精品国产一区二区三区四区第35| 久久人人爽人人爽人人片va| 美女中出高潮动态图| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 色哟哟·www| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 少妇被粗大的猛进出69影院 | 老司机影院毛片| 啦啦啦中文免费视频观看日本| 亚洲,欧美,日韩| 观看美女的网站| 日韩,欧美,国产一区二区三区| 亚洲 欧美一区二区三区| 国产欧美亚洲国产| 久久精品国产综合久久久 | 国产精品一区www在线观看| 国产永久视频网站| 欧美3d第一页| 亚洲天堂av无毛| 中文字幕免费在线视频6| 人人妻人人澡人人看| 天天躁夜夜躁狠狠躁躁| 搡女人真爽免费视频火全软件| 老熟女久久久| 极品人妻少妇av视频| tube8黄色片| 777米奇影视久久| 久久婷婷青草| 精品午夜福利在线看| 国产又爽黄色视频| 国产激情久久老熟女| 日韩视频在线欧美| 又粗又硬又长又爽又黄的视频| 国产 精品1| 免费人成在线观看视频色| 国产精品久久久久久久电影| 久久免费观看电影| 18禁裸乳无遮挡动漫免费视频| xxx大片免费视频| www.熟女人妻精品国产 | 精品久久久精品久久久| 国产亚洲精品第一综合不卡 | 又粗又硬又长又爽又黄的视频| 国产亚洲一区二区精品| 欧美精品一区二区免费开放| 999精品在线视频| 亚洲色图 男人天堂 中文字幕 | 国产成人精品在线电影| 国产免费一区二区三区四区乱码| 色94色欧美一区二区| 好男人视频免费观看在线| 另类亚洲欧美激情| 99久久中文字幕三级久久日本| 女性被躁到高潮视频| 欧美激情国产日韩精品一区| 国产高清视频在线播放一区| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 国产黄色免费在线视频| 亚洲中文字幕日韩| 亚洲熟女精品中文字幕| 女人被躁到高潮嗷嗷叫费观| 久久久精品国产亚洲av高清涩受| 极品少妇高潮喷水抽搐| 成年女人毛片免费观看观看9 | 精品福利永久在线观看| av免费在线观看网站| 国产色视频综合| 男人舔女人的私密视频| 可以免费在线观看a视频的电影网站| 亚洲片人在线观看| 亚洲精品久久午夜乱码| 亚洲性夜色夜夜综合| 咕卡用的链子| 岛国毛片在线播放| 国产aⅴ精品一区二区三区波| 国产深夜福利视频在线观看| 欧美日韩成人在线一区二区| 丝袜美足系列| 另类亚洲欧美激情| 美女扒开内裤让男人捅视频| 久久久久久久国产电影| 午夜精品在线福利| 麻豆成人av在线观看| а√天堂www在线а√下载 | 一级作爱视频免费观看| 人人妻,人人澡人人爽秒播| 自拍欧美九色日韩亚洲蝌蚪91| 热99久久久久精品小说推荐| 国精品久久久久久国模美| 久久中文字幕人妻熟女| 亚洲欧美日韩另类电影网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲伊人色综图| 熟女少妇亚洲综合色aaa.| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 1024视频免费在线观看| 999久久久国产精品视频| 色综合欧美亚洲国产小说| 一本一本久久a久久精品综合妖精| 美女福利国产在线| 国产成人精品久久二区二区91| 精品一区二区三区视频在线观看免费 | 亚洲 国产 在线| 女人被狂操c到高潮| 久久精品国产清高在天天线| 美女福利国产在线| 亚洲精华国产精华精| 精品国产亚洲在线| 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区 | 一夜夜www| 久久香蕉精品热| 国产成人一区二区三区免费视频网站| 一a级毛片在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产伦人伦偷精品视频| 一区二区三区激情视频| 日本撒尿小便嘘嘘汇集6| 他把我摸到了高潮在线观看| 一级毛片高清免费大全| 国产精品 国内视频| 国产精品免费视频内射| 亚洲五月天丁香| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| 一区二区日韩欧美中文字幕| 亚洲 欧美一区二区三区| 国产成人精品无人区| 不卡一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 一二三四社区在线视频社区8| 美国免费a级毛片| 一边摸一边抽搐一进一小说 | 美女扒开内裤让男人捅视频| 成年人免费黄色播放视频| 亚洲va日本ⅴa欧美va伊人久久| 男人的好看免费观看在线视频 | 欧美日韩乱码在线| 亚洲精品国产区一区二| 国产成人欧美在线观看 | av电影中文网址| 色精品久久人妻99蜜桃| 国产在线一区二区三区精| 欧美 日韩 精品 国产| 欧美日韩一级在线毛片| 搡老岳熟女国产| av国产精品久久久久影院| 久久精品国产亚洲av高清一级| 悠悠久久av| 老司机福利观看| 亚洲精品美女久久av网站| 老司机深夜福利视频在线观看| 麻豆av在线久日| 国产野战对白在线观看| xxx96com| 最近最新中文字幕大全免费视频| 国产高清视频在线播放一区| svipshipincom国产片| 欧美日韩中文字幕国产精品一区二区三区 | 国内毛片毛片毛片毛片毛片| 中文字幕精品免费在线观看视频| 在线看a的网站| 激情在线观看视频在线高清 | 亚洲中文日韩欧美视频| 久久久久久久午夜电影 | 亚洲成人手机| 超色免费av| 在线视频色国产色| 精品国产乱子伦一区二区三区| 高清视频免费观看一区二区| 欧美最黄视频在线播放免费 | 精品电影一区二区在线| 很黄的视频免费| 国产91精品成人一区二区三区| 精品久久久精品久久久| 久久天躁狠狠躁夜夜2o2o| 超碰97精品在线观看| 国产国语露脸激情在线看| 久久草成人影院| 男女午夜视频在线观看| 久久精品国产99精品国产亚洲性色 | 国产深夜福利视频在线观看| 99久久国产精品久久久| 久久人人97超碰香蕉20202| 欧美成狂野欧美在线观看| 夫妻午夜视频| 美女午夜性视频免费| 中出人妻视频一区二区| 啦啦啦免费观看视频1| 免费av中文字幕在线| 黄色女人牲交| 久久国产精品人妻蜜桃| 亚洲美女黄片视频| 欧美成人免费av一区二区三区 | 一区福利在线观看| 正在播放国产对白刺激| 天堂动漫精品| 看片在线看免费视频| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 国产熟女午夜一区二区三区| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站| 美女 人体艺术 gogo| 久久久国产欧美日韩av|