• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag-Cu Nanoparticles Supported on N-Doped TiO2Nanowire Arrays for Efficient Photocatalytic CO2Reduction

    2018-11-09 06:53:32XiaonongWangJunMaYangguangHuRanLongYujieXiong
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Xiao-nong WangJun MaYang-guang HuRan LongYu-jie Xiong

    Hefei National Laboratory for Physical Sciences at the Microscale,Collaborative Innovation Center of Chemistry for Energy Materials(iChEM),School of Chemistry and Materials Science,and National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230026,China

    Key words:Photocatalytic CO2reduction,Schottky junction,Energy transfer,TiO2,Nanoparticles

    I.INTRODUCTION

    The energy and environmental issues associated with the consumption of fossil fuel have in fluenced our daily life.Carbon dioxide(CO2)largely contributes to the greenhouse gas among various emitted products.To solve both the environmental and energy issues,the conversion of CO2to valuable fuels such as methane(CH4)and methanol through photocatalysis has attracted wide interests[1?6].According to the fundamental principle,three steps are mainly involved in a process of photocatalytic CO2reduction:(i)absorption of incident photons by semiconductor to generate photoexcited electrons and holes,(ii)separation of photoexcited electrons and holes and their migration to the surface of photocatalyst,and(iii)CO2reduction by the electrons and oxidation reaction by the holes.For this reason,light absorption should be first engineered by selecting and modifying semiconductor in efforts to achieve high activity in photocatalytic CO2reduction.

    Since the first report on photocatalytic CO2reduction in 1979[7],a variety of semiconductors have been investigated towards this application[5,8?11].Among various semiconductors,TiO2is a very promising candidate for photocatalytic reactions owing to its high stability and photocatalytic performance.However,the bandgap of TiO2at 3.2 eV makes it only absorb ultraviolet(UV)light,which accounts for 5%photons in the solar spectrum.In order to absorb visible light by TiO2,great efforts have been made to modify TiO2[12?15].In 2001,Asahi and co-workers reported that N-doped TiO2exhibits photocatalytic activity under visible-light illumination[12].The hybridization of N 2p orbitals in doped TiO2could narrow the bandgap,resulting in visible-light absorption.Since then,the N-doped TiO2has been widely investigated for visiblelight photocatalysis[16?18].

    To further improve photocatalytic performance,the Schottky junction between metal and semiconductor has also been investigated to improve charge separation and transfer[19,20].By combining metal nanoparticles with semiconductor,photoexcited electrons can be transferred and trapped on the metal with suitable work function,which spatially separates the electrons from holes.In addition,the surface plasmon of noble metal nanoparticles(e.g.,Ag nanoparticles)may promote the creation and/or separation of electron-hole pairs through two different mechanisms[21?24]:(i)local electromagnetic field enhancement,and(ii)resonant energy transfer(RET)when the light absorption of semiconductor and the plasmonic band of metal nanoparticles sufficiently overlap.

    Thus it should be a promising approach to the enhancement of photocatalytic CO2reduction by integrating N-doped TiO2with plasmonic metal nanoparticles.Upon the accumulation of sufficient photoexcited electrons on surface,the overall photocatalytic performance is still limited by active sites.It has been reported that the integration of cocatalysts(e.g.,PdCu[5],AuCu[25],and PtCu[26])with TiO2can provide active sites to enhance the photocatalytic conversion of CO2to valuable hydrocarbons.

    In this article,we report a facile nanofabrication approach to combining dense Ag-Cu nanoparticles with N-doped TiO2nanowire arrays without the need of using surfactants.As compared with wet-chemical methods,this approach does not involve surfactants so as to make an intimate contact between metal and semiconductor,which would dramatically enhance the efficiency of electron transfer during photocatalytic CO2conversion.In this model,Ag nanoparticles offer a plasmonic band which sufficiently overlaps with the light absorption of N-doped TiO2,enabling RET to improve carrier creation and separation.Meanwhile,Cu nanoparticles provide active sites for CO2conversion[28?30].We specifically choose TiO2nanowires that have been widely investigated for solar energy harvesting and conversion process[16,31,32]as our material model.As compared with the disorderly dispersed nanowires,TiO2nanowire arrays exhibit superb performance in light trapping owing to their high aspect ratios[33,34].When light is introduced into the vertical arrays,multiple scattering would occur within the arrays,which effectively increases optical length and thus enhances light absorption.This design thus perfectly offers the improvement on light absorption by doping and light trapping,charge separation by Schottky junction and RET,and surface reactions by active sites,which all can enhance the performance of photocatalytic CO2conversion under full-spectrum irradiation.This nanofabrication technique should also provide a flexible approach to designing various hybrid structures by altering evaporation metals.

    II.EXPERIMENTS

    A.Chemical

    Tetrabutyl titanate,hydrochloric acid,ethanol,and acetone were purchased from Sinopharm Chemical Reagent Co.,Ltd.The water used in the experiments was deionized.All chemicals were used as received without further purification.

    B.Synthesis of TiO2nanowire arrays and N-doped TiO2 nanowire arrays

    The TiO2nanowire arrays were prepared by a hydrothermal method.In a typical synthesis,the mixture of 12-mL deionized water and 12-mL hydrochloric acid was stirred for 5 min.Subsequently,0.4-mL tetrabutyl titanate was added into the mixture.After stirring for 15 min,the mixture solution was transferred to a 50-mL Te flon-lined stainless steel autoclave.A piece of cleaned FTO glass was then placed at an angle against the wall of the Te flon-liner with the conducting side facing down.The hydrothermal synthesis was conducted at 150?C for 3 h.After the reaction,the autoclave was cooled to room temperature naturally.The rutile TiO2nanowire arrays were prepared by simply annealing the sample in air at 450?C for 2 h,with a heating rate of 5?C/min.

    The N-doped TiO2nanowire arrays were prepared by annealing the sample in a tube-type furnace in ammonia at 450?C for 2 h,with a heating rate of 1?C/min.

    C.Integration of AgCu nanoparticles with TiO2nanowire arrays or N-doped TiO2nanowire arrays

    An ultrahigh vacuum(UHV)electron-beam evaporation system(Shenyang Scientific Instruments,China,DZS-500)was used to deposit a layer of 5 nm Ag film and 5 nm Cu film(Ag5Cu5)on TiO2nanowire arrays or N-doped TiO2nanowire arrays.The evaporation rate was maintained at 0.03 nm/s under the pressure of about 1×10?4mbar.

    D.Sample characterization

    Scanning electron microscopy(SEM)images were taken on a FEI Sirion 200 field-emission scanning electron microscope operated at 5 kV.X-ray powder diffraction(XRD)patterns were recorded on a Philips X’Pert Pro Super diffractometer with Cu Kαradiation(λ=1.54178 ?).UV-Vis diffuse re flectance data were recorded in the spectral region of 300?800 nm with a Shimadzu SolidSpec-3700 spectrophotometer.X-ray photoelectron spectra(XPS)were collected on an ESCALab 250 X-ray photoelectron spectrometer,using nonmonochromatized Al-KαX-ray as the excitation source.

    E.Photoelectrochemical measurements

    The measurements were carried out on a CHI 660D electrochemical station(Shanghai Chenhua,China)in ambient condition under irradiation of a 300 W Xe lamp(Solaredge 700,China).The power density of full spectrum was set to be 100 mW/cm2,the ultraviolet(UV)light was measured to be 2.7 mW/cm2.Standard threeelectrode setup was used with the fabricated samples as photoelectrode,with a Pt foil as counter electrode,and the Ag/AgCl electrode as reference electrode.The three electrodes were inserted in a quartz cell filled with 0.5-mol/L Na2SO4electrolyte.The Na2SO4electrolyte was purged with Ar for 30 min prior to the measurements.The photocurrent responses of the prepared photoelectrodes(i.e.,I-V)were operated by measuring the photocurrent densities under chopped light irradiation with the light on/o ffcycles for each 10 s.

    F.Photocatalytic CO2reduction

    In a typical experiment,3-cm2photocatalysts including 0.03-mg Au and Cu were immersed into 30-mL deionized water with 5-mL triethanolamine as a sacrificial agent in a home-made quartz bottle,followed by saturation with high-purity CO2for 30 min.Subsequently,light irradiation was performed using a 300-W Xe lamp with full-spectrum light,UV light or visible light as the illumination source,respectively.The light source and power intensity were consistent for all the photocurrent measurements.The photocatalytic reaction was typically performed for 4 h.The amount of CH4,CO,and H2evolved was measured by gas chromatography(GC,7890A,Ar carrier,Agilent).H2was detected using a thermal conductivity detector(TCD),and CH4was measured by a flame ionization detector(FID).CO was converted to CH4by a methanation reactor,and then analyzed with FID.Three replicates were collected for each sample with relative error<10%.

    III.RESULTS AND DISCUSSION

    A.Sample characterization

    Ag-Cu nanoparticles can make intimate contact with TiO2nanowire arrays during electron beam evaporation,which establishes the Schottky junction between the components.SEM images with different magnifications(FIG.1(a)and(b))show that the Ag-Cu nanoparticles have an average size of 20 nm and tightly contact the TiO2nanowire arrays.These nanoparticles are constructed as an immiscible Ag-Cu binary phase diagram instead of AgCu alloy[35].X-ray photoelectron spectroscopy(XPS,FIG.1(c))reveals the existence of N,Ag,and Cu elements in the sample,indicating the successful N doping.Moreover,X-ray diffraction(XRD,FIG.1(d))shows that all the peaks can be assigned to rutile TiO2(JCPDS No.21-1276),face-centered cubic(fcc)Ag,(JCPDS No.65-2871)and Cu(JCPDS No.04-0836).This verifies the formation of immiscible Ag-Cu binary phase(namely,Ag5Cu5).We thus name the sample with Ag-Cu nanoparticles supported on N-doped TiO2nanowire arrays as“Ag5Cu5/N-TiO2”.

    In the sample preparation process,N element is doped into the lattice of rutile TiO2by annealing the TiO2nanowire arrays in NH3atmosphere.As shown in FIG.2,such N doping(N-TiO2)results in an extension of light absorption to the visible spectrum.By doping N into the TiO2,the light absorption range can be extended to 500 nm.This extended light absorption can thus sufficiently overlap with the plasmonic band of Ag5Cu5nanoparticles.The plasmonic band can be well resolved in the absorption spectrum of Ag5Cu5nanoparticles supported on the undoped TiO2nanowire arrays(Ag5Cu5/TiO2).As compared with bare TiO2,

    FIG.1 SEM images of Ag5Cu5nanoparticles combined with N-doped TiO2nanowire arrays(Ag5Cu5/N-TiO2)at(a)low and(b)high magnification.(c)XPS spectra of Ag5Cu5/NTiO2.(d)XRD pattern of Ag5Cu5/N-TiO2.

    FIG.2 UV-Vis diffuse re flectance spectra of TiO2nanowire arrays,N-doped TiO2nanowire arrays,Ag5Cu5/TiO2 nanowire arrays and Ag5Cu5/N-doped TiO2nanowire arrays.

    the light absorption in the visible spectrum should result from the plasmonic effect of Ag5Cu5nanoparticles.Thus we anticipate that the N-doped TiO2and Ag5Cu5nanoparticles can offer an overlapping light absorption in the sample of Ag5Cu5/N-TiO2.Since the RET process requires sufficient overlap between semiconductor and metal nanoparticles,such a match in the spectral range can help enhance carrier creation/separation and thus photocatalytic performance.The apparent enhancement around 400?550 nm for the Ag5Cu5/N-doped TiO2sample results from the match between the Ag5Cu5and N-doped TiO2.

    B.Photoelectrochemical(PEC)performance

    FIG.3 Photocurrent-potential curve of(a)TiO2nanowire arrays and N-doped TiO2nanowire arrays under visible-light irradiation,(b)N-doped TiO2nanowire arrays and Ag5Cu5/N-doped TiO2nanowire arrays under UV-light irradiation,(c)N-doped TiO2nanowire arrays and Ag5Cu5/N-doped TiO2nanowire arrays under visible-light irradiation,and(d)N-doped TiO2nanowire arrays and Ag5Cu5/N-doped TiO2nanowire arrays under full-spectrum light irradiation.

    Upon the completion of sample synthesis and fabrication,we investigate the PEC performance of our samples with the illumination source of UV light,visible light,and full-spectrum light,respectively.As shown in FIG.3(a),TiO2can barely generate photocurrents under visible-light illumination.This situation can be improved by doping TiO2with nitrogen.The doping of N atoms leads to the orbital hybridization of N 2p and TiO2valence band,and thus narrows the bandgap of TiO2.The resulted visible light absorption gives a relatively apparent photocurrent response under visiblelight illumination.

    We further evaluate the effects of Ag5Cu5nanoparticles on the photocurrent response of N-doped TiO2nanowire arrays.Ag5Cu5nanoparticles potentially can play dual roles in photocurrent enhancement?Schottky junction and plasmonic RET.To appreciate the promotion by Schottky junction,we collect photocurrents under UV-light illumination.As shown in FIG.3(b),the photocurrents of N-doped TiO2nanowire arrays can be enhanced 5 times by the addition of Ag5Cu5nanoparticles.Given that plasmonic effect is excluded under UV irradiation,this enhancement should result from the function of Schottky junction.The Schottky junction traps electrons on Ag5Cu5nanoparticles,and thus reduces the recombination of the electron-hole pairs in the N-doped TiO2.

    Furthermore,theRET processisassessedunder visible-light illumination,in which the plasmonic property of Ag5Cu5nanoparticles can be activated.As shown in FIG.3(c),the Ag5Cu5/N-doped TiO2nanowire arrays give a 3.8 times stronger photocurrent response than the N-doped TiO2.This enhancement results from the surface plasmon of metal nanoparticles whose band matches with the light absorption of N-doped TiO2.The RET process enhances the carrier creation and separation,which can boost the PEC performance under visible-light illumination.Taken together,the integration of N-doped TiO2with Ag5Cu5nanoparticles can significantly enhance the full-spectrum performance as shown in FIG.3(d).As compared with the N-doped TiO2,the photocurrent of Ag5Cu5/N-doped TiO2is enhanced about 6.4 times,owing to the synergetic effect of Schottky junction and RET process.

    C.Photocatalytic CO2reduction

    FIG.4 The average rates of photocatalytic(a)CH4,(b)CO,and(c)H2production for TiO2nanowire arrays,N-doped TiO2 nanowire arrays,and Ag5Cu5/N-doped TiO2nanowire arrays under UV-light,visible-light,and full-spectrum irradiation,respectively.(d)Schematic illustrating the major process in the photocatalytic reactions.Performance of Ag5Cu5/N-doped TiO2nanowire arrays for(e)CH4and CO evolution and(f)H2evolution in 3 successive 4 h cycles under full-spectrum irradiation.

    Upon acquiring the giant enhancement on photocurrent response,we are in the position to evaluate the performance of our samples in the photocatalytic CO2reduction with triethanolamine as a sacrificial agent in H2O.FIG.4(a?c)shows the average rates of photocatalytic CH4,CO,and H2production by TiO2nanowire arrays,N-doped TiO2nanowire arrays and Ag5Cu5-supported N-doped TiO2nanowire arrays under different light illumination,respectively. The N-doped TiO2nanowire arrays integrated with Ag5Cu5nanoparticles exhibit significantly higher photocatalytic activity than bare TiO2and N-doped TiO2in the production of total products,demonstrating the importance of synergetic Schottky junction and RET effects to photocatalysis.Specifically,the production rate of CH4by the Ag5Cu5/N-doped TiO2nanowire arrays is 720 μmol·g?1·h?1,which is about 6 times that of the TiO2nanowire arrays(FIG.4(a)).The production rates in full spectrum are higher than the sum of those under UV and visible illumination for the Ag5Cu5/N-doped TiO2nanowire arrays,indicating the synergetic effects.

    Based on the experiment results,we can summarize the major processes in the photocatalytic CO2reactions as shown in FIG.4(d).The UV light and partial visible light can photoexcite electrons and holes in N-doped TiO2.The electrons are then separated from holes and become trapped by the metal nanoparticles through the Schottky junction.Moreover,the visible light can induce the surface plasmon of Ag5Cu5nanoparticles whose band has a spectral overlap with the light absorption of N-doped TiO2,which enhances the creation and separation of electron-hole pairs through the RET process.Under the full-spectrum illumination,the Schottky junction can be synergized with the RET process,thereby further enhancing the photocatalytic performance in CO2reduction.We have performed the photocatalytic reaction for 3 cycles using the same Ag5Cu5/N-doped TiO2sample,each of which lasts 4 h under full-spectrum irradiation.As shown in FIG.4(e)and(f),the sample shows excellent performance stability in the recycling test.

    IV.CONCLUSION

    In conclusion,we have prepared the N-doped TiO2nanowire array through a hydrothermal method,followed by the deposition of Ag5Cu5nanoparticles through electron beam evaporation.The doped N can expand the absorption range of TiO2to visible light,matching the surface plasmonic resonance of Ag5Cu5nanoparticles.The Schottky junction between semiconductor and metal can be synergized with the RET process in this work,enhancing the photocatalytic performance in CO2conversion.Another contribution from Ag5Cu5nanoparticles is the role of Cu as active sites for CO2reduction.This work provides a method for largescale photocatalyst fabrication towards future practical applications.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Key R&D Program of China(2017YFA0207301),National Natural Science Foundation of China(No.21725102,No.21471141, No.21601173), CAS Key Research Program of Frontier Sciences (QYZDB-SSWSLH018),CAS InterdisciplinaryInnovation Team,Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(No.2016FXCX003),Anhui Provincial Natural ScienceFoundation (No.1608085QB24),and Chinese Universities Scientific Fund(WK2310000067).

    [1]S.Ma,M.Sadakiyo,M.Heima,R.Luo,R.T.Haasch,J.I.Gold,M.Yamauchi,and P.J.A.Kenis,J.Am.Chem.Soc.139,47(2017).

    [2]H.Zhang,J.Wei,J.Dong,G.Liu,L.Shi,P.An,G.Zhao,J.kong,X.Wang,X.Meng,J.Zhang,and J.Ye,Angew.Chem.Int.Ed.55,14310(2016).

    [3]W.Tu,Y.Zhou,and Z.Zou,Adv.Mater.26,4607(2014).

    [4]J.L.White,M.F.Baruch,J.E.Pander,Y.Hu,I.C.Fortmeyer,J.E.Park,T.Zhang,K.Liao,J.Gu,Y.Yan,T.W.Shaw,E.Abelev,and A.B.Bocarsly,Chem.Rev.115,12888(2015).

    [5]R.Long,Y.Li,Y.Liu,S.Chen,X.Zheng,C.Gao,C.He,N.Chen,Z.Qi,L.Song,J.Jiang,J.Zhu,and Y.J.Xiong,J.Am.Chem.Soc.139,4486(2017).

    [6]Y.Q.Feng,H.Y.Cheng,J.Han,X.Z.Zheng,Y.Y.Liu,Y.Yang,and L.W.Zhang,Chin.Chem.Lett.28,2254(2017).

    [7]T.Inoue,A.Fujishima,S.Konishi,and K.Honda,Nature 277,637(1979).

    [8]L.Tan,W.Ong,S.Chai,and A.R.Mohamed,Chem.Eng.J.308,248(2017).

    [9]Y.Wang,N.Huang,J.Shen,P.Liao,X.Chen,and J.Zhang,J.Am.Chem.Soc.140,38(2018).

    [10]M.F.Kuehnel,K.L.Orchard,K.E.Dalle,and E.Reisner,J.Am.Chem.Soc.139,7217(2017).

    [11]G.Liu,X.Meng,H.Zhang,G.Zhao,H.Pang,T.Wang,P.Li,T.Kako,and J.Ye,Angew.Chem.Int.Ed.56,5570(2017).

    [12]R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,and Y.Taga,Science 293,269(2001).

    [13]I.Justicia,P.Ordejon,G.Canto,J.L.Mozos,J.Fraxedas,Battiston,G.A.Battiston,R.Gerbasi,and A.Figueras,Adv.Mater.19,1399(2002).

    [14]X.Liu,G.Zhu,X.Wang,X.Yuan,T.Lin,and F.Huang,Adv.Energy Mater.6,1600452(2016).

    [15]Q.Wu,F.Huang,M.Zhao,J.Xu,J.Zhou,and Y.Wang,Nano Energy 24,63(2016).

    [16]G.Wang,X.G.Xiao,W.Li,Z.Lin,Z.Zhao,C.Chen,C.Wang,Y.Li,X.Huang,L.Miao,C.Jiang,Y.Huang,and X.Duan,Nano Lett.15,4692(2015).

    [17]J.H.Pan,G.Han,R.X.Zhou and S.Zhao,Chem.Commun.47,6942(2011).

    [18]G.Liu,L.C.Yin,J.Wang,P.Niu,C.Zhen,Y.Xie,and H.M.Cheng,Energy Environ.Sci.5,9603(2012).

    [19]A.L.Linsebigler,G.Lu,and J.T.Yates Jr.,Chem.Rev.95,735(1995).

    [20]W.J.Wang,Y.Wang,Q.Xu,H.X.Ju,T.Wang,Z.J.Tao,S.W.Hu,and J.F.Zhu,Chin.Chem.Lett.28,1760(2017).

    [21]S.Linic,P.Christopher,and D.B.Ingram,Nat.Mater.10,911(2011).

    [22]X.Wang,C.Liow,D.Qi,B.Zhu,W.R.Leow,H.Wang,C.Xue,X.Chen,and S.Li,Adv.Mater.26,3506(2014).

    [23]L.Weng,H.Zhang,A.O.Govorov,and M.Ouyang,Nat.Commun.5,4792(2014).

    [24]J.Li,S.K.Cushing,P.Zheng,T.Senty,F.Meng,A.D.Bristow,A.Manivannan,and N.Wu,J.Am.Chem.Soc.136,8438(2014).

    [25]S.Neatu,J.Macia-Agullo,P.Concepcion,and H.Garcia,J.Am.Chem.Soc.136,15969(2014).

    [26]X.Zhang,F.Han,B.Shi,S.Farsinezhad,G.P.Dechaine,and K.Shankar,Angew.Chem.Int.Ed.51,12732(2012).

    [27]M.Aresta,A.Dibenedetto,and A.Angelini,Chem.Rev.114,1709(2014)

    [28]S.Posada-Perez,P.J.Ramirez,J.Evans,F.Vines,P.Liu,F.Illas,and J.A.Rodriguez,J.Am.Chem.Soc.138,8269(2016).

    [29]Z.Cao,D.Kim,D.Hong,Y.Yu,J.Xu,S.Lin,X.Wen,E.M.Nichols,K.Jeong,J.A.Reimer,P.Yang,and C.J.Chang,J.Am.Chem.Soc.138,8120(2016).

    [30]K.P.Kuhl,E.R.Cave,D.N.Abram,and T.F.Jaramillo,Energy Environ.Sci.5,7050(2012).

    [31]G.Ai,H.Li,S.Liu,R.Mo,and J.Zhong,Adv.Funct.Mater.25,5706(2015).

    [32]X.Sheng,D.He,J.Yang,K.Zhu,and X.Feng,Nano Lett.14,1848(2014).

    [33]J.Wang,D.N.Tafen,J.P.Lewis,Z.Hong,A.Manivannan,M.Zhi,M.Li,and N.Wu,J.Am.Chem.Soc.131,12290(2009).

    [34]Z.Jiang,F.Yang,N.Luo,B.T.T.Chu,D.Sun,H.Shi,T.Xiao,and P.P.Edwards,Chem.Commun.47,6372(2008).

    [35]M.Jabbareh and F.Monji,Calphad 60,208(2018).

    午夜福利在线观看吧| 岛国在线观看网站| 精品久久久久久,| 国产成人福利小说| 久久久色成人| 高潮久久久久久久久久久不卡| 黄色日韩在线| 草草在线视频免费看| 丰满乱子伦码专区| 国产中年淑女户外野战色| 啦啦啦观看免费观看视频高清| 黄色日韩在线| 久久久久久久久大av| 国内久久婷婷六月综合欲色啪| 国产午夜精品论理片| 97碰自拍视频| 久久久久久国产a免费观看| 男人和女人高潮做爰伦理| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 精品久久久久久,| av在线天堂中文字幕| 午夜激情欧美在线| 日日摸夜夜添夜夜添小说| 国内精品美女久久久久久| 免费av毛片视频| 一个人观看的视频www高清免费观看| 日本撒尿小便嘘嘘汇集6| a级一级毛片免费在线观看| 国产一级毛片七仙女欲春2| 一a级毛片在线观看| 久久精品国产自在天天线| 18禁国产床啪视频网站| 国产亚洲欧美在线一区二区| 亚洲av电影在线进入| 观看美女的网站| 99久久精品国产亚洲精品| 亚洲欧美精品综合久久99| 高清在线国产一区| 久久精品91蜜桃| 欧美av亚洲av综合av国产av| 国产精品一及| 少妇的逼好多水| 精品久久久久久久毛片微露脸| 99久久无色码亚洲精品果冻| 午夜福利在线观看吧| 一级作爱视频免费观看| 国产精品电影一区二区三区| 亚洲精品亚洲一区二区| 亚洲av成人av| 香蕉丝袜av| 天美传媒精品一区二区| 桃红色精品国产亚洲av| 亚洲在线自拍视频| 757午夜福利合集在线观看| 黄色日韩在线| 国产精品,欧美在线| 男女视频在线观看网站免费| 日本一二三区视频观看| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 三级男女做爰猛烈吃奶摸视频| 日本 av在线| 国产精品久久久久久人妻精品电影| 婷婷丁香在线五月| 女同久久另类99精品国产91| 宅男免费午夜| 亚洲成av人片免费观看| 色综合婷婷激情| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 欧美午夜高清在线| 男插女下体视频免费在线播放| 国产 一区 欧美 日韩| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| 麻豆国产av国片精品| 国产探花在线观看一区二区| 午夜影院日韩av| 一个人免费在线观看电影| 国产单亲对白刺激| 在线观看免费视频日本深夜| 老汉色av国产亚洲站长工具| 两人在一起打扑克的视频| 亚洲无线观看免费| 丁香欧美五月| 久久久久九九精品影院| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 超碰av人人做人人爽久久 | 国产高清三级在线| 在线观看av片永久免费下载| 中文字幕熟女人妻在线| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 他把我摸到了高潮在线观看| 日韩有码中文字幕| 欧美日韩瑟瑟在线播放| 岛国视频午夜一区免费看| 日韩亚洲欧美综合| 91在线观看av| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频| 黑人欧美特级aaaaaa片| av在线蜜桃| 国产一区二区激情短视频| 午夜激情欧美在线| 亚洲色图av天堂| 免费av毛片视频| 精品欧美国产一区二区三| 国产激情欧美一区二区| 亚洲精品日韩av片在线观看 | 9191精品国产免费久久| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 成人精品一区二区免费| 国产真人三级小视频在线观看| 国产精品久久视频播放| 99热这里只有是精品50| 色尼玛亚洲综合影院| 人人妻人人看人人澡| 欧美av亚洲av综合av国产av| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合| 欧美bdsm另类| 国产淫片久久久久久久久 | 中文资源天堂在线| 久久久成人免费电影| a在线观看视频网站| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 国产精华一区二区三区| 又黄又粗又硬又大视频| 久久久成人免费电影| 亚洲av免费高清在线观看| 一区二区三区国产精品乱码| avwww免费| 俺也久久电影网| 国产aⅴ精品一区二区三区波| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 桃红色精品国产亚洲av| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 欧美成人a在线观看| 国产在线精品亚洲第一网站| 亚洲美女黄片视频| 久久性视频一级片| 搞女人的毛片| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 老司机在亚洲福利影院| 琪琪午夜伦伦电影理论片6080| 美女高潮的动态| 国产乱人伦免费视频| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区| 国产黄色小视频在线观看| 国产精品永久免费网站| 99国产极品粉嫩在线观看| 色播亚洲综合网| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 俺也久久电影网| 久久久久久久久中文| 中文字幕人成人乱码亚洲影| 日本一二三区视频观看| 国产探花极品一区二区| 亚洲精品美女久久久久99蜜臀| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 国产欧美日韩精品一区二区| 九九久久精品国产亚洲av麻豆| 99在线视频只有这里精品首页| 亚洲一区二区三区不卡视频| 美女高潮喷水抽搐中文字幕| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 国产精品久久电影中文字幕| 午夜免费成人在线视频| 欧美xxxx黑人xx丫x性爽| 成人欧美大片| 国产真人三级小视频在线观看| 毛片女人毛片| 国产精品国产高清国产av| 亚洲精品美女久久久久99蜜臀| 成人鲁丝片一二三区免费| 精品不卡国产一区二区三区| 国产伦人伦偷精品视频| 午夜精品一区二区三区免费看| 日韩成人在线观看一区二区三区| 国产真实乱freesex| 国内精品一区二区在线观看| 国产三级黄色录像| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 久99久视频精品免费| 国产毛片a区久久久久| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 不卡一级毛片| 亚洲欧美日韩卡通动漫| 中文字幕高清在线视频| 久久久久久久久久黄片| 亚洲国产精品久久男人天堂| 国产三级中文精品| 青草久久国产| 少妇高潮的动态图| 久久久精品欧美日韩精品| 在线播放国产精品三级| 亚洲精品在线观看二区| 亚洲五月婷婷丁香| 天天一区二区日本电影三级| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| 国产三级中文精品| 亚洲成av人片免费观看| 精品福利观看| 亚洲av第一区精品v没综合| 夜夜躁狠狠躁天天躁| 五月伊人婷婷丁香| av片东京热男人的天堂| 精品人妻偷拍中文字幕| 亚洲av免费高清在线观看| 少妇熟女aⅴ在线视频| 男女床上黄色一级片免费看| 精品日产1卡2卡| 日本免费一区二区三区高清不卡| 亚洲黑人精品在线| 搡老熟女国产l中国老女人| 亚洲,欧美精品.| 成年女人毛片免费观看观看9| 悠悠久久av| 国产精品久久久久久人妻精品电影| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| x7x7x7水蜜桃| 午夜福利在线观看免费完整高清在 | 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 国产国拍精品亚洲av在线观看 | 午夜免费成人在线视频| 可以在线观看的亚洲视频| 免费av不卡在线播放| 中文字幕熟女人妻在线| 99热精品在线国产| 97超视频在线观看视频| 熟女少妇亚洲综合色aaa.| 日韩欧美国产一区二区入口| 成人性生交大片免费视频hd| 欧美乱码精品一区二区三区| 亚洲自拍偷在线| 少妇丰满av| 免费无遮挡裸体视频| 搡老岳熟女国产| 99久久无色码亚洲精品果冻| 国产成人啪精品午夜网站| 99视频精品全部免费 在线| 日本精品一区二区三区蜜桃| 日韩成人在线观看一区二区三区| 国产欧美日韩精品亚洲av| 国产美女午夜福利| 国产伦在线观看视频一区| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 哪里可以看免费的av片| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 热99在线观看视频| 午夜精品在线福利| 中文资源天堂在线| 黄色女人牲交| 日韩有码中文字幕| 国产免费一级a男人的天堂| 99久久无色码亚洲精品果冻| 午夜老司机福利剧场| 99久久精品一区二区三区| 免费av毛片视频| 91麻豆av在线| 成人三级黄色视频| 国产成人欧美在线观看| 色在线成人网| 欧美黄色淫秽网站| 色在线成人网| 成人鲁丝片一二三区免费| 精品电影一区二区在线| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| 51午夜福利影视在线观看| 午夜免费男女啪啪视频观看 | 级片在线观看| 国产真实伦视频高清在线观看 | 男插女下体视频免费在线播放| 婷婷亚洲欧美| 精品免费久久久久久久清纯| 国产探花极品一区二区| 搡老妇女老女人老熟妇| 日本熟妇午夜| 亚洲av第一区精品v没综合| 在线播放无遮挡| 国产一区二区激情短视频| 亚洲av成人精品一区久久| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 国产野战对白在线观看| e午夜精品久久久久久久| 久久久久久人人人人人| 可以在线观看的亚洲视频| 老汉色∧v一级毛片| 性色avwww在线观看| 网址你懂的国产日韩在线| 18禁美女被吸乳视频| 在线观看舔阴道视频| 久久精品综合一区二区三区| 免费在线观看日本一区| 国产国拍精品亚洲av在线观看 | 久久这里只有精品中国| 国产精品久久电影中文字幕| 国产高清激情床上av| 亚洲第一欧美日韩一区二区三区| 国产午夜精品久久久久久一区二区三区 | 99热精品在线国产| 99在线人妻在线中文字幕| 久久国产精品人妻蜜桃| 欧美黑人欧美精品刺激| 国产成人a区在线观看| 国产欧美日韩一区二区三| 内地一区二区视频在线| 草草在线视频免费看| 亚洲avbb在线观看| 在线观看一区二区三区| 欧美中文综合在线视频| 久久精品国产亚洲av香蕉五月| 亚洲精品456在线播放app | 老熟妇仑乱视频hdxx| 午夜精品在线福利| 一进一出抽搐gif免费好疼| 欧美色视频一区免费| 亚洲中文字幕一区二区三区有码在线看| 俺也久久电影网| 三级男女做爰猛烈吃奶摸视频| 欧美黑人巨大hd| 日韩精品中文字幕看吧| 天天躁日日操中文字幕| 免费av不卡在线播放| 男女视频在线观看网站免费| 欧美日韩综合久久久久久 | 精品乱码久久久久久99久播| 亚洲人成网站高清观看| 变态另类丝袜制服| 亚洲中文日韩欧美视频| 深爱激情五月婷婷| 特级一级黄色大片| 亚洲七黄色美女视频| 天天一区二区日本电影三级| 夜夜爽天天搞| 精品不卡国产一区二区三区| 久久九九热精品免费| 亚洲中文字幕一区二区三区有码在线看| 毛片女人毛片| 日韩免费av在线播放| 熟女人妻精品中文字幕| 神马国产精品三级电影在线观看| 色视频www国产| 亚洲美女黄片视频| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 桃色一区二区三区在线观看| 最好的美女福利视频网| 亚洲第一欧美日韩一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 熟女少妇亚洲综合色aaa.| 亚洲片人在线观看| 精品久久久久久久久久久久久| 国产精品久久久人人做人人爽| svipshipincom国产片| 国产一区在线观看成人免费| 99久久综合精品五月天人人| 国产高清激情床上av| 国产精品永久免费网站| 88av欧美| 一区二区三区国产精品乱码| 超碰av人人做人人爽久久 | 噜噜噜噜噜久久久久久91| netflix在线观看网站| 嫩草影院精品99| 成人永久免费在线观看视频| а√天堂www在线а√下载| 757午夜福利合集在线观看| 久久久久久久精品吃奶| 国产视频一区二区在线看| 久久久久九九精品影院| 欧美一区二区精品小视频在线| 黄色片一级片一级黄色片| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 高清日韩中文字幕在线| 免费观看精品视频网站| 亚洲av电影在线进入| 国产伦在线观看视频一区| 18禁美女被吸乳视频| 手机成人av网站| 欧美xxxx黑人xx丫x性爽| 成人特级黄色片久久久久久久| 亚洲最大成人手机在线| 伊人久久大香线蕉亚洲五| 在线看三级毛片| 午夜福利18| 欧美一级毛片孕妇| 午夜免费观看网址| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 少妇高潮的动态图| 禁无遮挡网站| 嫩草影视91久久| 国产视频内射| 一a级毛片在线观看| 精品久久久久久久久久久久久| 亚洲精品色激情综合| 两个人看的免费小视频| 国产精品三级大全| 国产免费男女视频| 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 亚洲成人久久爱视频| 国产三级在线视频| 亚洲国产中文字幕在线视频| 久久久久久久久久黄片| 人人妻人人看人人澡| 欧美日韩乱码在线| 在线观看66精品国产| 午夜精品在线福利| 日本五十路高清| 国产精品久久久久久久久免 | 久久香蕉国产精品| 内射极品少妇av片p| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 国产一级毛片七仙女欲春2| 国产成人av教育| 国产真实伦视频高清在线观看 | 久久草成人影院| 九九久久精品国产亚洲av麻豆| 黑人欧美特级aaaaaa片| 亚洲av电影在线进入| 亚洲 欧美 日韩 在线 免费| 无人区码免费观看不卡| 中文字幕人成人乱码亚洲影| 亚洲av成人精品一区久久| 色综合站精品国产| 欧美精品啪啪一区二区三区| 亚洲五月婷婷丁香| 我的老师免费观看完整版| 国产美女午夜福利| 搡老岳熟女国产| 级片在线观看| 九九热线精品视视频播放| 特级一级黄色大片| 高清毛片免费观看视频网站| 亚洲精品亚洲一区二区| 精品99又大又爽又粗少妇毛片 | 最新中文字幕久久久久| 欧美一级a爱片免费观看看| 久久久精品欧美日韩精品| 成人国产综合亚洲| 久久天躁狠狠躁夜夜2o2o| 色哟哟哟哟哟哟| 欧美色欧美亚洲另类二区| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| 天美传媒精品一区二区| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 一区福利在线观看| 国产色婷婷99| 一夜夜www| 全区人妻精品视频| 国内精品久久久久久久电影| 草草在线视频免费看| 免费人成在线观看视频色| 免费大片18禁| 九九在线视频观看精品| 国产成人av教育| 色噜噜av男人的天堂激情| 亚洲在线观看片| 亚洲性夜色夜夜综合| 老司机在亚洲福利影院| 久久九九热精品免费| 91字幕亚洲| 国产精品亚洲av一区麻豆| 久久久成人免费电影| 久久久精品大字幕| 国内毛片毛片毛片毛片毛片| 小说图片视频综合网站| 亚洲人成伊人成综合网2020| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩卡通动漫| 12—13女人毛片做爰片一| 蜜桃亚洲精品一区二区三区| 婷婷六月久久综合丁香| 精品国内亚洲2022精品成人| av在线天堂中文字幕| 老熟妇乱子伦视频在线观看| 亚洲成av人片免费观看| av天堂在线播放| 人妻久久中文字幕网| 国产成年人精品一区二区| 小蜜桃在线观看免费完整版高清| 69人妻影院| 国产精品亚洲一级av第二区| 亚洲成人久久爱视频| 欧美av亚洲av综合av国产av| 精品人妻一区二区三区麻豆 | 成人18禁在线播放| 欧美日韩中文字幕国产精品一区二区三区| 老司机深夜福利视频在线观看| 老鸭窝网址在线观看| 亚洲成人久久性| 成熟少妇高潮喷水视频| 有码 亚洲区| 一个人看视频在线观看www免费 | 国产视频一区二区在线看| av女优亚洲男人天堂| 男女午夜视频在线观看| 日本三级黄在线观看| 有码 亚洲区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品免费久久 | 日韩欧美精品v在线| 亚洲第一电影网av| 亚洲内射少妇av| www日本在线高清视频| 俺也久久电影网| 亚洲 国产 在线| 精品日产1卡2卡| 老汉色av国产亚洲站长工具| 国产伦在线观看视频一区| 一区二区三区免费毛片| 在线观看av片永久免费下载| 精品日产1卡2卡| 欧美黑人欧美精品刺激| 亚洲无线观看免费| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 99热这里只有精品一区| 日韩欧美三级三区| 国产亚洲精品综合一区在线观看| 色播亚洲综合网| 精品一区二区三区人妻视频| 夜夜夜夜夜久久久久| 国产精品,欧美在线| 亚洲国产欧美网| 免费人成视频x8x8入口观看| 亚洲成人久久性| 亚洲不卡免费看| 舔av片在线| 日本黄色视频三级网站网址| 国产精品久久久久久久久免 | 狠狠狠狠99中文字幕| 一进一出抽搐gif免费好疼| 日韩欧美在线二视频| 国产一区二区三区在线臀色熟女| 在线天堂最新版资源| 亚洲精品456在线播放app | 黄片小视频在线播放| 特级一级黄色大片| 成人av在线播放网站| 黄色女人牲交| 成人永久免费在线观看视频| 最近在线观看免费完整版| 国产高清激情床上av| 国产亚洲精品av在线| 免费观看的影片在线观看| 国产一区在线观看成人免费| 一级毛片高清免费大全| 一本久久中文字幕| 欧美在线黄色| 小蜜桃在线观看免费完整版高清| a在线观看视频网站| 搡老岳熟女国产| 精品久久久久久久人妻蜜臀av| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品999在线| 99久久精品一区二区三区| 久久久久国内视频| 国产真实伦视频高清在线观看 | 国产高清三级在线| 欧美zozozo另类| 神马国产精品三级电影在线观看| 男女那种视频在线观看| 亚洲欧美一区二区三区黑人| 中文字幕av成人在线电影| 最新美女视频免费是黄的| 最近最新中文字幕大全免费视频| 男人舔奶头视频| 黑人欧美特级aaaaaa片| 欧美在线一区亚洲| 免费看a级黄色片| 免费人成在线观看视频色| 一边摸一边抽搐一进一小说| 亚洲精品日韩av片在线观看 | 亚洲熟妇中文字幕五十中出| h日本视频在线播放| 性欧美人与动物交配|