• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gd Doped Hollow Nanoscale Coordination Polymers as Multimodal Imaging Agents and a Potential Drug Delivery Carriers

    2018-11-09 06:53:36GozhengZhoZhenGuoQinwngChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Go-zheng ZhoZhen GuoQin-wng Chen

    a.Hefei National Laboratory for Physical Sciences at the Microscale,Department of Materials Science&Engineering,University of Science and Technology of China,Hefei 230026,China

    b.Anhui Key Laboratory for Cellular Dynamics and Chemical Biology,School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    Key words:Coordination polymers,Magnetic resonance imaging,Fluorescence optical imaging,Drug delivery potentials

    I.INTRODUCTION

    The early detection of cancers,as the very first and most crucial step before treatment,determines the chances of survival of patients[1,2],and a variety of imaging methods provide good auxiliary assistance to the diagnosis.The requirements for the detection are not only tracking the lesion location[3,4],but also well con firming the margins of the tumor for the next surgical resection[5,6].Inevitably,one single way of imaging could encounter with their respective limitations[7,8],thus resulting in the possible inaccuracy or even misdiagnosis.So a step forward aims at conceiving nanomaterials that could serve as multimodal imaging probes,of which different modalities could have complementary effects.

    Among various imaging modalities,magnetic resonance imaging(MRI)and fluorescence optical imaging tools are broadly applied to medical and biological fields.For the MRI technique,the need for higher imaging effect puts forward the request of contrast agents(CAs)for contrast enhancement.Generally,there are two types of MRI CAs:one type is the positive contrast agent[9,10]that shortens the longitudinal relaxation time(T1)of water protons,and the other type is the negative contrast agent[11,12]that reduces the transverse relaxation time(T2)of water protons.The advantages and disadvantages of both modes have been discussed in previous reports[13,14],and thus dual modal contrast agents combining T1 and T2 CAs are necessary in order to adopt the advantages and avoid the shortcomings.As for the fluorescence optical imaging,the fluorophores labeled with targeting ligands have been applied to delineating tumor margins with the help of intraoperative optical devices during the surgery[15].However,the intraoperative pathology cannot be correlated with preoperative diagnostic images.Hence,in many researchs, fluorescent organic dyes(such as FITC[16]or RITC[17]),inorganic quantum dots[18,19]or nanoparticles containing rare earth ions[20,21]are often decorated onto MRI CAs.Integrated with the MRI CAs,the multimodal imaging probes will offer aid to the preoperative diagnosis and the accurate intraoperative resection.

    Typically,the common idea is to combine different materials in the form of composites to attain multifunctionality[22,23].This way to some extent has proven to be effective,but still faced with a series of drawbacks:except for the complicated synthesis steps,usually nanocomposites may result in the undesirable interactions between different materials[24,25].So an increasing number of researches[26–28]are focused on the one single material that integrates different imaging tools to facilitate the detection of the lesion locations.Recently,our group has developed a novel contrast agent Mn3[Co(CN)6]2which combines both the MRI(T1 and T2)and fluorescence optical imaging in one material[29].As we expected,the bimetallic coordination polymers present the properties of each element:the T1 contrast effects originate from the Mn element,while the Co element contributes to the T2-relaxation property.In the meantime,the energy level transition of Mn2+brings about the nanomaterials fluorescent optical imaging effect.Further experiments demonstrate the viability of bio-application.Unfortunately,ther1value of the Mn-based contrast agents still remains at a lower level in contrast with the Gd-based ones[30],and in theory replacing Mn element by Gd could effectively improve ther1value,but simply replacing all the manganese by the Gd element would abandon the fluorescence optical imaging effect derived from the intrinsic nature of the Mn ions[29].A compromise way to overcome the situation might be partial substitution of the manganese ions to realize the co-residency of the three metal elements coexisting in the structure.On the other hand,ther2value of Mn3[Co(CN)6]2is also relatively lower than the commonly used T2-weighted CAs Fe3O4,which has room for promotion.Herein,we prepare a highly integrated system through a solvothermal method.Gd doped hollow nanoscale coordination polymers(Gd doped prussian blue analogue,denoted as GPBA)are formed as a multimodal imaging contrast agents,and the hollow structure formed without acid etching also exhibits prospect as a drug carrier system.Although the metal ions and CN?may be toxic alone,the coordination polymers of these units show good biocompatibility due to the intrinsic stability under room temperature.After the silica coating process,both the MRI contrast effects and biocompatibility have been improved.

    II.EXPERIMENTS

    A.Materials

    Materials used in the experiment are as follows:potassium cobalticyanide(K3[Co(CN)6])was purchased from J&K chemical Ltd.(Shanghai,China);tetraethylorthosilicate(TEOS),gadolinium oxide(Gd2O3),manganese acetate(Mn(COOH)2·4H2O),nitric acid(HNO3),aqueous ammonia,and polyvinyl pyrrolidone(PVP)were purchased from Shanghai Chemical Reagent Company(Shanghai,China).Gadolinium oxide was dissolved in the nitric acid and Gd(NO3)3was crystallized through evaporation of the acid solution.

    B.Synthesis of the hollow nanoparticles and silica coating

    A slight change was carried out to synthesize the precursor according to the previous report.18.375 mg manganese acetate and 0.3 g PVP(K-30)were dissolved in a mixed solution containing 15 mL ethanol and 5 mL deionized water,and the solution was denoted as solution A.0.04 mmol potassium cobalticyanide was dissolved in 5 mL deionized water and then added to solution A using a syringe under stirring.The white precipitates of the precursor were formed.Then adequate amounts of Gd(NO3)3together with 1 g PVP(K-30)were added into the above solution,afterwards,adequate amounts of ethanol and water were added to form a 30 mL C2H5OH/15 mL H2O system.The solution was then added into a Te flon autoclave(50 mL),then the sealed autoclave was heated for 40 h at 170?C.After it was cooled to room temperature,the precipitate was centrifuged and washed a few times with mixed solution containing ethanol,purified water,and DMF.

    The silica coating procedure was performed through suspending 18 mg nanocubes in 18 mL of ethanol and then dissolving 1.08 mL aqueous ammonia in 18 mL ethanol(3%V/V).One solution was poured into the other one under stirring and kept stirring for 10 min.68μL tetraethylorthosilicate was injected into the suspension above and the solution was stirred for 2 h.In order to get a thicker silica layer,the process can be repeated once again.The coated nanoparticles were centrifuged and washed several times using ethanol and purified water repeatedly.

    C.DOX-loading and releasing studies

    The prepared nanoparticles(1 mg)were added into 1.4 mL DOX solution(1 mg/mL)for drug loading experiments.The mixture was shaking for 24 h at 37?C and then centrifuged and washed several times.All the supernatants after centrifugation were retained for the next measurement of loading capacity and encapsulation efficiency,which was calculated according to the previous report[31].

    For the DOX release behavior investigation,the drug loaded nanoparticles were placed in a dialysis bag and then immersed in 20 mL PBS solution(pH=7.4).Every 3 h we would collect 1.0 mL solution outside the dialysis bag to measure the concentration of DOX by UV-Vis spectrophotometer and further calculate the release amount.We conducted three sets of experiments to reduce the deviations.

    D.Cell viability test

    Cytotoxicity of the NPs and the silica-coated ones were determined by the tetrazolium dye(MTT)method using H520 and A549 cell lines. Cells were incu-bated in a 96-well plate at 37?C in a moist atmosphere with 100%CO2,and then the medium above was modified with fetal bovine serum(10%),penicillin(100 units/mL)and streptomycin(100 units).After cultured for 24 h,the solution containing uncoated and coated GPBA nanoparticles was added to replace the original medium.Then,MTT solution was added into each well for another 4 h incubation.Finally,an ELISA reader was applied to test the absorbance of each well.

    E.Fluorescence imaging measurement in vitro

    The GPBA nanoparticles were cultured with A549 cells for 24 h,followed byin vitrolaser confocal scanning fluorescence measurements.The detailed procedure can be found in the previous literature[47]and after incubation images were taken with a laser scanning microscope(Zeiss L SM 710)equipped with a 63?1.3 numerical aperture PlanApo objective.

    F.Magnetic resonance imaging measurement

    Based on the metal(Gd+Mn)content of GPBA measured by ICP-AES,different concentrations of GPBA were dispersed in deionized water and clinical magnetic resonance scanner(GE Signa HDxt 3.0 Tesla MRI system)was applied to measure the relaxation characteristics.T1-weighted magnetic resonance images were acquired by utilizing a saturated recovery spin echo sequence(TE=10 ms;TR=4000,2000,1000,500,200,100 ms). T2?weighted images are obtained by the Carr-Purcell-Meiboom-Gill method with RARE sequences(parameters:TR=120 ms;TE=2.328,6.112,9.896,13.68,17.46,21.24 ms;the filp angle=30o;bandwidth=31.25 Hz;FOV=180×180 mm2).

    BALB/c mice bearing tumors were employed to perform MRI exprerimentin vivo.The mouse was anesthetized and then intravenously injected at tail by GPBA nanoparticles(5 mg/mL in PBS,100μL).MR imaging was obtained at preinjection,20 min and 24 h post-injection.

    G.Characterization

    The morphology of the nanostructured material was observed using a field emission scanning electron microscopy(FE-SEM,JEOL JSM-6700M)and a transmission electron microscope(TEM,Hitachi H7650).The crystal structure of the material was measured by an X-ray diffractometer(XRD,Rigaku D/MAX-cA,Japan),the 2θscanning range was 10o?70o.Metal ion concentrations were measured with an Optima 7300DV Inductively Coupled Plasma Atomic Emission Spectrometer(ICP-AES).The surface electronic structure was characterized by X-ray photoelectron spectroscopy

    FIG.1(a,b)SEM images and(c,d)TEM images of GPBA.

    (XPS,VGESCALAB MKII).High-resolution transmission electron microscopy(STEM,JEM2100F)was used to characterize the distribution of Fe,O,C,and N elements in the sample.Ultraviolet-visible(UV-Vis)absorption spectra were measured with a UV-visible spectrophotometer(TU-1810 DSPC)over a measuring wavelength at 480 nm.

    III.RESULTS AND DISCUSSION

    The morphology of the products was revealed by the SEM images as shown in FIG.1(a)and(b).It can be seen that the cube-shaped nanoparticles ranging from 120 nm to 160 nm in size have been prepared,which have little changes in the size and shape with the precursor.Some cracks on the surface(shown in the inset of the FIG.1(a))reveal that it may be hollow in the interior,which is further proven by TEM results.The high magnification image in FIG.1(b)indicates the surface of the nanoparticle may be composed of tiny nanograins.From TEM micrographs,we can see that after the solvothermal process,the uniform hollow structures are formed with an outer shell in thickness of about 10 nm,while in stark contrast,the diameter of the cavity is more than 100 nm.This kind of thin-shelled hollow structure provides a huge space for encapsulating therapeutic drugs.

    FIG.2(a)XRD pattern of GPBA and the inset is magnified XRD pattern from 10oto 37o,showing slightly left-shifted peaks compared with the precursor.(b)X-ray photoelectron spectroscopy(XPS)of GPBA.

    X-ray diffraction(XRD)patterns of the precursor and GPBA are shown in FIG.2(a).The peak position has a good consistence with the standard XRD pattern of the precursor(Mn3[Co(CN)6]2),but has a slightly left shift as shown in the inset of FIG.2(a),indicating the lattice constant enlargement,which could be caused by Gd3+doping.The molar ratio of Gd to Mn was measured to be approximately 2.9:6.2 by ICP-AES.The X-ray photoelectron spectroscopy(XPS)measurement was carried out with the peak at 1188.8,614.88,and 781.27 eV in XPS spectra(FIG.2(b)),demonstrating existence of Gd,Mn,and Co elements,respectively.Dark- field STEM image of the same nanoparticle clearly shows the spatial distribution of Gd,Mn,Co elements in the nanoprobes(see FIG.3).Obviously,the three elements are mainly distributed in the outer layer,while absent in the middle,further indicating the hollow interior structure.The position of the three elements matches roughly well with the shell.The three elements are cano-bridged to form the trimetallic coordination polymers in the shell of the NPs.Through the measurements above,it is con firmed that the hollow trimetallic coordination polymers have been successfully fabricated.

    The nanoporous characteristic and hollow structure of the coordination polymers suggest it is a potential drug delivery vehicle.DOX,as one of the most widely used antitumor drug,was employed to perform the drug loading procedure[31].It is determined that the DOX loading content was as high as 1166 mg/g(53.8 wt%),and encapsulation efficiency reached 83.29%,the loading capacity showed quite excellent results in contrast with previous reports[32,33],in which the loading capacity was usually several hundred milligrams per gram.The high loading capacity demonstrated the great potentials of our platform as antitumor drug delivery vehicle.Drug release behavior was also studied as shown in FIG.4.Under buffers of pH=7.4,DOX gradually released over time,eventually entering plateau phase with around 40%of DOX being released.

    FIG.3(a)HAADF-STEM image of the Gd doped coordination polymer.(b)The merged image and(c)?(e)EDX element mapping of the same nanoparticles.

    FIG.4 The pro file of DOX release in PBS solution(pH=7.4).

    The excellent drug loading performance of the NPs obviously bene fits from the hollow structure.We found that the hollow structure gradually evolved as the reaction time proceeded until a completely hollow structure was formed as shown in FIG.5.Although our previous study[34]has provided reasonable explanations for the forming mechanism of Pd-doped hollow Prussian blue analogue nanoparticles,however,the mechanism of Gd doped ones should be different due to the distinct formation process.The formation progress of the hollow structure was an action of evacuating and recently a research[35]about the formation of the hollow MOFs provided some guidance for us,and the explanation may account for the possible mechanism:just like Rubik-cube,the big nanocubes of the precursor Mn3[Co(CN)6]2are composed of great amounts of small nanocubes;under the high temperature condition,Gd3+gradually substitutes Mn2+to form a thin layer of coordination polymers on the surface of the particles,then an inside-out formation process takes place;the surface-energy-driven mechanism makes the inner nanocubes to dissolve and migrate to the surface,recrystallizing with the little surface nanocubes to form Gd dopped hollow coordination polymers.Further studies should be carried out to make the mechanism clear.

    FIG.5 The formation progress of the hollow structure of the NPs.

    As our previous report[29]revealed,the nanoparticles could enhance both biocompatibility and MRI contrast effect simultaneously after a silica layer coating on the surface,so our NPs were also coated by silica layer and then MRI measurements were carried out by a clinical magnetic resonance scanner.Uncoated and silica-coated nanoprobes were respectively dispersed in deionized water with different concentration to determine the longitudinal(r1)and transverse(r2)relaxivities.As illustrated in FIG.6,uncoated and silica-coated GPBA exhibitedr1of 7.38 and 13.57(mmol/L)?1·s?1,andr2of 180.6 and 304.8(mmol/L)?1·s?1,exhibiting fairly good contrast effect. Compared with the precursor,r1value of the uncoated NPs could reach 7.38(mmol/L)?1·s?1,53%enhancement,while ther2value is 2 times as high as the previous one.Initially we intended to enhance the T1 imaging effect through partial substitution,however,the final results showed that both T1 and T2 imaging effects were well strengthened.Through comparison with CAs in previous reports(as shown in Table I),we concluded that no matter as T1 CA or as T2 CA individually,the nanoprobes showed no weaker imaging effects than other single modal CAs.Thus,the hybrid system could well satisfy the imaging demands as dual T1&T2 CAs.Apparently T1 enhancement is derived from Gd doping as we have anticipated;seven unpaired electrons of Gd ions would help shorten longitudinal(T1)relaxation time,while the T2 contrast enhancement may result from changes of coordination environment.On the other hand,there are reports[36]revealing magnetic properties enhancement due to magnetic coupling effect via doping magnetic element.We can also make a reasonable inference:Gd ions partially substitutes Mn ions,which could enhance magnetic coupling,thus consequently getting a promotion at the T2 relaxation rates.

    FIG.6 T1 and T2 weighted MR images of(a)uncoated and(b)silica-coated nanoparticles with different concentrations of metal ions,respectively.T1 and T2 relaxation rates as a function of metal concentration of(c)uncoated nanoparticles and(d)silica-coated nanoparticles,respectively.

    Uncoated nanoparticles as CAs for MRI have alsobeen investigatedin vivo.0.5 mL saline solution containing 0.5 mg NPs was injected into a mouse bearing an A549-tumor via the tail vein and measured by clinically used 3T MR scanner mentioned above.Theoretically the CAs would enter the tumor readily as a result of EPR effect and be retained there for long periods.As shown in FIG.7 above,within 20 min after injection,T1 contrast effect had slightly enhancement,while after 24 h,MRI tests exhibited excellent T1 imaging effect,helping delineate the margins of the tumor clearly,which would be of great advantages for the next surgical resection.As for T2-weighted imaging,the MRI contrast effect at 20 min showed no obvious changes,but after 24 h injection,we could see negative contrast enhancement at partial regions of the tumor.Thein vivoexperiments showed the potential of our nanoparticles for use as preoperative diagnosis.

    TABLE I The relaxivities rates of some typical contrast agents reported in previous articles.

    FIG.7 in vivo T1 images and T2 images of a mouse bearing an A549-tumor at different time intervals before or after injection with uncoated nanocubes.

    FIG.8CLSM images of GPBA incubated with A549 cells with different excitation wavelengths:(a)bright field,(b)720 nm two-photon excitation,(c)?(e)543,488,and 360 nm single-photon excitation,and(f)their merged image.

    The uncoated GPBA nanoparticles were incubated with A549 cell lines for 24 h without any further dying in concentration of 50μg/mL for fluorescence optical imaging tests by confocal laser scanning microscopy(CLSM).Irradiated by laser beams of various wavelengths of single photon excitation(λex=360,488,543 nm),the cultured tumor cells emitted multicolor fluorescence as shown in FIG.8(c)?(e).It was observed that the uncoated NPs were localized in cytoplasm,and the fluorescence from unstained cells should be caused by the NPs themselves.However,due to the drawbacks of UV-excited imaging such as undesired tissue photodamage,two-photon fluorescence(TPF)microscopy was thus proposed.With the aids of powerful femtosecond pulse irradiation,the nanoprobes can simultaneously absorb two photons to the excited state and then emit fluorescence after a ground-state relaxation.Upon biphotonic excitation at 720 nm(equivalent to 360 nm single-photon excitation),the NPs displayed outstanding fluorescence in the blue spectrum region(FIG.8(b)). The excellent fluorescence effect above demonstrated the nanocubes offered a multiple-choice platform for biological labels.It is reported that the photoluminescence of4T1-6A1transition of Mn2+can offer two-photon fluorescence in doped quantum dots,such as Mn-doped ZnS QDs[37],and our previous work[34]had also demonstrated the materials containing Mn2+ions applied in fluorescence optical imaging.The abundant energy levels of Mn2+could account for the multicolor fluorescence.

    FIG.9 in vitro cytotoxicity of uncoated and silica-coated nanocubes on the viability of H520 and A549 cells after 24 h incubation.

    As well known,CN?in the matrix is extremely toxic,but it does not mean our nanoparticles cannot be usedin vivo.In 2003,prussian blue(Fe4[Fe(CN)6]3)had already been approved by US Food and Drug Administration(FDA)as a pharmaceutical drug in clinic.Although CN?could be toxic alone,the coordination between metal ions and CN?is quite stable,which allows prussian blue to be applied clinically. As one of prussian blue analogues,Mn3[Co(CN)6]2exhibited excellent chemical stability even at strong acid environment[46].The inner coordination sphere between Co3+and CN?was especially stable,and the stability of the structure can effectively prevent the leakage of ions from reducing the toxicity.To evaluate the cytotoxicity of the as-prepared nanoprobes before and after SiO2coating,MTT assays were carried on H520 and A549 cell lines,and different concentration levels ranging from 25μg/mL to 75μg/mL were assessed.The results showed that no obvious toxicity was exhibited at tested concentrations,especially after SiO2coating(see FIG.9).The MTT assays above can demonstrate low toxicity of the NPs to be applied to bioimaging.

    IV.CONCLUSION

    In summary,Gd doped hollow prussian blue analogue was prepared by solvothermal method and demonstrated good T1 and T2 dual-mode magnetic resonance imaging capabilities.The longitudinal relaxation rate(r1)was 13.57(mmol/L)?1·s?1and transverse relaxation rate(r2)was 304.8(mmol/L)?1·s?1after silica coating,which was higher than many reported singlemode magnetic resonance probes.Under various wavelengths of laser irradiation,the nanoparticles emitted multiple colors of fluorescence.This multi-modal imaging could complement each other to make up for the defects of one single imaging mode.On the other hand,the NPs with hollow structure have a high loading capacity(1166 mg/g)for the chemotherapeutic drug doxorubicin,showing potentials as a drug delivery system,andin vitrocytotoxicity tests revealed that the obtained silica-coated nanoparticles have good biocompatiblity.The highly integrated nanoplatfrom showed great prospect for cancer theranostics.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21571168),the Ministry of Science and Technology Grant(No.2016YFA0101202,No.U1232211,and No.31501130),CAS/SAFEA international partnership program for creative research teams and CAS Hefei Science Center(No.2016HSCIU011).

    [1]I.R.Whittle,Curr.Opin.Neurol.15,663(2002).

    [2]R.C.Bast Jr.,B.Hennessy,and G.B.Mills,Nat.Rev.Cancer 9,415(2009).

    [3]L.An,H.Hu,J.Du,J.Wei,L.Wang,H.Yang,D.M.Wu,H.L.Shi,F.H.Li,and S.P.Yang,Biomaterials 35,5381(2014).

    [4]J.V.Frangioni,Curr.Opin.Chem.Biol.7,626(2003).

    [5]S.Arii,S.Tanaka,Y.Mitsunori,N.Nakamura,A.Kudo,N.Noguchi,and T.Irie,Oncology 78,125(2010).

    [6]H.Hirschberg,G.N.Wu,and S.J.Madsen,Minim.Invasive Neurosurg.50,318(2007).

    [7]J.Schnorr,S.Wagner,C.Abramjuk,R.Drees,T.Schink,E.A.Schellenberger,H.Pilgrimm,B.Hamm,and M.Taupitz,Radiology 240,90(2006).

    [8]C.Bremer,V.Ntziachristos,and R.Weissleder,Eur.Radiol.13,231(2003).

    [9]P.Caravan,Chem.Soc.Rev.35,512(2006).

    [10]K.M.L.Taylor,W.J.Rieter,and W.B.Lin,J.Am.Chem.Soc.130,14358(2008).

    [11]S.Laurent,D.Forge,M.Port,A.Roch,C.Robic,L.V.Elst,and R.N.Muller,Chem.Rev.108,2064(2008).

    [12]A.K.Gupta and M.Gupta,Biomaterials 26,3995(2005).

    [13]H.B.Na,I.C.Song,and T.Hyeon,Adv.Mater.21,2133(2009).

    [14]M.Liong,J.Lu,M.Kovochich,T.Xia,S.G.Ruehm,A.E.Nel,F.Tamanoi,and J.I.Zink,ACS Nano 2,889(2008).

    [15]S.Walter,S.Susanne,W.Simon,S.Herbert,F.Clemens,G.Claudia,E.G.Alwin,K.Rainer,and J.R.Hans,Neurosurgery 42,518(1998).

    [16]Y.L.Pei,J.Li,J.H.Sui,Z.G.Li,and W.Cai,J.Nanosci.Nanotechnol.13,3928(2013).

    [17]H.Lee,D.Sung,J.Kim,B.T.Kim,T.Wang,S.S.A.An,S.W.Seo,and D.K.Yi,Int.J.Nanomedicine 10,215(2015).

    [18]P.Zrazhevskiy,M.Sena,and X.H.Gao,Chem.Soc.Rev.39,4326(2010).

    [19]S.Z.Wang,B.R.Jarrett,S.M.Kauzlarich,and A.Y.Louie,J.Am.Chem.Soc.129,3848(2007).

    [20]X.M.Li,D.Y.Zhao,and F.Zhang,Theranostics 3,292(2013).

    [21]H.Y.Chen,B.Qi,T.Moore,D.C.Colvin,T.Crawford,J.C.Gore,F.Alexis,O.T.Mefford,and J.N.Anker,Small 10,160(2014).

    [22]H.X.Peng,B.Cui,L.L.Li,and Y.S.Wang,J.Alloys Compd.531,30(2012).

    [23]L.J.Zhou,X.P.Zheng,Z.J.Gu,W.Y.Yin,X.Zhang,L.F.Ruan,Y.B.Yang,Z.B.Hu,and Y.L.Zhao,Biomaterials 35,7666(2014).

    [24]J.S.Choi,J.H.Lee,T.H.Shin,H.T.Song,E.Y.Kim,and J.Cheon,J.Am.Chem.Soc.132,11015(2010).

    [25]Z.J.Zhou,D.T.Huang,J.F.Bao,Q.L.Chen,G.Liu,Z.Chen,X.Y.Chen,and J.H.Gao,Adv.Mater.24,6223(2012).

    [26]Y.Zhang,J.D.Lin,V.Vijayaragavan,K.K.Bhakoo,and T.T.Y.Tan,Chem.Commun.48,10322(2012).

    [27]C.Y.Liu,Z.Y.Gao,J.F.Zeng,Y.Hou,F.Fang,Y.L.Li,R.R.Qiao,L.Shen,H.Lei,W.S.Yang,and M.Y.Gao,ACS Nano 7,7227(2013).

    [28]E.Chelebaeva,J.Larionova,Y.Guari,R.A.S.Ferreira,L.D.Carlos,A.A.Trifonov,T.Kalaivani,A.Lascialfari,C.Gurin,K.Molvinger,L.Datas,M.Maynadier,M.Gary-Bobo,and M.Garcia,Nanoscale 3,1200(2011).

    [29]Y.M.Huang,L.Hu,T.T.Zhang,H.Zhong,J.J.Zhou,Z.B.Liu,H.B.Wang,Z.Guo,and Q.W.Chen,Sci.Rep.3,2647(2013).

    [30]F.Q.Hu and Y.S.Zhao,Nanoscale 4,6235(2012).

    [31]J.Chen,Z.Guo,H.B.Wang,M.Gong,X.K.Kong,P.Xia,and Q.W.Chen,Biomaterials 34,571(2013).

    [32]X.Y.Yang,Y.S.Wang,X.Huang,Y.F.Ma,Y.Huang,R.C.Yang,H.Q.Duan,and Y.S.Chen,J.Mater.Chem.21,3448(2011).

    [33]J.N.Shen,Q.J.He,Y.Gao,J.L.Shi,and Y.P.Li,Nanoscale 3,4314(2011).

    [34]Y.Wang,S.X.Bao,R.Li,G.Z.Zhao,Z.H.Wang,Z.A.Zhao,and Q.W.Chen,ACS Appl.Mater.Interf.7,2088(2015).

    [35]Z.C.Zhang,Y.F.Chen,X.B.Xu,J.C.Zhang,G.L.Xiang,W.He,and X.Wang,Angew.Chem.Int.Ed.53,429(2014).

    [36]L.A.Li,H.X.Jin,D.F.Jin,Q.Lu,L.N.Sun,Q.Tang,M.Chen,H.L.Ge,and X.Q.Wang,Rare.Metal.Mat.Eng.39,479(2010).

    [37]C.J.Xu,J.Xie,D.Ho,C.Wang,N.Kohler,E.G.Walsh,J.R.Morgan,Y.E.Chin,and S.H.Sun,Angew.Chem.Int.Ed.47,173(2007).

    [38]Y.X.J.Wang,S.M.Hussain,and G.P.Krestin,Eur.Radiol.11,2319(2001).

    [39]Y.W.Jun,Y.M.Huh,J.S.Choi,J.H.Lee,H.T.Song,S.Yoon,K.S.Kim,J.S.Shin,J.S.Suh,and J.Cheon,J.Am.Chem.Soc.127,5732(2005).

    [40]J.H.Lee,Y.M.Huh,Y.W.Jun,J.W.Seo,J.T.Jang,H.T.Song,S.Kim,E.J.Cho,H.G.Yoon,J.S.Suh,and J.Cheon,Nat.Med.13,95(2007).

    [41]J.L.Bridot,A.C.Faure,S.Laurent,C.Riviere,C.Billotey,B.Hiba,M.Janier,V.Josserand,J.L.Coll,L.V.Elst,R.Muller,S.Roux,P.Perriat,and O.Tillement,J.Am.Chem.Soc.129,5076(2007).

    [42]M.A.Fortin,R.M.Petoral Jr.,F.S?oderlind,A.Klasson,M.Engstr?om,T.Veres,P.O.K¨all,and K.Uvdal,Nanotechnology 18,395501(2007).

    [43]F.Evanics,P.R.Diamente,F.C.J.M.van Veggel,G.J.Stanisz,and R.S.Prosser,Chem.Mater.18,2499(2006).

    [44]Q.Ju,D.T.Tu,Y.S.Liu,R.F.Li,H.M.Zhu,J.C.Chen,Z.Chen,M.D.Huang,and X.Y.Chen,J.Am.Chem.Soc.134,1323(2012).

    [45]H.B.Na,J.H.Lee,K.An,Y.I.Park,M.Park,I.S.Lee,D.H.Nam,S.T.Kim,S.H.Kim,S.W.Kim,K.H.Lim,K.S.Kim,S.O.Kim,and T.Hyeon,Angew.Chem.Int.Ed.46,5397(2007).

    [46]L.Hu,J.Y.Mei,Q.W.Chen,P.Zhang,and N.Yan,Nanoscale 3,4270(2011).

    [47]D.D.Wang,Z.Guo,J.J.Zhou,J.Chen,G.Z.Zhao,R.H.Chen,M.N.He,Z.B.Liu,H.B.Wang,and Q.W.Chen,Small 11,5956(2015).

    亚洲国产精品久久男人天堂| 免费av毛片视频| 日韩免费av在线播放| 亚洲专区国产一区二区| 老熟妇仑乱视频hdxx| 自拍偷自拍亚洲精品老妇| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 国产伦在线观看视频一区| 天堂av国产一区二区熟女人妻| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久久免 | 淫妇啪啪啪对白视频| 级片在线观看| 午夜日韩欧美国产| h日本视频在线播放| 又紧又爽又黄一区二区| 欧美+亚洲+日韩+国产| 97人妻精品一区二区三区麻豆| 国产不卡一卡二| 久久99热这里只有精品18| 成年女人永久免费观看视频| 夜夜爽天天搞| 成人鲁丝片一二三区免费| 99热这里只有是精品在线观看 | 此物有八面人人有两片| 99久久精品热视频| 亚洲无线在线观看| 午夜福利在线观看吧| 麻豆成人午夜福利视频| 婷婷丁香在线五月| 欧美不卡视频在线免费观看| 2021天堂中文幕一二区在线观| 3wmmmm亚洲av在线观看| 国产成人福利小说| 男插女下体视频免费在线播放| 亚洲人成伊人成综合网2020| 别揉我奶头 嗯啊视频| 天天一区二区日本电影三级| 国产高清视频在线播放一区| 国产国拍精品亚洲av在线观看| 天美传媒精品一区二区| 国产美女午夜福利| 看片在线看免费视频| 久久久久久久久久成人| 日韩人妻高清精品专区| 五月玫瑰六月丁香| 天美传媒精品一区二区| 国产精品自产拍在线观看55亚洲| 色5月婷婷丁香| 三级国产精品欧美在线观看| 97碰自拍视频| 欧美乱色亚洲激情| 日本五十路高清| 黄色女人牲交| www.色视频.com| 亚洲最大成人av| 乱人视频在线观看| 欧美色视频一区免费| 女人被狂操c到高潮| 99久久成人亚洲精品观看| 欧美另类亚洲清纯唯美| 国产麻豆成人av免费视频| 69av精品久久久久久| 久久久久久久午夜电影| 色综合站精品国产| 国产三级黄色录像| 久久久久久久久久黄片| 在线免费观看的www视频| 色综合亚洲欧美另类图片| 精品人妻视频免费看| 波多野结衣高清无吗| 日韩精品青青久久久久久| 午夜福利高清视频| 国产视频一区二区在线看| 久久香蕉精品热| 757午夜福利合集在线观看| 一本综合久久免费| 国内精品一区二区在线观看| 国产伦在线观看视频一区| 伊人久久精品亚洲午夜| 欧美激情久久久久久爽电影| 欧美又色又爽又黄视频| 亚洲专区中文字幕在线| 麻豆久久精品国产亚洲av| 亚洲专区中文字幕在线| 我的老师免费观看完整版| 麻豆一二三区av精品| 日日摸夜夜添夜夜添小说| 成人一区二区视频在线观看| 国产精品野战在线观看| 能在线免费观看的黄片| 亚洲av免费高清在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲av免费高清在线观看| 亚洲av.av天堂| 日韩成人在线观看一区二区三区| 韩国av一区二区三区四区| 久久久久久久亚洲中文字幕 | 久久久精品欧美日韩精品| 久久久久久九九精品二区国产| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 91久久精品国产一区二区成人| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 小说图片视频综合网站| 久久国产乱子免费精品| 69人妻影院| 欧美一区二区亚洲| www.色视频.com| 国产av一区在线观看免费| 欧美成人一区二区免费高清观看| 久久精品影院6| 婷婷精品国产亚洲av在线| 久久久国产成人精品二区| 免费av毛片视频| 亚洲av二区三区四区| 久久久久免费精品人妻一区二区| 国产高清三级在线| 国产成+人综合+亚洲专区| 国产综合懂色| 中文字幕精品亚洲无线码一区| 午夜精品在线福利| 欧美黄色片欧美黄色片| 亚洲精品在线观看二区| 国产精品1区2区在线观看.| 悠悠久久av| 在线十欧美十亚洲十日本专区| 欧美丝袜亚洲另类 | 少妇熟女aⅴ在线视频| 极品教师在线视频| 久久6这里有精品| 亚洲av第一区精品v没综合| 欧美午夜高清在线| 国产精品免费一区二区三区在线| 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| 国产成年人精品一区二区| 亚洲av免费在线观看| 亚洲精品日韩av片在线观看| www日本黄色视频网| avwww免费| 又黄又爽又免费观看的视频| 成人国产综合亚洲| 51国产日韩欧美| 久久国产精品影院| av在线天堂中文字幕| 色哟哟哟哟哟哟| 国产成人啪精品午夜网站| 天堂√8在线中文| 又黄又爽又刺激的免费视频.| 麻豆国产av国片精品| 不卡一级毛片| 脱女人内裤的视频| 久久久久精品国产欧美久久久| 亚洲精品亚洲一区二区| 麻豆成人午夜福利视频| 99在线视频只有这里精品首页| 免费在线观看成人毛片| 毛片一级片免费看久久久久 | 久久婷婷人人爽人人干人人爱| av欧美777| 国产精品免费一区二区三区在线| 国产精品女同一区二区软件 | 国产高清激情床上av| 亚洲,欧美精品.| 丁香六月欧美| netflix在线观看网站| 国产综合懂色| 亚洲精品乱码久久久v下载方式| 国产精品久久电影中文字幕| 国产日本99.免费观看| 国产一区二区激情短视频| 欧美在线黄色| 91午夜精品亚洲一区二区三区 | 青草久久国产| 欧美激情在线99| 九九热线精品视视频播放| 国内毛片毛片毛片毛片毛片| 噜噜噜噜噜久久久久久91| 亚洲七黄色美女视频| 亚洲av电影在线进入| 精品久久国产蜜桃| 88av欧美| 夜夜看夜夜爽夜夜摸| 波野结衣二区三区在线| 婷婷丁香在线五月| 直男gayav资源| 午夜免费男女啪啪视频观看 | 听说在线观看完整版免费高清| 真人一进一出gif抽搐免费| 别揉我奶头 嗯啊视频| 亚洲最大成人中文| 嫩草影视91久久| 精品久久久久久久久av| 日本a在线网址| 亚洲人成电影免费在线| 国产探花在线观看一区二区| 亚洲电影在线观看av| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 国产亚洲欧美98| 夜夜躁狠狠躁天天躁| 久久久久久久久久成人| 亚洲美女视频黄频| 我要搜黄色片| 极品教师在线视频| 天堂av国产一区二区熟女人妻| 精品久久久久久久人妻蜜臀av| 91在线观看av| 精品久久久久久,| 亚洲熟妇熟女久久| 亚洲精品粉嫩美女一区| 国产成人av教育| 亚洲不卡免费看| 国产黄片美女视频| 一区二区三区高清视频在线| 国内少妇人妻偷人精品xxx网站| 综合色av麻豆| 精品人妻视频免费看| 18美女黄网站色大片免费观看| av在线老鸭窝| 深夜a级毛片| 亚洲性夜色夜夜综合| 免费在线观看成人毛片| 色5月婷婷丁香| 午夜福利在线在线| 亚洲精品日韩av片在线观看| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 熟妇人妻久久中文字幕3abv| 国产午夜精品久久久久久一区二区三区 | 午夜福利视频1000在线观看| 91字幕亚洲| 国产在线男女| 可以在线观看毛片的网站| 色综合婷婷激情| 国产免费男女视频| 国产色爽女视频免费观看| 乱码一卡2卡4卡精品| 久久久久久久久中文| 午夜免费男女啪啪视频观看 | 亚洲人成网站在线播| 成人精品一区二区免费| 啦啦啦观看免费观看视频高清| 级片在线观看| 精品不卡国产一区二区三区| 波多野结衣高清作品| 一级作爱视频免费观看| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 99国产综合亚洲精品| 国产亚洲欧美98| 欧美绝顶高潮抽搐喷水| 欧美在线黄色| 亚洲七黄色美女视频| 别揉我奶头 嗯啊视频| av天堂中文字幕网| 久久精品久久久久久噜噜老黄 | 国产一区二区三区在线臀色熟女| 最新在线观看一区二区三区| 757午夜福利合集在线观看| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 直男gayav资源| 日韩国内少妇激情av| 免费av毛片视频| 青草久久国产| 又爽又黄a免费视频| 国产精品98久久久久久宅男小说| 日韩成人在线观看一区二区三区| 色综合站精品国产| 精品日产1卡2卡| 韩国av一区二区三区四区| 久久香蕉精品热| 亚洲国产精品999在线| АⅤ资源中文在线天堂| 十八禁人妻一区二区| 久久草成人影院| a级一级毛片免费在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲中文字幕日韩| 久久国产乱子免费精品| 我要搜黄色片| 成熟少妇高潮喷水视频| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| www.色视频.com| 日韩av在线大香蕉| 99热这里只有是精品在线观看 | 99久久九九国产精品国产免费| 国产三级黄色录像| 蜜桃久久精品国产亚洲av| av福利片在线观看| 久久中文看片网| 热99re8久久精品国产| 欧美乱色亚洲激情| 三级国产精品欧美在线观看| 深爱激情五月婷婷| 亚洲男人的天堂狠狠| 夜夜看夜夜爽夜夜摸| 国产一区二区激情短视频| 亚洲七黄色美女视频| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 国产91精品成人一区二区三区| 国产精品久久久久久久久免 | 91九色精品人成在线观看| 日本 av在线| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片 | 国产精品精品国产色婷婷| 乱人视频在线观看| 午夜精品在线福利| 国产单亲对白刺激| 亚洲中文日韩欧美视频| 精品不卡国产一区二区三区| 嫩草影视91久久| 日韩欧美三级三区| 性插视频无遮挡在线免费观看| 精品无人区乱码1区二区| 亚洲欧美精品综合久久99| 国产精品野战在线观看| 网址你懂的国产日韩在线| 精品人妻1区二区| 一进一出好大好爽视频| 免费av毛片视频| 亚洲黑人精品在线| 国产久久久一区二区三区| 色哟哟哟哟哟哟| 床上黄色一级片| 国产精品一区二区免费欧美| 国产蜜桃级精品一区二区三区| 国产精品久久久久久久久免 | 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 亚洲av中文字字幕乱码综合| 精品人妻偷拍中文字幕| 亚洲av成人av| 欧美在线一区亚洲| 亚洲成av人片免费观看| 99久久无色码亚洲精品果冻| 免费在线观看亚洲国产| 亚洲精品乱码久久久v下载方式| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 中文亚洲av片在线观看爽| 人妻制服诱惑在线中文字幕| 欧美潮喷喷水| 国产精华一区二区三区| 真人一进一出gif抽搐免费| 精品久久久久久成人av| 伦理电影大哥的女人| 国产精品影院久久| 国产成人福利小说| 一个人观看的视频www高清免费观看| 日韩高清综合在线| 亚洲av第一区精品v没综合| 亚洲av第一区精品v没综合| 亚洲人成电影免费在线| 亚洲精华国产精华精| 非洲黑人性xxxx精品又粗又长| 国产美女午夜福利| 亚洲在线自拍视频| 国产毛片a区久久久久| 久久国产乱子伦精品免费另类| 国产亚洲精品久久久com| 中文字幕av在线有码专区| 国产伦精品一区二区三区视频9| 丝袜美腿在线中文| 久久草成人影院| 天堂影院成人在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利在线观看免费完整高清在 | 欧美激情久久久久久爽电影| 小说图片视频综合网站| 最新中文字幕久久久久| 国产黄a三级三级三级人| 少妇裸体淫交视频免费看高清| 国产成人aa在线观看| 国产亚洲精品av在线| 波多野结衣高清无吗| 听说在线观看完整版免费高清| 简卡轻食公司| 亚洲人成网站在线播| 人妻久久中文字幕网| 18+在线观看网站| 神马国产精品三级电影在线观看| 国产不卡一卡二| 国产精品精品国产色婷婷| 51国产日韩欧美| 色视频www国产| 欧美国产日韩亚洲一区| 少妇高潮的动态图| 人人妻,人人澡人人爽秒播| 麻豆成人av在线观看| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站 | 黄色配什么色好看| av国产免费在线观看| 久久午夜亚洲精品久久| 91狼人影院| 欧美午夜高清在线| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 午夜福利在线观看吧| 直男gayav资源| 波多野结衣高清无吗| 老鸭窝网址在线观看| 啦啦啦观看免费观看视频高清| 婷婷色综合大香蕉| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添小说| 日本 av在线| 亚洲精品影视一区二区三区av| 天堂av国产一区二区熟女人妻| 国产一区二区三区视频了| 欧美成人a在线观看| 内射极品少妇av片p| 麻豆国产97在线/欧美| 给我免费播放毛片高清在线观看| 中文字幕高清在线视频| 波多野结衣高清作品| 黄色丝袜av网址大全| 国产精品久久久久久亚洲av鲁大| 嫁个100分男人电影在线观看| netflix在线观看网站| 美女黄网站色视频| 又爽又黄a免费视频| 丁香欧美五月| 国产日本99.免费观看| 动漫黄色视频在线观看| 少妇的逼好多水| 亚洲美女搞黄在线观看 | 中出人妻视频一区二区| 午夜福利高清视频| 国产亚洲精品久久久com| 黄色配什么色好看| 淫秽高清视频在线观看| 观看免费一级毛片| 中国美女看黄片| 免费在线观看日本一区| 中文字幕人成人乱码亚洲影| 精品午夜福利视频在线观看一区| 久久国产乱子免费精品| 亚洲第一电影网av| 看十八女毛片水多多多| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 成人无遮挡网站| 亚洲第一区二区三区不卡| 在线观看午夜福利视频| 亚洲经典国产精华液单 | 婷婷丁香在线五月| 美女免费视频网站| 亚洲国产精品久久男人天堂| 色噜噜av男人的天堂激情| 51午夜福利影视在线观看| 欧美3d第一页| 欧美黄色片欧美黄色片| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 亚洲国产精品久久男人天堂| 美女大奶头视频| 在线播放国产精品三级| 黄色女人牲交| 国产精品野战在线观看| 久久精品夜夜夜夜夜久久蜜豆| 观看免费一级毛片| 91麻豆精品激情在线观看国产| 欧美一级a爱片免费观看看| 国产不卡一卡二| 十八禁国产超污无遮挡网站| 免费高清视频大片| 可以在线观看毛片的网站| 国产精品一及| 国产欧美日韩精品一区二区| 长腿黑丝高跟| 国产伦在线观看视频一区| 丰满乱子伦码专区| 日日摸夜夜添夜夜添小说| 丰满乱子伦码专区| 亚洲久久久久久中文字幕| 啦啦啦韩国在线观看视频| 国产欧美日韩精品一区二区| 午夜影院日韩av| av视频在线观看入口| 老司机福利观看| 午夜两性在线视频| 一级毛片久久久久久久久女| av在线老鸭窝| 人人妻人人澡欧美一区二区| 国产精品久久视频播放| 国产精品电影一区二区三区| 深夜精品福利| 首页视频小说图片口味搜索| 午夜免费男女啪啪视频观看 | 午夜亚洲福利在线播放| 日本在线视频免费播放| 亚洲 国产 在线| 国产淫片久久久久久久久 | 色综合婷婷激情| 国产不卡一卡二| 亚洲人成电影免费在线| 内射极品少妇av片p| 亚洲自偷自拍三级| 真实男女啪啪啪动态图| 听说在线观看完整版免费高清| 国产精品1区2区在线观看.| 成人性生交大片免费视频hd| 国产精品久久久久久亚洲av鲁大| 校园春色视频在线观看| 国产欧美日韩一区二区三| 99热这里只有精品一区| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 久久精品国产清高在天天线| 国产成人啪精品午夜网站| 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av香蕉五月| 免费黄网站久久成人精品 | 国产成人欧美在线观看| 一级a爱片免费观看的视频| 亚洲在线自拍视频| 88av欧美| 在线观看舔阴道视频| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 一夜夜www| 在线观看舔阴道视频| 最后的刺客免费高清国语| 国产乱人伦免费视频| 天美传媒精品一区二区| 精品不卡国产一区二区三区| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 一级毛片久久久久久久久女| 伊人久久精品亚洲午夜| 一级毛片久久久久久久久女| 免费人成在线观看视频色| 丰满乱子伦码专区| 国产高清三级在线| 九色成人免费人妻av| 乱码一卡2卡4卡精品| 欧美日本亚洲视频在线播放| 最新在线观看一区二区三区| 欧美+亚洲+日韩+国产| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 日韩 亚洲 欧美在线| 人妻夜夜爽99麻豆av| 极品教师在线免费播放| 伊人久久精品亚洲午夜| 99国产综合亚洲精品| 日韩大尺度精品在线看网址| 色吧在线观看| 啦啦啦韩国在线观看视频| 亚洲无线在线观看| 国产高清三级在线| 丰满乱子伦码专区| 中文字幕人妻熟人妻熟丝袜美| 一二三四社区在线视频社区8| 久久久国产成人精品二区| av天堂在线播放| 午夜免费激情av| 久久热精品热| 中国美女看黄片| 亚洲国产欧美人成| 日韩大尺度精品在线看网址| 我要看日韩黄色一级片| 中文字幕免费在线视频6| 亚洲无线在线观看| 国产熟女xx| 极品教师在线免费播放| 色哟哟哟哟哟哟| 能在线免费观看的黄片| 他把我摸到了高潮在线观看| 国产在视频线在精品| 免费观看人在逋| 身体一侧抽搐| 免费在线观看成人毛片| 香蕉av资源在线| 亚洲欧美日韩高清在线视频| 嫩草影院新地址| 精品不卡国产一区二区三区| 中文字幕精品亚洲无线码一区| 亚洲真实伦在线观看| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| 国产成人av教育| 97超视频在线观看视频| 国产精品一区二区免费欧美| 九九热线精品视视频播放| 国产亚洲精品av在线| 日韩亚洲欧美综合| 1000部很黄的大片| 久久99热6这里只有精品| 一边摸一边抽搐一进一小说| 欧美一区二区亚洲| 亚洲人成网站高清观看| 成人三级黄色视频| 亚洲久久久久久中文字幕| 99热只有精品国产| 啦啦啦观看免费观看视频高清| a级毛片a级免费在线| 日日摸夜夜添夜夜添av毛片 | 少妇熟女aⅴ在线视频| 久久精品综合一区二区三区| 国产大屁股一区二区在线视频| 久久99热这里只有精品18| 观看免费一级毛片| АⅤ资源中文在线天堂| 午夜日韩欧美国产|