• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvent-Triggered Self-Folding of Hydrogel Sheets

    2018-11-09 06:53:28ShuaiQinLiweiHuiLihuaYangMingmingMa
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Shuai QinLi-wei HuiLi-hua YangMing-ming Ma

    CAS Key Laboratory of Soft Matter Chemistry,School of Chemistry and Materials Science,University of Science and Technology of China,Hefei 230026,China

    Key words:Self-folding,Solvent responsive,Shape transformation,Hydrogel

    I.INTRODUCTION

    Mechanically active,self-shaping materials such as hydrogels,which undergo prescribed shape transformations in response to external stimulus,can mimic the sensing and responsive mechanisms found in nature[1].Particular interest has been directed toward the development of intelligent soft materials that recon figure into 3D structures in response to specific external triggers[2–5].The differential swelling leads to enhanced tendency of internal stresses,resulting in reversible transformations between three-dimensional shape and twodimensional sheets.Additionally,previously explored stimuli generally result in different shape transformation mechanisms,determined by the magnitude of the applied stimulus.A multitude of external stimuli can induce hydrogels to undergo large change in volume,which alters the polymer-solvent interactions[6].The stimulus-induced change in volume can be harnessed to create shape transforming materials by approaches such as spatially varying the degree of cross-linking[7,8],adopting a multilayer design[9–11],or attaching the hydrogel to a rigid surface so as to impose a mechanical boundary constraint[12],having often been introduced to achieve stable differential swelling.Appropriate adaptations of these methods could point to pathways for generating complex 3D structures applications in biotechnology[13],sensor[14],micro fluidic devices[15,16]and actuator[17,18].Sometimes these gel systems require multiple manufacturing operation steps.

    Copolymers P(MEO2MA-co-OEGMA)can be potentially connected easily to a wide variety of synthetic polymers,biological structures and inorganic surfaces,acting as a promising replacement of conventional PNIPAM for applications and more universal for building any kind of thermo-sensitive materials[19,20].Herein,we report an approach to generate 3D hydrogel structures.The technique involves polymerization of monomers into P(MEO2MA-co-OEGMA)hydrogel.The general idea is to use a polymer which is able to fold in response to multi-solvents.In our work,we used radical polymerization to prepare P(MEO2MA-co-OEGMA)hydrogel.Afterwards the polymer was cured in a groove,which is a simple way to finish this process.We further showed that by controlling gel composition,gaseous environment,and forming process,the P(MEO2MA-co-OEGMA)gel can self-assemble into 3D morphologies.The crosslinked hydrogels swell and nonuniformly expand in diverse solvents.The swelling of a hydrogel enables the hydrogel to roll up and eventually form tubes.The observed transformation in shape does not require a difference in structure or composition across the thickness of the hydrogel sheet.

    II.EXPERIMENTS

    A.Materials

    Poly (ethylene glycol)methylethermethacrylate(OEGMA,Aldrich,Mn=475 g/mol),2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA,9dingchem,Mn=188 g/mol),ammonium persulfate(APS,sinopharm chemical reagent Co.,Ltd),tetramethylethylenediamine(TEMED,Aldrich).

    FIG.1(a)The polymerization and crosslink formation of poly(ethylene glycol)methyl ether methacrylate(OEGMA)and 2-(2-methoxyethoxy)ethyl methacrylate(MEO2MA),which lead to the formation of the as-reported hydrogels.(b)Schematic illustration on the sheet self-folding of a resulting hydrogel upon immersion into a solvent and shape recovery after being taken out from the solvent.

    B.Synthesis of hydrogel in air

    1.4412 mg MEO2MA and 0.9106 mg OEGMA(molar ratio=80:20)were mixed with 588μL of 50 mg/mL ammonium persulfate aqueous in a 10 mL centrifuge cup via vortex for 30 s,11.76μL TEMED was then added into it via vortex for 30 s,after that we dump the liquid into the groove(2 cm×5 cm×1 cm),and waited for the mixture curing overnight.MEO2MA:OEGMA=50:50 and OEGMA hydrogel kept the same total mole number of OEGMA and MEO2MA and other parameters didn’t change.

    C.Synthesis of hydrogel in N2

    Before the hydrogel was put into the groove,the groove was placed in a bottle inlet N2for 15 min,then 1.4412 mg MEO2MA and 0.9106 mg OEGMA were mixed with 588μL of 50 mg/mL ammonium persulfate aqueous in a 10 mL centrifuge cup via vortex for 30 s,then the liquid was inlet N2for 10 min,and 11.76μL TEMED was added into it via vortex for 30 s,after that we injected the liquid into the groove(2 cm×5 cm×1 cm)and aerated N2for another 15 min,then sealed the outlet of the bottle,waited for the mixture curing overnight.

    D.Characterization of hydrogel

    The morphology of hydrogel was examined by using an environmental scanning electron microscope(Philips XL30 ESEM-TMP)at an acceleration voltage of 10 kV.The FTIR spectra were characterized on a Thermo Scientific OMNIC spectroscopy(Nicolet 6700)from 4000 cm?1to 400 cm?1at room temperature.The UVVis spectra were measured on Shimadzu UV-3600 Plus from 250 nm to 500 nm at room temperature.There are three groups of liquid including 1 mL 40 mg/mL KI with 500μL pure water,1 mL of 40 mg/mL KI with 500 μL OEGMA and 1 mL pure water with 500 μL OEGMA.

    E.Mechanical tests of hydrogel

    For tensile measurement,the hydrogels were made into strips of 1.5 cm in width,7 cm in length(the effective length was 5 cm)and 2 mm in thickness.Tensile measurements were performed by uniaxially stretching the strips of hydrogels at a strain rate of 50 mm/min.

    III.RESULTS AND DISCUSSION

    FIG.2(a)Scanning electron microscopy image of hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20.(Inset)Photography of the hydrogel in a test tube.(b)Infrared spectroscopy of(blue line)hydrogel composed of OEGMA alone(i.e.O(100)),(red line)hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=50:50(i.e.M(50):O(50)),and(black line)hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20(i.e.M(80):O(20)).(c)Relationships of stress versus strain for(blue line)hydrogel composed of OEGMA alone(i.e.O(100)),(red line)hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=50:50(i.e.M(50):O(50)),and(black line)hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20(i.e.M(80):O(20)).(d)Ultraviolet-visible spectra of(black line)KI,(red line)OEGMA,and(blue line)the mixture of KI and OEGMA.

    The synthetic method of hydrogel was free radical polymerization as FIG.1(a)shows.The gelation of P(MEO2MA-co-OEGMA)hydrogel utilized autoxidation process of OEGMA.If we put P(MEO2MA-co-OEGMA)hydrogel sheet into pure water,it bended in several seconds as shown in FIG.1(b). Differential swelling resulting from internal stresses induced shape transformations of hydrogel sheet.In addition,polymerization rate largely relied on the availability and abundance of free radicals in the reaction system.Gaseous environment made extent of reaction in surface lower than inner,consequently degree of crosslinking of the surface of hydrogel was slightly lower,making hydrogel frizzle easier.

    AccordingtotheSEM imageofMEO2MA:OEGMA=80:20 hydrogel,there are abundant wrinkles on the surface of hydrogel and no obvious porous structure is observed(FIG.2(a)).We synthesized three kinds ofhydrogelsincluding MEO2MA:OEGMA=80:20,MEO2MA:OEGMA=50:50 and OEGMA alone.The spectra of these three hydrogels are similar. With the increase of OEGMA amount,we find the peak at the wavenumber of 1125 cm?1becomes more apparent,and the peak corresponds to CH2?O?CH2of OEGMA ether chain.The other peaks at 2850,1740,and 1450 cm?1correspond to?CH2,C=O,and O?CH3in hydrogel,respectively(FIG.2(b)).

    According to the stress strain curve of three hydrogels(FIG.2(c)),MEO2MA:OEGMA=50:50 hydrogel(elongation at break strain 190%)is close to MEO2MA:OEGMA=80:20 hydrogel(elongation at break strain 208%)in elongation,but with the increase of OEGMA the Young modulus of hydrogel increases.MEO2MA:OEGMA=50:50 hydrogel(Young modulus 17.4 kPa)have better mechanical property than MEO2MA:OEGMA=80:20 hydrogel(Young modulus 5.3 kPa).Compared to MEO2MA:OEGMA=50:50 hydrogel(Young modulus 17.4 kPa),OEGMA hydrogel(Young modulus 16.1 kPa)has approximate Young modulus but elongation at break decreases obviously.When the elongation reaches only 75%,the hydrogel becomes crisp.According to the results of different hydrogels,we found that with OEGMA content increasing,the mechanical strength of hydrogel improves,but high levels of OEGMA make hydrogel become crisp.Mechanical properties of these three kinds of hydrogel is closely related to its deformation behavior.

    FIG.3(a)Hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20 undergoes shape transformation upon being immersed into water and shape recovery after water evaporation. (b?d)At 1 min after immersed into water,the shape formed by(b)hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20,(c)hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=50:50,and(d)hydrogel composed of OEGMA alone.Scale bar=1cm.

    Crosslinking agent plays an important role in hydrogel formation,in this work we found that the system without crosslinking agent can also finish this process.To investigate the reason of hydrogel formation,we made three groups mixture with different components.The mixture of OEGMA,APS,and TEMED could form hydrogel after several hours;the mixture containing MEO2MA,APS,and TEMED still maintained as liquid for a very long time;the group containing OEGAM and APS finished gelation process after 72 h.It needed longer time,because the redox reaction became slowly,the gelation process was slow and the hydrogel absorbed water,so we fabricated a swelling hydrogel different from other groups.We consider that OEGMA is an important factor in this hydrogel formation reaction.Hydrogel formed without crosslink agent,we suppose there is an autoxidation process[21]in the long ether chain of OEGMA.

    In order to verify it,we used the system of KI aqueous[22].If oxide existed in OEGMA,we could find it by this reagent.When OEGMA was added into the KI solution,we could find a new peak near 350 nm,which corresponds to the I2in the KI solution,but KI aqueous and OEGMA in water didn’t have this peak(FIG.2(d)).According to this,we could affirm that oxide in the OEGMA transfers KI to I2.The long ether chain of OEGMA provided site for reaction,and autoxidation process spurred crosslinking occurred.According to the UV-Vis results,we calculated the number of reaction sites in ether chain.The concentration of reaction site is near 4.42×10?8mol/mL in OEGMA,and one reaction site exists in per 25 OEGMA side chains,in which the polymer completes the curing process.According to the number of reaction site,we estimate the hydrogel will be fragile,which is also proven by tensile measurement.

    Monomers with long ether chain make hydrogel absorb different kinds of solvents,which helps the shape transformation of hydrogel in multi-solvents.As FIG.3(a)shows,if we put the hydrogel into the pure water,it will start to bend after several seconds.Finally,it will become a tube by its long axis due to the curve of the hydrogel.After water evaporation,the hydrogel will recover flat,namely it is solvent-triggered reversible shape transformation hydrogel.

    We also noted that composition of hydrogel will affected the shape transform process,and we made three different hydrogels with composite MEO2MA:OEGMA=80:20, MEO2MA:OEGMA=50:50, and OEGMA alone.They were all made by glass mould,after solidification we put them into the pure water.Three hydrogels can bend with different speed when immersed into the water.As FIG.3(b?d)show,with the percent of MEO2MA increasing,bend speed of hydrogel becomes faster.When it comes to the system with less OEGMA,the crosslinking point will reduce,and more soft hydrogels have fast speed in self-folding process.

    FIG.4 The shape transformation in water as a function of time for hydrogel with same composition(MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20)but prepared in different mould and under different atmosphere:(a)in glass mould and under air,(b)in glass mould and under N2,(c)in te flon mould and under air.Scale bar=1cm.

    Because the polymerization rate largely relies on the availability and abundance of free radicals in the reaction system,this process is susceptible to the existence of free-radical inhibitors,molecules that can convert free radicals into much less reactive or even nonreactive counterparts[23].O2as a common inhibitor can turn free radicals into radicals that have insufficient reactivity to continue polymer chain growth,and therefore slows down the gelation process[24].Therefore,special treatments to control dissolved O2have often been performed in preparing hydrogel[25].In this work,we take advantage of the detrimental effect of O2on polymerization of P(MEO2MA-co-OEGMA)hydrogel and turn it into an approach to manipulate the gelation process.If the hydrogel in the environment has less oxygen,the reaction can finish more thoroughly.It will entitle hydrogel with slow bend speed as FIG.4(b)shows,but on the other hand,in the environment with less oxygen,we can make a thinner hydrogel,so we may find more obvious phenomenon in some conditions.

    We further demonstrate another factor that can influence shape transformation which is associated with forming process.Shape transformation of hydrogel focuses on long axis,when we changed the shape of the hydrogel,it showed the same appearance.We found because of surface tension,hydrogel in a glass mould is not complete flat,and the edge of the hydrogel is curve,so we think the curve induce the bend of the hydrogel.We changed the mould material from glass to PTFE,and the two moulds have the same size.In PTFE mould,hydrogel had a curve in a small angle,then we put the hydrogel into the pure water,and we found that the same shape hydrogel made by different moulds have different bend speed in water as FIG.4(c)shows.In addition,we make a hydrogel by a square glass mould,after immersed in water we did not find hydrogel bent along one side,until 30 min we only found hydrogel become transparent because of water absorption.We found when curve exists around the border,hydrogel tended to bend toward center,but o ffset of stresses made hydrogel kept its shape.According to these phenomena,we think curve in hydrogel border plays an important role in this bend process,if we change the shape of hydrogel edge,we may change the shape transformation mode,so we can make the hydrogel with complex shape and accomplish self-folding process after being submerged in pure water,and such transition may have potential application in soft devices.

    Next,we characterized the bend speed of MEO2MA:OEGMA=80:20 hydrogel in different solvents.As FIG.5(a?d)show,in different solution,hydrogels showed different bend speed.In ethanol,hydrogels had slow bend speed.When hydrogels were put into chloroform,we found hydrogels bent rapidly and finished this process after 15 s.Hydrogels swelled and floated in the solvent in the end.In other two solutions we found no big difference in bend speed,and while bending we didn’t find obvious swelling.After shape transformation,hydrogel becomes transparent because of solvent absorption.According to the phenomenon of self-folding of hydrogel in different solution,we found that the bend of hydrogel in solution is in association with swelling of hydrogel.In chloroform hydrogel had the fastest swelling speed,and shape transformation process was finished as soon as possible.According to phenomenon we observed,hydrogel can swell in different kinds of solvent.It can be regarded as an amphipathic material,because two monomers have long ether sections,and it improves interaction between hydrogel and solvent(FIG.5(e)).If we increase the content of OEGMA,it has similar solvent absorb behavior in these four kinds of solvent.

    IV.CONCLUSION

    In summary,we demonstrate an approach to generate multi-solvents responsive self-folding P(MEO2MA-co-OEGMA)hydrogel via free radical reaction,and long chain monomer OEGMA plays an important role in hydrogel formation.With long side chain existence,the hydrogels have better polymer-solvent interactions in multi-solvents.

    FIG.5(a?d)The shapes of hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20 at 1 min after immersed into(a)water,(b)ethyl acetate,(c)ethanol,and(d)chloroform.Scale bar=1 cm.(e)Relationship of relative volume of solvent absorbed versus immersion time for hydrogel composed of MEO2MA and OEGMA at molar ratio of MEO2MA:OEGMA=80:20 in(black)ethanol,(red)water,(blue)ethyl acetate,(green)chloroform.

    It demonstrates the possibilities that generating heterogeneous phase system using homogeneous reagent.Differential growth of hydrogel can be effectively introduced when gaseous environment are incorporated into the polymerization system.Inhomogenous hydrogel make their shape transformation behavior in solvent easier.Hydrogel composition and solvent environment also in fluence the speed of shape transformation.If we change the curve of the hydrogel surface,we can control the bend direction of hydrogel,and the approach can potentially be used to hydrogel component.The hydrogel can be assembled into 3D scaffolds which are likely to be applicable to a wide variety of fields,such as engineering,polymer science,soft robotics,and flexible electronics.

    V.ACKNOWLEDGMENTS

    This work was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences.

    [1]R.M.Erb,J.S.Sander,R.Grisch,and A.R.Studart,Nat.Commun.4,1712(2013).

    [2]Z.J.Wei,Z.Jia,J.Athas,C.Y.Wang,S.R.Raghavan,T.Li,and Z.H.Nie,Soft Matter 10,8157(2014).

    [3]P.D.Topham,J.R.Howse,C.J.Crook,S.P.Armes,R.A.L.Jones,and A.J.Ryan,Macromolecules 40,4393(2007).

    [4]T.S.Shim,S.H.Kim,C.J.Heo,H.C.Jeon,and S.M.Yang,Angew.Chem.Int.Ed.51,1420(2012).

    [5]R.Kempaiah and Z.H.Nie,J.Mater.Chem.B 2,2357(2014).

    [6]E.M.White,J.Yatvin,J.B.Grubbs III,J.A.Bilbrey,and J.Locklin,J.Polym.Sci.B:Polym.Phys.51,1084(2013).

    [7]H.Thrien-Aubin,M.Moshe,E.Sharon,and E.Kumacheva,Soft Matter 11,4600(2015).

    [8]Y.Klein,E.Efrati,and E.Sharon,Science 315,1116(2007).

    [9]Z.L.Wu,M.Moshe,J.Greener,H.Therien-Aubin,Z.H.Nie,E.Sharon,and E.Kumacheva,Nat.Commun.4,1586(2013).

    [10]H.Th′erien-Aubin,Z.L.Wu,Z.H.Nie,and E.Kumacheva,J.Am.Chem.Soc.135,4834(2013).

    [11]P.Techawanitchai,M.Ebara,N.Idota,T.A.Asoh,A.Kikuchi,and T.Aoyagi,Soft Matter 8,2844(2012).

    [12]H.Lee,J.P.Zhang,H.Q.Jiang,and N.X.Fang,Phys.Rev.Lett.108,214304(2012).

    [13]L.Liu,N.Wang,Y.J.Han,Y.M.Li,and W.G.Liu,Macromol.Rapid Commun.35,344(2014).

    [14]J.Z.Hilt,A.K.Gupta,R.Bashir,and N.A.Peppas,Biomed.Microdevices 5,177(2003).

    [15]D.J.Beebe,J.S.Moore,J.M.Bauer,Q.Yu,R.H.Liu,C.Devadoss,and B.H.Jo,Nature 404,588(2000).

    [16]G.H.Kwon,Y.Y.Choi,J.Y.Park,D.H.Woo,K.B.Lee,J.H.Kim,and S.H.Lee,Lab Chip 10,1604(2010).

    [17]E.Palleau,D.Morales,M.D.Dickey,and O.D.Velev,Nat.Commun.4,2257(2013).

    [18]B.Kaehr and J.B.Shear,Proc.Natl.Acad.Sci.USA 105,8850(2008).

    [19]J.F.Lutz,K.Weichenhan,O.Akdemir,and A.Hoth,Macromolecules 40,2503(2007).

    [20]Z.Q.Meng,F.Wei,R.H.Wang,M.G.Xia,Z.G.Chen,H.P.Wang,and M.F.Zhu,Adv.Mater.28,245(2016).

    [21]Z.Kerem,W.L.Bao,and K.E.Hammel,Proc.Natl.Acad.Sci.USA 95,10373(1998).

    [22]N.V.Klassen,D.Marchington,and H.C.E.McGowan,Anal.Chem.66,2921(1994).

    [23]A.Giz,H.C?atalgil-Giz,A.Alb,J.L.Brousseau,and W.F.Reed,Macromolecules 34,1180(2001).

    [24]C.Decker,Macromolecules 18,1241(1985).

    [25]C.J.Huang,D.Quinn,S.Suresh,and K.J.Hsia,Proc.Natl.Acad.Sci.USA 115,70(2018).

    欧美黄色片欧美黄色片| 天堂网av新在线| 亚洲精华国产精华精| 国产av不卡久久| 九九久久精品国产亚洲av麻豆| 国产午夜精品久久久久久一区二区三区 | 一级作爱视频免费观看| 久久久久久久久久黄片| 每晚都被弄得嗷嗷叫到高潮| 成人永久免费在线观看视频| 亚洲av成人精品一区久久| 两人在一起打扑克的视频| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区在线臀色熟女| 欧美bdsm另类| 女人高潮潮喷娇喘18禁视频| 女同久久另类99精品国产91| 少妇的逼水好多| 亚洲一区高清亚洲精品| 99国产精品一区二区蜜桃av| 国内精品久久久久久久电影| 久久久久久大精品| 天堂√8在线中文| 亚洲美女视频黄频| 亚洲av成人不卡在线观看播放网| 在线十欧美十亚洲十日本专区| 国产 一区 欧美 日韩| 法律面前人人平等表现在哪些方面| 老司机午夜福利在线观看视频| aaaaa片日本免费| 毛片女人毛片| 99riav亚洲国产免费| 天美传媒精品一区二区| 露出奶头的视频| 国产精品一区二区三区四区久久| 中文字幕人成人乱码亚洲影| 97碰自拍视频| 啦啦啦免费观看视频1| 日韩中文字幕欧美一区二区| 亚洲av五月六月丁香网| 国产免费男女视频| 久久精品国产综合久久久| 国产探花在线观看一区二区| 亚洲在线自拍视频| 美女高潮的动态| 中国美女看黄片| 午夜福利视频1000在线观看| 狠狠狠狠99中文字幕| 日本 av在线| 欧美又色又爽又黄视频| 网址你懂的国产日韩在线| 午夜免费男女啪啪视频观看 | 久久亚洲真实| 午夜福利在线在线| 国产老妇女一区| 国产免费男女视频| 欧美乱色亚洲激情| 成人高潮视频无遮挡免费网站| 午夜精品一区二区三区免费看| www国产在线视频色| 国产成人av教育| 精品无人区乱码1区二区| 麻豆国产av国片精品| 久9热在线精品视频| 久久久久久大精品| 欧美黑人欧美精品刺激| 他把我摸到了高潮在线观看| 亚洲精品一区av在线观看| 在线天堂最新版资源| 91九色精品人成在线观看| 高清在线国产一区| 国产中年淑女户外野战色| 亚洲五月天丁香| 久久久精品欧美日韩精品| 久久精品国产清高在天天线| 亚洲成人精品中文字幕电影| 亚洲电影在线观看av| 搞女人的毛片| 国产激情偷乱视频一区二区| 天堂影院成人在线观看| 美女高潮的动态| 久久性视频一级片| 搡老妇女老女人老熟妇| 精品免费久久久久久久清纯| 欧美一区二区亚洲| 欧美性猛交黑人性爽| 在线观看一区二区三区| 一级毛片女人18水好多| 午夜激情欧美在线| 天天躁日日操中文字幕| 黄色视频,在线免费观看| 在线观看一区二区三区| 悠悠久久av| 国内精品一区二区在线观看| 国产 一区 欧美 日韩| 午夜激情福利司机影院| 别揉我奶头~嗯~啊~动态视频| 最近最新免费中文字幕在线| 男女之事视频高清在线观看| 一二三四社区在线视频社区8| 欧美bdsm另类| 国产真实伦视频高清在线观看 | 精品电影一区二区在线| 国产精品久久久久久久电影 | 亚洲熟妇中文字幕五十中出| 美女高潮喷水抽搐中文字幕| 免费高清视频大片| 中文字幕人妻丝袜一区二区| 一区福利在线观看| 婷婷精品国产亚洲av在线| 欧美又色又爽又黄视频| 欧美日韩综合久久久久久 | 午夜影院日韩av| 精华霜和精华液先用哪个| 人人妻,人人澡人人爽秒播| 午夜福利在线在线| 1000部很黄的大片| 国产一级毛片七仙女欲春2| 色哟哟哟哟哟哟| 久久久久久人人人人人| 色在线成人网| 国产精品久久久人人做人人爽| 国产精品免费一区二区三区在线| 天天添夜夜摸| 一夜夜www| 老鸭窝网址在线观看| 深爱激情五月婷婷| 欧美日韩中文字幕国产精品一区二区三区| 免费看美女性在线毛片视频| 综合色av麻豆| 一二三四社区在线视频社区8| 国产三级黄色录像| 日本精品一区二区三区蜜桃| 亚洲国产欧美人成| www.999成人在线观看| 欧美黄色片欧美黄色片| 国产高清视频在线观看网站| 少妇的逼好多水| 免费大片18禁| 亚洲av成人av| 深夜精品福利| 香蕉丝袜av| 国语自产精品视频在线第100页| 可以在线观看的亚洲视频| 亚洲成av人片免费观看| 十八禁人妻一区二区| 久久天躁狠狠躁夜夜2o2o| 天美传媒精品一区二区| 少妇裸体淫交视频免费看高清| 久久久久久国产a免费观看| 变态另类丝袜制服| 一二三四社区在线视频社区8| 天堂√8在线中文| 久久久久久国产a免费观看| 99精品欧美一区二区三区四区| 免费高清视频大片| 欧美激情在线99| www.www免费av| 99久久精品国产亚洲精品| 国产精品电影一区二区三区| 小说图片视频综合网站| 国产精品香港三级国产av潘金莲| 欧美在线黄色| 精品国产三级普通话版| 国产蜜桃级精品一区二区三区| 免费电影在线观看免费观看| 精品乱码久久久久久99久播| 国产三级黄色录像| 18禁在线播放成人免费| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清| 一个人免费在线观看电影| 偷拍熟女少妇极品色| 日韩免费av在线播放| 日本黄大片高清| 亚洲美女黄片视频| 久久精品国产清高在天天线| 宅男免费午夜| 欧美性猛交黑人性爽| 丝袜美腿在线中文| 午夜福利视频1000在线观看| 99久久综合精品五月天人人| 欧美一级a爱片免费观看看| 韩国av一区二区三区四区| 在线观看免费视频日本深夜| 又紧又爽又黄一区二区| 久久精品国产自在天天线| 成人三级黄色视频| 在线免费观看的www视频| or卡值多少钱| 亚洲五月天丁香| 国产成人av教育| 国内久久婷婷六月综合欲色啪| 午夜免费男女啪啪视频观看 | 中文在线观看免费www的网站| 制服人妻中文乱码| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品乱码久久久久久99久播| 久久精品国产清高在天天线| 一二三四社区在线视频社区8| 天堂√8在线中文| 性色avwww在线观看| 午夜激情欧美在线| 一级黄片播放器| 国产成人啪精品午夜网站| 在线观看舔阴道视频| 亚洲电影在线观看av| 此物有八面人人有两片| av中文乱码字幕在线| 欧美av亚洲av综合av国产av| 少妇人妻一区二区三区视频| 精品国产美女av久久久久小说| 精品国产三级普通话版| 国产真人三级小视频在线观看| 黄色女人牲交| 免费av毛片视频| 亚洲国产欧洲综合997久久,| 精品乱码久久久久久99久播| 麻豆国产97在线/欧美| 最近视频中文字幕2019在线8| 色精品久久人妻99蜜桃| 亚洲avbb在线观看| 日日夜夜操网爽| 欧美日韩瑟瑟在线播放| 精品国产亚洲在线| 3wmmmm亚洲av在线观看| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 性欧美人与动物交配| 欧美最黄视频在线播放免费| 免费无遮挡裸体视频| 色哟哟哟哟哟哟| 欧美bdsm另类| 久久精品影院6| 超碰av人人做人人爽久久 | 午夜免费激情av| 狂野欧美白嫩少妇大欣赏| 国产v大片淫在线免费观看| 深爱激情五月婷婷| 性色avwww在线观看| 最近在线观看免费完整版| 欧美丝袜亚洲另类 | 国产乱人视频| 久久这里只有精品中国| 亚洲av日韩精品久久久久久密| 啪啪无遮挡十八禁网站| 国产真实乱freesex| aaaaa片日本免费| 亚洲第一电影网av| 日日摸夜夜添夜夜添小说| 国产精品国产高清国产av| 伊人久久大香线蕉亚洲五| 最新中文字幕久久久久| 少妇的逼好多水| 91在线精品国自产拍蜜月 | 亚洲国产精品合色在线| 老汉色∧v一级毛片| 亚洲成人精品中文字幕电影| 国产精品免费一区二区三区在线| 亚洲精品国产精品久久久不卡| 亚洲国产精品成人综合色| 最近在线观看免费完整版| 亚洲久久久久久中文字幕| 免费av观看视频| 成人特级黄色片久久久久久久| 亚洲国产精品999在线| 国产成年人精品一区二区| 91久久精品国产一区二区成人 | 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| 老司机在亚洲福利影院| 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 国产精品日韩av在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 一本一本综合久久| 成年免费大片在线观看| 国产又黄又爽又无遮挡在线| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 99久久99久久久精品蜜桃| 精品电影一区二区在线| 男女床上黄色一级片免费看| 91在线精品国自产拍蜜月 | 我的老师免费观看完整版| 成人三级黄色视频| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 无限看片的www在线观看| 男人舔奶头视频| 88av欧美| 国产高清有码在线观看视频| 日本黄色片子视频| 中文字幕av在线有码专区| 999久久久精品免费观看国产| 男女下面进入的视频免费午夜| 日本a在线网址| 美女 人体艺术 gogo| 首页视频小说图片口味搜索| 看免费av毛片| 亚洲国产高清在线一区二区三| 午夜a级毛片| 超碰av人人做人人爽久久 | 国产aⅴ精品一区二区三区波| 国产精品1区2区在线观看.| 国产野战对白在线观看| 亚洲无线在线观看| 久久九九热精品免费| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美在线乱码| 欧美一区二区精品小视频在线| 99久久精品热视频| 我要搜黄色片| 一级黄片播放器| 亚洲av中文字字幕乱码综合| 此物有八面人人有两片| 国产精品日韩av在线免费观看| a在线观看视频网站| 亚洲第一电影网av| 日韩精品中文字幕看吧| 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出| 1024手机看黄色片| 99热精品在线国产| 久久久久久九九精品二区国产| 国产国拍精品亚洲av在线观看 | 色尼玛亚洲综合影院| 亚洲 欧美 日韩 在线 免费| www日本黄色视频网| 少妇裸体淫交视频免费看高清| 国产欧美日韩一区二区精品| 国产高清videossex| 免费av不卡在线播放| 国产一区二区在线观看日韩 | 日韩av在线大香蕉| x7x7x7水蜜桃| 啦啦啦韩国在线观看视频| 我的老师免费观看完整版| 九九热线精品视视频播放| 国产成人av教育| 国产综合懂色| 欧美乱色亚洲激情| 麻豆久久精品国产亚洲av| 午夜福利18| 成人午夜高清在线视频| 成年女人毛片免费观看观看9| 成人高潮视频无遮挡免费网站| 丁香欧美五月| 亚洲欧美一区二区三区黑人| 91在线精品国自产拍蜜月 | 少妇高潮的动态图| 国产精品影院久久| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 亚洲av中文字字幕乱码综合| av在线蜜桃| 亚洲,欧美精品.| 亚洲狠狠婷婷综合久久图片| 女人十人毛片免费观看3o分钟| 国产69精品久久久久777片| 可以在线观看毛片的网站| 女同久久另类99精品国产91| 久久这里只有精品中国| 十八禁人妻一区二区| 欧美国产日韩亚洲一区| 成人高潮视频无遮挡免费网站| 丁香欧美五月| 观看美女的网站| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 久久精品国产自在天天线| 性色av乱码一区二区三区2| 女警被强在线播放| 成人一区二区视频在线观看| 999久久久精品免费观看国产| 欧美午夜高清在线| 国产精品 国内视频| 欧洲精品卡2卡3卡4卡5卡区| 又黄又爽又免费观看的视频| 亚洲精品日韩av片在线观看 | 中国美女看黄片| 久久伊人香网站| 国产黄片美女视频| 男女下面进入的视频免费午夜| 亚洲欧美日韩卡通动漫| 亚洲欧美激情综合另类| 久久久久免费精品人妻一区二区| 好男人电影高清在线观看| 久久久国产精品麻豆| 99热6这里只有精品| 国产免费男女视频| 一a级毛片在线观看| 亚洲精华国产精华精| www.熟女人妻精品国产| 麻豆久久精品国产亚洲av| 免费高清视频大片| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 尤物成人国产欧美一区二区三区| av在线蜜桃| 国产亚洲欧美在线一区二区| 99热6这里只有精品| 搞女人的毛片| 国产免费av片在线观看野外av| 久久久色成人| 中文字幕高清在线视频| 97人妻精品一区二区三区麻豆| 免费看十八禁软件| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| av视频在线观看入口| 一本精品99久久精品77| 免费在线观看影片大全网站| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 欧美日韩福利视频一区二区| 色老头精品视频在线观看| 88av欧美| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 欧美黑人欧美精品刺激| 午夜激情欧美在线| 国产伦一二天堂av在线观看| 免费av毛片视频| 好男人在线观看高清免费视频| 欧美乱码精品一区二区三区| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 法律面前人人平等表现在哪些方面| 内射极品少妇av片p| 国产一区在线观看成人免费| 日本在线视频免费播放| 国产熟女xx| 丰满的人妻完整版| 可以在线观看的亚洲视频| 欧美乱色亚洲激情| 欧美午夜高清在线| 午夜激情欧美在线| 99久久九九国产精品国产免费| 天堂动漫精品| 成人鲁丝片一二三区免费| 在线a可以看的网站| 久久久久久久精品吃奶| 国产精品电影一区二区三区| 亚洲国产精品999在线| 午夜免费激情av| 国产伦在线观看视频一区| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 91久久精品电影网| 日本 欧美在线| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 国产单亲对白刺激| 欧美日韩黄片免| 69人妻影院| 可以在线观看毛片的网站| 欧美午夜高清在线| 美女高潮的动态| 老熟妇仑乱视频hdxx| 母亲3免费完整高清在线观看| 免费一级毛片在线播放高清视频| 亚洲成人中文字幕在线播放| av女优亚洲男人天堂| 波野结衣二区三区在线 | а√天堂www在线а√下载| 精品国内亚洲2022精品成人| 久久精品国产自在天天线| 别揉我奶头~嗯~啊~动态视频| 乱人视频在线观看| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 午夜福利视频1000在线观看| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 99久久综合精品五月天人人| 国产男靠女视频免费网站| 国产麻豆成人av免费视频| 亚洲 欧美 日韩 在线 免费| 亚洲av熟女| 国产精品99久久久久久久久| a级毛片a级免费在线| 一级毛片高清免费大全| 国产av不卡久久| 精品一区二区三区av网在线观看| 搡女人真爽免费视频火全软件 | 日韩av在线大香蕉| 国产免费男女视频| 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 在线观看一区二区三区| 欧美3d第一页| 久久久久久九九精品二区国产| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| 69av精品久久久久久| 在线观看舔阴道视频| 亚洲精品色激情综合| 91麻豆av在线| 国产乱人视频| 99在线视频只有这里精品首页| 国产视频一区二区在线看| 亚洲av一区综合| 少妇的逼水好多| 亚洲精品美女久久久久99蜜臀| 亚洲国产中文字幕在线视频| 国产爱豆传媒在线观看| 久久久久国内视频| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 免费av观看视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美最黄视频在线播放免费| 免费高清视频大片| 亚洲在线观看片| 日韩欧美三级三区| 国产精品久久电影中文字幕| 亚洲精品一区av在线观看| 欧美日韩福利视频一区二区| 又粗又爽又猛毛片免费看| 毛片女人毛片| 一级黄色大片毛片| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 18禁在线播放成人免费| 国产伦一二天堂av在线观看| 极品教师在线免费播放| 亚洲国产日韩欧美精品在线观看 | 精品午夜福利视频在线观看一区| 日韩欧美国产一区二区入口| 最近在线观看免费完整版| 国产老妇女一区| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 69人妻影院| 天堂av国产一区二区熟女人妻| 久久香蕉国产精品| 两个人看的免费小视频| 丰满人妻一区二区三区视频av | 国产精品国产高清国产av| 91在线精品国自产拍蜜月 | 九九热线精品视视频播放| 啦啦啦韩国在线观看视频| 97超视频在线观看视频| 黄色丝袜av网址大全| 国产高清激情床上av| 色综合欧美亚洲国产小说| 精品久久久久久,| 桃色一区二区三区在线观看| 神马国产精品三级电影在线观看| 99精品久久久久人妻精品| 亚洲成人久久性| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 欧美成狂野欧美在线观看| 国产精品亚洲一级av第二区| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 18禁美女被吸乳视频| 内射极品少妇av片p| 在线观看美女被高潮喷水网站 | 精品无人区乱码1区二区| 好男人电影高清在线观看| 亚洲成人久久爱视频| 午夜福利高清视频| 国产美女午夜福利| 日韩人妻高清精品专区| 无人区码免费观看不卡| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 成人午夜高清在线视频| 在线十欧美十亚洲十日本专区| 69人妻影院| 激情在线观看视频在线高清| 免费人成视频x8x8入口观看| h日本视频在线播放| 亚洲精品影视一区二区三区av| 国产精品1区2区在线观看.| 久久天躁狠狠躁夜夜2o2o| 在线a可以看的网站| 国产亚洲精品久久久com| 亚洲一区二区三区色噜噜| 最近在线观看免费完整版| 亚洲成人久久性| 少妇人妻精品综合一区二区 | 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 日韩高清综合在线| 精品国产超薄肉色丝袜足j| 成年人黄色毛片网站| 成年女人看的毛片在线观看| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 亚洲精品456在线播放app | 日本在线视频免费播放| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 亚洲精品美女久久久久99蜜臀| 免费人成在线观看视频色| 久久久国产精品麻豆| 香蕉久久夜色| 亚洲欧美日韩卡通动漫| 亚洲精品一卡2卡三卡4卡5卡| www.www免费av| 国产一区二区三区视频了| 国产精品美女特级片免费视频播放器|