• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-Physics Modeling Assisted Design of Non-Coking Anode for Planar Solid Oxide Fuel Cell Fueled by Low Steam Methane

    2018-11-09 06:53:28JiangZhuBaoxuanWangZijingLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Jiang ZhuBao-xuan WangZi-jing Lin

    Hefei National Laboratory for Physical Sciences at the Microscale&CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    Key words: Carbon activity,Methane steam reformation,Diffusion barrier layer,Fuel utilization ratio,Non-coking condition

    I.INTRODUCTION

    The ability to use methane as fuel is a strong advantage of solid oxide fuel cells(SOFCs)as methane is abundant in nature.Internal methane steam reforming(MSR)is very appealing as it is helpful for increasing the system efficiency and reducing the system complexity[1–4].To reap the full bene fit of internal MSR operations,however,using methane with low steam content as the fuel is required so that the consequence of reduced power density and increased heating requirement with high steam content fuel may be prevented[5,6].

    To realize the use of low steam methane fuel,materials to avoid anode coking are critically important and are actively pursued[3–14].A common approach to avoid anode carbon deposition is to eliminate the use of Ni in the anode[5–10].Alternatively,methods of modifying the Ni containing anode with coking resistant material are developed[4,11–15].Unfortunately,there are serious drawbacks associated with all the known material designs of coking resistant anode,e.g.,low electronic conductivity,poor chemical compatibility with other cell components and high material cost[4,15].

    Interestingly,there have been numerous reports of stable direct-methane operation with the well-known Ni-based anodes,despite the high propensity of Ni to carbon deposition[16–22].Recent studies suggest two likely explanations for this apparent discrepancy[16,17,23].First,some stable operations are observed because that the methane pyrolysis kinetics on Ni are relatively slow for working temperature<700?C.Second,others are due to the coking suppression effect of SOFC operation.Specifically,it is observed that the naturally occurring soot formation disappears when the output current density is above a critical value[24].The coking suppression effect may be explained by the steam production in the current generation that dilutes the local methane fuel[22,23].Both the explanations share the same mechanistic feature that the anode coking is kinetically controlled.In fact,the kinetic nature of the soot formation phenomenon is easy to conclude as coking is not observed at some thermodynamically favorable domain.The dynamic feature of the soot formation points out the possibility of achieving coking free operation with low steam methane by anode structural design and selection of operating parameters.

    Indeed,experiments have shown that the critical density current for coking free operation may be reduced by adding a diffusion barrier layer on the anode[24].The result is interesting and important,but is limited in two substantial ways.First,the existing studies are conducted on button cells only.It is unclear how to ap-ply the result to production size SOFCs.Second,the result is qualitative in nature.While it shows a proof of concept,no specific practical design guideline is given.For example,the relationships between the thickness of diffusion barrier layer and the critical current density as well as the cell performance are unclear.In short,there is a lack of study on the design of diffusion barrier layer for coking free operations of SOFCs fueled by low steam methane.Considering the bene fits of high power density and high energy efficiency associated with the low steam methane fuel,such studies are highly important for the development of SOFC technology.

    This work addresses the anode design issue through multi-physics modeling.Based on simulations of relevant experiments,a kinetic criterion of non-coking condition is deduced.Parametric studies are then carried out to examine the effects of operating condition and anode design on the SOFC performance and the likelihood of soot formation.A rule of anode diffusion barrier layer design for the optimal balance of operating conditions and cell performance is found for the non-coking operations of low steam methane fuel.

    II.METHOD

    A.Multi-physics modeling

    A multi-physics model with a rigorous consideration of the balance of local electrochemical potentials is used for the numerical simulations of methane fueled SOFCs.The electrochemical reaction,chemical reaction,electrical conductions,gas transport and heat conduction are fully coupled in the model.Such a multi-physics model has been described in detail in Refs.[25,26].A standard set of SOFC materials,YSZ electrolyte,Ni-YSZ anode and YSZ-LSM cathode,are assumed here.These materials are chosen because they coincide with those used in experiments examining CH4fueled SOFCs[16,24,27,28].Parameters for the material properties and electrode microstructures are referred to Refs.[22,24,26].When comparing with experiments,geometric models of SOFCs are built according to the experimental specifications.When discussing the diffusion barrier layer designs,a planar SOFC with coflow gas con figuration and a channel length of 10 cm for the electrochemically active area is assumed.The microstructural parameters of the barrier layer for gas diffusion are:25%for the porosity,the tortuosity of 3.8,and the average pore radius of 0.25μm.Other material properties such as the electronic and thermal conductivities of the barrier layer are the same as that of the anode.Notice,however,the barrier layer is MSR inert.

    When considering the anode design,the operating temperature is set atTop=1073 K considering the propensity of carbon formation increases with the temperature and an operating temperature above 1073 K is undesirable in practice.The operating cell voltage,Vop,is set at 0.8 V,unless specified explicitly otherwise,asVopis expected to be below 0.8 V in practice.Non-coking condition satis fied forVop=0.8 V is automatically satis fied forVop<0.8 V due to the increased current associated with the reducedVop.The exit fuel and air pressures are both set at 1 atm.The input fuel consists of 3mol%of H2O.Such a fuel can be easily realized by bubbling CH4through water at around the room temperature.

    The coupled multi-physics equations are solved by the commercial finite element software,COMSOL MULTIPHYSICSrVersion 3.5[29].

    B.Carbon activity criterion for soot formation

    According to the thermodynamics principle,carbon deposition occurs when the overall carbon activity(aC)is larger than one[30–34].The model for the carbon activity concerning MSR catalyzed by Ni as suggested in Ref.[32]is used here.The model is chosen as it is consistent with the elementary step analysis of MSR via a pseudo-steady-state analysis and assuming that chemisorbed carbon(C?)and activated catalyst atom are the most abundant reactive intermediates[32,33].In this model,aCis expressed as[32]:

    wherekCis a temperature dependent constant.piis the partial pressure of gas speciesi(i=CH4,H2,H2O).As the methane decomposition is likely the major source of C?,kC(oraC)should be proportional to the methane decomposition rate.That is,Eq.(1)may be rewritten as,

    whereEa=96.1 kJ/mol is the activation energy of methane decomposition,as determined experimentally[35].kcatalystis a constant depending on the catalyst morphology. For the standard anode material used,comparison between theory and experiment yieldskcatalyst=9400 bar?1,as to be seen below.

    C.Methane steam reforming kinetics

    The reaction rate of MSR,CH4+H2O=CO+3H2,as catalyzed by Ni is usually expressed as,

    The commonly accepted value for the methane reaction order,m,is 1.The steam reaction order,n,is dependent on the steam carbon ratio,S/C.nis known to be 1 for low S/C[26,36].Andnis close to 0 for high S/C[35,37].Combining the results of Ref.[35]and Ref.[26],representative of low and high S/C,respectively,a unifying expression for the MSR reaction rate is deduced as,

    whereKeq,MSRis 1.198×1017

    Eq.(4)is used in this work,unless explicitly stated otherwise.Considering the in fluence ofrMSRon the result ofaC,a few other reaction rate expressions often seen in literatures[30,36,38–40]are also used for testing purpose,including:

    Hereciis the molar concentration of fuel speciesi(i=CH4,H2O,CO,and H2O).The value ofˉkis determined by fitting the experimental open circuit voltage atT0=1073 K[16,28].The resultingˉkvalues are 350,20 and 1.05×108for Eq.(5),Eq.(6),and Eq.(7),respectively.

    Following the recommendation of Ref.[30],the reaction rate for the near equilibrium water-gas shift(WGS)reaction,CO+H2O=CO2+H2,is expressed as,

    III.RESULTS AND DISCUSSION

    A.I-V curves and carbon activity criterion

    By constructing button cell geometric models and using operating conditions specified experimentally[24],simulations with the above mentioned multi-physics model are carried out to determine theI-Vrelations and distributions of physical quantities.FIG.1 compares the theoretical and experimentalI-Vresults.Clearly,the theoretical results for different operating temperatures and different anode structures(with and without barrier layer)are in very good agreement with the experimental data,demonstrating the validity of the modeling tool used.

    FIG.1 Comparison of theoretical and experimental[24]I-V relations of button cell SOFCs with and without a 400μmthick anode diffusion barrier layer.SOFCs are fueled by humidified methane(H2O:CH4=3:97).

    The distributions of partial pressures of gas species are used to computeaCof Eq.(2).It is known experimentally that the critical current density of non-coking operation atTop=1073 K is 0.6 A/cm2with a barrier layer thickness of 400μm and is less than 1.8 A/cm2when there is no barrier layer[24].By requiringaCin the entire anode to be less than 1 for the non-coking current density,the maximum possiblekcatalystthus determined is 9400 bar?1.

    B.Mechanism for the reduction of carbon activity

    As indicated in Eq.(2),the carbon activity is ultimately determined by the distributions of fuel species in the Ni-YSZ anode.As the current generation requires the consumption of CH4and the production of H2O,the effect of operating current on the reduction of carbon activity is in principle easily understandable(Eq.(2)).To illustrate the role of diffusion barrier layer on reducing the carbon activity,FIG.2 compares the partial pressures of fuel species in the anode near the fuel inlet and along the anode thickness direction for operating SOFCs with and without a diffusion barrier layer.The anode near the fuel entrance is chosen as it is where the highest carbon activity is found for the operating SOFC examined.As shown in FIG.2,relative to the cell with a bare Ni-YSZ anode,the diffusion barrier layer reducespCH4while increasespH2Oinside the Ni-YSZ zone.This is simply because that the barrier layer makes it difficult both for H2O to diffuse away from the Ni-YSZ zone and CH4to diffuse into the Ni-YSZ zone.As a result,the critical current density for coking free operation is reduced by the presence of a diffusion barrier layer.

    In addition to being affected by the processes of current generation(CH4consumption and H2O production)and gas diffusion(anode thickness and barrier layer),the fuel species are first of all dependent on the input fuel and the overall fuel consumption,i.e.,fuel utilization.For givenVopandTop,the fuel utilization is dependent on the amount of fuel supplied.That is,the carbon activity is dependent on the fuel flow rate for the chosenVopandTop.To illustrate,FIG.3 shows the dependence of the maximum value of carbon activity in the anode,together with the fuel utilization ratio,on the fuel flow rate.

    FIG.2 Partial pressures of fuel species(CH4,H2and H2O)in the anode near the fuel inlet and along the anode thickness direction for two cells,one with and another without a diffusion barrier layer. The SOFCs are operated at Vop=0.8 V,Top=1073 K and a methane flow rate of 1.084×10?3mol·m?1s?1.The thickness of the Ni-YSZ anode is 500μm and the thickness of the barrier layer is 300μm.

    As shown in FIG.3,the maximum carbon activity of less than 1 is possible for the anode without a barrier layer when the fuel flow rate is lower than 5.242×10?4mol·m?1s?1,corresponding to a current density of 3870 A/m2and a fuel utilization of 95.7%.In comparison,the corresponding results for the anode with a barrier layer of 300μm are a fuel flow rate of 1.073×10?3mol·m?1s?1,a current density of 6823 A/m2and a fuel utilization of 82.4%.No matter there is a diffusion barrier layer or not,the maximum carbon activity should be below 1 in order to avoid carbon deposition.The results show that the fuel utilization ratio should stay above some minimum in order to prevent the soot formation.Moreover,the results demonstrate that the minimum fuel utilization ratio required for coking free operation is reduced by the presence of a diffusion barrier layer,consistent with the experimental observation.

    The above results also mean that,for a givenVop,the fuel flow rate should be kept below a certain threshold so that the fuel utilization ratio can be higher than the minimum value required.For a given fuel flow rate that meets the requirement withVop,it also meets the requirement withV

    FIG.3 Relationships among the fuel flow rate,maximum carbon activity in the Ni-YSZ anode and the fuel utilization ratio for SOFCs with and without a diffusion barrier layer(the thickness of the barrier layer is 300μm.)

    is chosen,increasing the current production is limited by the electrochemical performance of the cell and requires an increased input fuel flow rate.The increased fuel input results in a decrease in the fuel utilization ratio.As a result,the soot formation may occur.That is,the statement that increasing the operating current is helpful for the non-coking operation can be misleading in practice.It is valid only when it is the result of reducing the cell voltage for a given fuel flow rate.It is incorrect if the increased current output is the result of increasing the fuel supply for a given cell voltage.Therefore,the minimum fuel utilization criterion will be used below for discussing the diffusion barrier layer designs as the criterion is valid regardless of the criterion is met by reducing the fuel flow rate or by reducing the cell voltage.

    C.Barrier layer thickness and minimum fuel utilization for non-coking operations

    As mentioned above,the minimum fuel utilization for non-coking operations is over 95%for the cell without a barrier layer.Such a high fuel utilization is unrealistic in practice.The critical fuel utilization can be reduced by applying an anode diffusion barrier layer.Naturally,the effect of the barrier layer on reducing the carbon activity is dependent on the barrier layer thickness.The relationship between the fuel utilization and the maximum carbon activity in the anode as affected by the barrier layer of different thickness is shown in FIG.4.

    FIG.4 Relationship between the fuel utilization and maximum carbon activity in the anode with a diffusion barrier layer(the thicknesses of the barrier layer are indicated in the figure):(a)Vop=0.8 V,(b)Vop=0.7 V.

    As shown in FIG.4,the minimum fuel utilization ratio to keep the carbon activity in the Ni-YSZ anode to be below 1 decreases with the increase of the thickness of the barrier layer.For the case ofVop=0.8 V(FIG.4(a)),the minimum fuel utilization ratios for the barrier layers of 200,300,400,and 500μm thickness are 92%,82%,64%,and 37%,respectively.Considering that SOFCs are typically operated at a fuel utilization ratio of 70%?80%,a barrier layer thickness below 300μm is not suitable for practical use.For the fuel utilization ratio of 70%?80%,the operating current densities in unit of A/cm2for the barrier layer thicknesses of 0,400,and 500μm are in the range of(0.77,0.87),(0.66,0.74)and(0.62,0.70),respectively.The current output for a 400μm-thick barrier layer is higher and more desirable than that for a 500μm-thick barrier layer.Besides,compared to the cell with no barrier layer,the power loss caused by a 400μm-thick barrier layer is about 15%,which is moderate considering the huge bene fit of no-coking operations with no external reformer.Therefore,a barrier layer with a thickness of about 400μm is optimal for achieving high power output under non-coking condition.When a low power load is desired in practice,the non-coking condition can be easily maintained by reducing the fuel supply at the same cell voltage so that the fuel utilization increases and the carbon activity decreases.

    It is noted that the minimum fuel utilization ratio for non-coking condition can be substantially reduced for reducedVop,due to the accompanying increased current production.For example,as shown in FIG.4(b)forVop=0.7 V,basically all fuel utilization ratios for a barrier layer with a thickness of over 300μm meet the noncoking requirement,though the minimum fuel utilization ratio for a 200μm-thick barrier layer remains impractically high.Considering that the electrical power efficiency of SOFC is proportional toVopandVop≤0.8 V is usually required to obtain an acceptably high power density,a thickness of about 400μm is clearly more desirable than a thickness of about 300μm.Nevertheless,it is noted that a barrier layer of a thickness of about 300μm is also acceptable for the operating condition ofVop≤0.75 V.

    FIG.5 Effect of rMSRexpressions on the relationship between the fuel utilization and maximum carbon activity in the anode when the thickness of the barrier layer is 400μm:(a)Vop=0.8 V,(b)Vop=0.7 V.

    Notice that the above carbon activity results are obtained based on Eq.(4)for the MSR reaction rate.As there are a number of different experimentally determinedrMSR,to ensure the credibility of the barrier layer design result,the effect of differentrMSRexpressions on the design result is also examined.Representative testing results are shown in FIG.5.As shown in FIG.5,the carbon activity obtained with Eq.(4)is the highest for all fuel utilizations and cell voltages examined.Therefore,the above result of the barrier layer design is safe and reliable.It may be argued that the optimal barrier layer thickness may be different from the above result if a differentrMSRexpression is used.However,it is noted that Eq.(4)is the result based on the newest experimental data and is more reliable than the previous ones.Moreover,carbon deposition is fatal for the operations of SOFCs,it is highly desirable to use a safe criterion.Therefore,the above design result is strongly recommended.

    IV.CONCLUSION

    A multi-physics model with consideration of detailed balance of electrochemical potentials is employed to simulate the operations of SOFCs fueled by low steam methane.The effect of current generation on suppressing the soot formation is proven to be the result of the current accompanying fuel consumption and steam production that reduce the carbon activity.The minimum fuel utilization is therefore identified as a more robust indicator for the non-coking condition than that of the critical current density.The effects of fuel utilization,barrier layer thickness and operating voltage on the anode carbon activity are examined systematically.Considering the practical fuel utilization of≥70%and cell voltage of~0.8 V required by high efficiency SOFC operations,an anode diffusion barrier layer of 400μm is found to be optimal for achieving high electrochemical performance under non-coking condition.The finding on the anode structure design opens the door for realizing the technology of low steam methane fueled SOFCs that is highly desirable based on the energy efficiency and economic considerations.Experimentalists are therefore urged to conduct validating experiments so that the technology may become a reality.

    V.ACKNOWLEDGEMENTS

    This work was supported by the National Natural Science Foundation of China(No.11574284 abd No.11774324),the National Basic Research Program of China(No.2012CB215405),and Collaborative Innovation Center of Suzhou Nano Science and Technology.

    [1]B.C.H.Steele,Nature 400,619(1999).

    [2]D.Yan,C.Zhang,L.J.Liang,K.Li,L.C.Jia,J.Pu,L.Jian,X.Li,and T.Zhang,Appl.Energy 175,414(2016).

    [3]J.Laurencin,G.Delette,F.Usseglio-Viretta,and S.Di Iorio,J.Eur.Ceramic Soc.31,1741(2011).

    [4]Y.Chen,Y.X.Zhang,Y.Lin,Z.B.Yang,D.Su,M.F.Han,and F.L.Chen,Nano Energy 10,1(2014).

    [5]A.Ploner,A.Hagen,and A.Hauch,Fuel Cells 17,498(2017).

    [6]S.Sengodan,S.Choi,A.Jun,T.H.Shin,Y.W.Ju,H.Y.Jeong,J.Shin,J.T.Irvine,and G.Kim,Nat.Mater.14,205(2015).

    [7]M.Torrell,A.Morata,P.Kayser,M.Kendall,K.Kendall,and A.Tarancón,J.Power Sources 285,439(2015).

    [8]N.P.Brandon,P.Boldrin,and E.Ruiz-Trejo,Solid Oxide Fuel Cell Lifetime and Reliability,London,UK:Academic Press,79(2017).

    [9]T.Luo,X.J.Liu,X.Meng,H.Wu,S.R.Wang,and Z.L.Zhan,J.Power Sources 299,472(2015).

    [10]H.P.Ding,Z.T.Tao,S.Liu,and Y.T.Yang,J.Power Sources 327,573(2016).

    [11]H.Yokokawa,H.Kishimoto,T.Shimonosono,K.Yamaji,M.Muramatsu,K.Terada,K.Yashiro,and T.Kawada,J.Electrochem.Energy Conv.Stor.14,011004(2017).

    [12]V.Zaccaria,D.Tucker,and A.Traverso,J.Power Sources 311,175(2016).

    [13]J.F.Qu,W.Wang,Y.B.Chen,X.Deng,and Z.P.Shao,Appl.Energy 164,563(2016).

    [14]M.F.Liu,Y.Choi,L.Yang,K.Blinn,W.T.Qin,P.Liu,and M.L.Liu,Nano Energy 1,448(2012).

    [15]K.Park,S.Yu,J.Bae,H.Kim,and Y.Ko,Int.J.Hydrogen Energy 35,8670(2010).

    [16]Y.B.Lin,Z.L.Zhan,J.Liu,and S.A.Barnett,Solid State Ionics 176,1827(2005).

    [17]M.F.Rabuni,T.Li,P.Punmeechao,and K.Li,J.Power Sources 384,287(2018).

    [18]G.L.Xiao and F.L.Chen,Electrochem.Commun.13,57(2011).

    [19]J.Xiao,Y.M.Xie,J.Liu,and M.L.Liu,J.Power Sources 268,508(2014).

    [20]D.Lee,J.Myung,J.Tan,S.H.Hyun,J.T.S.Irvine,J.Kim,and J.Moon,J.Power Sources 345,30(2017).

    [21]A.Ideris,E.Croiset,M.Pritzker,and A.Amin,Int.J.Hydrogen Energy 42,23118(2017).

    [22]B.X.Wang,J.Zhu,and Z.J.Lin,Chin.J.Chem.Phys.28,299(2015).

    [23]D.Mogensen,J.D.Grunwaldt,P.V.Hendriksen,K.Dam-Johansen,and J.U.Nielsen,J.Power Sources 196,25(2011).

    [24]Y.B.Lin,Z.J.Zhan,and S.A.Barnett,J.Power Sources 158,1313(2006).

    [25]W.Kong,H.Y.Zhu,Z.Y.Fei,and Z.J.Lin,J.Power Sources 206,171(2012).

    [26]B.X.Wang,J.Zhu,and Z.J.Lin,Appl.Energy 176,1(2016).

    [27]J.Liu and S.A.Barnett,J.Am.Ceram.Soc.85,3096(2002).

    [28]J.Liu and S.A.Barnett,Solid State Ionics 158,11(2003).

    [29]COMSOL-Multiphysics,COMSOL Multiphysics User’s Guide Version 3.5,Stokholm,Sweden:COMSOL AB,(2008).

    [30]J.M.Klein,Y.Bultel,S.Georges,and M.Pons,Chem.Eng.Sci.62,1636(2007).

    [31]I.Alstrup,M.T.Tavares,C.A.Bernardo,O.S?rensen,and J.Rostrup-Nielsen,Mater.Corros.49,367(1998).

    [32]J.M.Wei and E.Iglesia,J.Catal.224,370(2004).

    [33]S.Safvi,E.Bianchini,and C.R.F.Lund,Carbon 29,1245(1991).

    [34]W.Sangtongkitcharoen, S.Assabumrungrat, V.Pavarajarn,N.Laosiripojana,and P.Praserthdam,J.Power Sources 142,75(2005).

    [35]M.Zeppieri,P.L.Villa,N.Verdone,M.Scarsella,and P.De Filippis,Appl.Catal.A 387,147(2010).

    [36]F.P.Nagel,T.J.Schildhauer,S.M.A.Biollaz,and S.Stucki,J.Power Sources 184,129(2008).

    [37]M.Andersson,H.Paradis,J.L.Yuan,and B.Sund′en,Int.J.Energy Res.35,1340(2011).

    [38]I.Drescher,W.Lehnert,and J.Meusinger,Electrochim.Acta 43,3059(1998).

    [39]R.Leinfelder,Ph.D.Thesis,Universit¨at Erlangen-N¨urnberg,(2004).

    [40]E.Achenbach and E.Riensche,J.Power Sources 52,283(1994).

    亚洲欧美一区二区三区久久| 日本欧美视频一区| 露出奶头的视频| 在线观看午夜福利视频| 校园春色视频在线观看| 午夜日韩欧美国产| 国产深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲 | 真人做人爱边吃奶动态| 18禁观看日本| 午夜福利在线免费观看网站| 久99久视频精品免费| 在线av久久热| 久久草成人影院| 国产午夜精品久久久久久| 90打野战视频偷拍视频| 91av网站免费观看| 欧美精品一区二区免费开放| 一级作爱视频免费观看| 99久久精品国产亚洲精品| 香蕉国产在线看| 一边摸一边抽搐一进一小说 | 国产日韩一区二区三区精品不卡| 巨乳人妻的诱惑在线观看| 欧美精品亚洲一区二区| 国产亚洲一区二区精品| 欧美成人午夜精品| 婷婷成人精品国产| 十八禁高潮呻吟视频| 精品视频人人做人人爽| 捣出白浆h1v1| 亚洲精品中文字幕一二三四区| 亚洲一区二区三区欧美精品| 99热国产这里只有精品6| 中出人妻视频一区二区| 久久ye,这里只有精品| 精品国内亚洲2022精品成人 | 国产99白浆流出| 波多野结衣av一区二区av| 欧美老熟妇乱子伦牲交| 精品国产一区二区三区久久久樱花| 黄片大片在线免费观看| 精品少妇久久久久久888优播| 日本黄色视频三级网站网址 | 亚洲中文日韩欧美视频| 涩涩av久久男人的天堂| 日韩欧美免费精品| 午夜久久久在线观看| 亚洲午夜精品一区,二区,三区| 国产又爽黄色视频| 国产黄色免费在线视频| 窝窝影院91人妻| 欧美 日韩 精品 国产| 亚洲av成人av| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 国产精品久久久久久精品古装| 亚洲成av片中文字幕在线观看| 中文欧美无线码| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| www日本在线高清视频| 欧美精品高潮呻吟av久久| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站| 50天的宝宝边吃奶边哭怎么回事| 精品久久久精品久久久| 韩国精品一区二区三区| 亚洲av第一区精品v没综合| 久久久久国产一级毛片高清牌| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区视频在线观看| a级毛片在线看网站| 黄色丝袜av网址大全| 亚洲精品成人av观看孕妇| 亚洲国产欧美日韩在线播放| 黄色女人牲交| 制服诱惑二区| 国精品久久久久久国模美| 亚洲 国产 在线| 国产精品一区二区在线观看99| 久久这里只有精品19| 精品卡一卡二卡四卡免费| 免费看a级黄色片| 极品教师在线免费播放| 国产成人啪精品午夜网站| 一级a爱视频在线免费观看| 少妇被粗大的猛进出69影院| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 黄网站色视频无遮挡免费观看| 亚洲国产看品久久| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利免费观看在线| 香蕉国产在线看| 欧美大码av| 国产精品一区二区精品视频观看| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区在线臀色熟女 | 亚洲欧美一区二区三区黑人| 久久久久视频综合| 亚洲午夜理论影院| 大型黄色视频在线免费观看| 日韩欧美一区视频在线观看| 99国产精品一区二区蜜桃av | 国产野战对白在线观看| 五月开心婷婷网| 青草久久国产| 久久这里只有精品19| 看免费av毛片| 变态另类成人亚洲欧美熟女 | 校园春色视频在线观看| 色综合婷婷激情| 中文亚洲av片在线观看爽 | 性色av乱码一区二区三区2| 又大又爽又粗| 最新的欧美精品一区二区| 可以免费在线观看a视频的电影网站| 亚洲 欧美一区二区三区| 亚洲精品成人av观看孕妇| 国产精品久久久av美女十八| 大香蕉久久网| 成年人黄色毛片网站| av一本久久久久| 国产精品98久久久久久宅男小说| 久久久国产欧美日韩av| 满18在线观看网站| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 黄色女人牲交| 国产精品久久久久久人妻精品电影| 国产麻豆69| 精品第一国产精品| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 国产成人精品无人区| 久久久久久亚洲精品国产蜜桃av| 国产成人免费无遮挡视频| 婷婷成人精品国产| 美女视频免费永久观看网站| 久久久精品免费免费高清| 午夜免费观看网址| 69av精品久久久久久| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 国产在线一区二区三区精| 亚洲av片天天在线观看| 建设人人有责人人尽责人人享有的| 午夜福利欧美成人| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区精品91| 法律面前人人平等表现在哪些方面| 国产亚洲精品一区二区www | 精品国产一区二区久久| 人妻丰满熟妇av一区二区三区 | 中文字幕人妻丝袜一区二区| 免费看十八禁软件| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| 国产深夜福利视频在线观看| 岛国毛片在线播放| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 亚洲精品在线美女| 久久99一区二区三区| 成人影院久久| 国产野战对白在线观看| 欧美色视频一区免费| 香蕉久久夜色| 99国产精品免费福利视频| 日本vs欧美在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区综合在线观看| 国产成人欧美在线观看 | 黄色片一级片一级黄色片| 又黄又爽又免费观看的视频| 日韩熟女老妇一区二区性免费视频| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| 中文字幕人妻丝袜制服| 精品第一国产精品| 精品亚洲成国产av| 国产黄色免费在线视频| 不卡av一区二区三区| 黄片小视频在线播放| 免费不卡黄色视频| 悠悠久久av| а√天堂www在线а√下载 | 精品免费久久久久久久清纯 | 国产男女超爽视频在线观看| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 亚洲国产看品久久| 日本一区二区免费在线视频| 日韩中文字幕欧美一区二区| 高清黄色对白视频在线免费看| 我的亚洲天堂| 久久久精品免费免费高清| 99热国产这里只有精品6| 一边摸一边抽搐一进一出视频| 亚洲熟妇中文字幕五十中出 | 欧美性长视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | av欧美777| 久久久国产成人免费| 超碰成人久久| 亚洲人成77777在线视频| svipshipincom国产片| 日韩免费av在线播放| 男女下面插进去视频免费观看| 国产亚洲欧美精品永久| 亚洲午夜精品一区,二区,三区| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀| 香蕉国产在线看| av国产精品久久久久影院| 97人妻天天添夜夜摸| 国产又爽黄色视频| 免费观看人在逋| 国产欧美日韩综合在线一区二区| www.熟女人妻精品国产| 超碰成人久久| 99re在线观看精品视频| 国产成人精品久久二区二区91| 老司机午夜福利在线观看视频| 欧美日韩国产mv在线观看视频| av线在线观看网站| 国产男女超爽视频在线观看| 亚洲成a人片在线一区二区| 91在线观看av| 久久久久久久国产电影| 美女高潮到喷水免费观看| 国产极品粉嫩免费观看在线| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 91成年电影在线观看| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 黄色视频不卡| xxx96com| 亚洲国产看品久久| e午夜精品久久久久久久| 久久久精品区二区三区| 51午夜福利影视在线观看| 成人18禁高潮啪啪吃奶动态图| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 欧美日韩av久久| 午夜福利在线免费观看网站| 人人妻人人添人人爽欧美一区卜| 精品视频人人做人人爽| aaaaa片日本免费| 久久香蕉精品热| 国内毛片毛片毛片毛片毛片| 精品高清国产在线一区| 日本精品一区二区三区蜜桃| 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 国产午夜精品久久久久久| 成人18禁在线播放| 91成人精品电影| 久久九九热精品免费| 欧美激情久久久久久爽电影 | 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 亚洲少妇的诱惑av| 别揉我奶头~嗯~啊~动态视频| 亚洲专区国产一区二区| 久久人妻熟女aⅴ| 免费一级毛片在线播放高清视频 | 在线观看一区二区三区激情| 国产麻豆69| 在线观看舔阴道视频| 一区福利在线观看| 妹子高潮喷水视频| 国产精品欧美亚洲77777| 国产成人精品久久二区二区免费| 亚洲成人免费电影在线观看| 精品国产一区二区三区四区第35| 亚洲一码二码三码区别大吗| xxx96com| 岛国在线观看网站| 国产午夜精品久久久久久| 精品久久蜜臀av无| 欧美 日韩 精品 国产| 欧美性长视频在线观看| 天堂动漫精品| 成人三级做爰电影| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放 | 黑丝袜美女国产一区| 大码成人一级视频| 中文亚洲av片在线观看爽 | 99国产精品99久久久久| 亚洲国产精品sss在线观看 | 大陆偷拍与自拍| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 90打野战视频偷拍视频| 一级片'在线观看视频| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 国产97色在线日韩免费| 九色亚洲精品在线播放| 日韩三级视频一区二区三区| 女人被狂操c到高潮| 亚洲五月色婷婷综合| 黄色视频不卡| 精品午夜福利视频在线观看一区| 少妇 在线观看| 久久精品人人爽人人爽视色| 成熟少妇高潮喷水视频| 妹子高潮喷水视频| 香蕉丝袜av| 国产高清国产精品国产三级| 午夜精品国产一区二区电影| 天堂中文最新版在线下载| 制服人妻中文乱码| 伊人久久大香线蕉亚洲五| 亚洲一码二码三码区别大吗| 国产单亲对白刺激| 亚洲一区中文字幕在线| a级片在线免费高清观看视频| 日本一区二区免费在线视频| a级毛片黄视频| 捣出白浆h1v1| 精品欧美一区二区三区在线| 身体一侧抽搐| 性色av乱码一区二区三区2| 国产aⅴ精品一区二区三区波| 黑人巨大精品欧美一区二区蜜桃| 亚洲av欧美aⅴ国产| 中文字幕av电影在线播放| 国产淫语在线视频| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 一级毛片精品| 人妻 亚洲 视频| 久久久国产成人免费| 韩国av一区二区三区四区| 国产不卡一卡二| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 一区二区日韩欧美中文字幕| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区三区| 亚洲精品一二三| 免费不卡黄色视频| 亚洲三区欧美一区| 香蕉丝袜av| 淫妇啪啪啪对白视频| 国产又爽黄色视频| 别揉我奶头~嗯~啊~动态视频| 亚洲一区中文字幕在线| 欧美激情极品国产一区二区三区| 午夜成年电影在线免费观看| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久久5区| 一级毛片高清免费大全| 亚洲第一青青草原| 高清av免费在线| 国产又色又爽无遮挡免费看| 日韩欧美在线二视频 | 黑人欧美特级aaaaaa片| 日本精品一区二区三区蜜桃| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 一二三四社区在线视频社区8| 午夜免费鲁丝| 女性生殖器流出的白浆| 91九色精品人成在线观看| 俄罗斯特黄特色一大片| 中文字幕精品免费在线观看视频| 亚洲av熟女| 免费日韩欧美在线观看| 一级片免费观看大全| 久久久久国产精品人妻aⅴ院 | 色综合婷婷激情| 精品久久久久久久久久免费视频 | 国产亚洲欧美精品永久| 国产成人欧美| a级毛片在线看网站| 韩国av一区二区三区四区| 91精品三级在线观看| 国产精品永久免费网站| 日本五十路高清| 夜夜爽天天搞| 欧美最黄视频在线播放免费 | 国产一区二区三区视频了| 国产精品久久视频播放| 一本大道久久a久久精品| 亚洲精品国产精品久久久不卡| 美女扒开内裤让男人捅视频| 纯流量卡能插随身wifi吗| 最近最新免费中文字幕在线| av电影中文网址| 岛国毛片在线播放| 久久ye,这里只有精品| 激情在线观看视频在线高清 | 久久国产亚洲av麻豆专区| 国产91精品成人一区二区三区| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 超色免费av| 色老头精品视频在线观看| 国产亚洲精品久久久久5区| 久久国产亚洲av麻豆专区| 亚洲第一青青草原| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 亚洲av成人一区二区三| 亚洲一码二码三码区别大吗| 国产亚洲av高清不卡| 欧美日韩视频精品一区| 三上悠亚av全集在线观看| 极品人妻少妇av视频| 色在线成人网| 欧美国产精品一级二级三级| 人人妻人人爽人人添夜夜欢视频| 一级毛片高清免费大全| 免费女性裸体啪啪无遮挡网站| 国产精品国产高清国产av | 老司机靠b影院| 热99re8久久精品国产| 精品亚洲成a人片在线观看| 水蜜桃什么品种好| 又大又爽又粗| 精品一区二区三区视频在线观看免费 | 久久久国产精品麻豆| 美国免费a级毛片| 69av精品久久久久久| 久热爱精品视频在线9| 成人手机av| 男人舔女人的私密视频| 老司机午夜福利在线观看视频| 一区二区日韩欧美中文字幕| 我的亚洲天堂| 老司机影院毛片| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 日韩制服丝袜自拍偷拍| 国产亚洲欧美精品永久| 午夜福利,免费看| 真人做人爱边吃奶动态| 免费观看人在逋| 欧美精品亚洲一区二区| 麻豆国产av国片精品| 乱人伦中国视频| 成人三级做爰电影| 99精品欧美一区二区三区四区| 热re99久久国产66热| 性色av乱码一区二区三区2| 亚洲专区国产一区二区| 一级作爱视频免费观看| 国产在线观看jvid| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 在线十欧美十亚洲十日本专区| 一边摸一边抽搐一进一小说 | 中出人妻视频一区二区| 欧美激情 高清一区二区三区| 免费观看精品视频网站| 中文字幕另类日韩欧美亚洲嫩草| 黑人巨大精品欧美一区二区mp4| 欧美人与性动交α欧美精品济南到| av中文乱码字幕在线| 免费久久久久久久精品成人欧美视频| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| 久久亚洲精品不卡| 窝窝影院91人妻| 亚洲熟妇中文字幕五十中出 | 亚洲成人免费av在线播放| 色尼玛亚洲综合影院| 久久久久精品人妻al黑| 亚洲自偷自拍图片 自拍| 亚洲黑人精品在线| 久久国产精品影院| 黄片大片在线免费观看| 超碰97精品在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 男男h啪啪无遮挡| 下体分泌物呈黄色| 热99久久久久精品小说推荐| xxx96com| 乱人伦中国视频| av福利片在线| 欧美 日韩 精品 国产| 99精品久久久久人妻精品| 欧美不卡视频在线免费观看 | 中国美女看黄片| 国产亚洲av高清不卡| 99riav亚洲国产免费| 手机成人av网站| 视频在线观看一区二区三区| a级毛片黄视频| 又大又爽又粗| 亚洲精品一卡2卡三卡4卡5卡| 十八禁人妻一区二区| 亚洲精品国产区一区二| 亚洲熟女精品中文字幕| 飞空精品影院首页| 国产欧美日韩综合在线一区二区| 亚洲专区中文字幕在线| 国产麻豆69| 国产男靠女视频免费网站| 欧美黄色淫秽网站| 国产精品久久久av美女十八| 久久草成人影院| av欧美777| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 淫妇啪啪啪对白视频| 亚洲精品美女久久av网站| 久久 成人 亚洲| 国产一区二区三区在线臀色熟女 | 国产精品98久久久久久宅男小说| 狠狠婷婷综合久久久久久88av| 一本大道久久a久久精品| 亚洲精品中文字幕一二三四区| av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩国产mv在线观看视频| 性色av乱码一区二区三区2| 曰老女人黄片| 嫁个100分男人电影在线观看| 精品一区二区三区视频在线观看免费 | 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 久久人妻av系列| 久热这里只有精品99| 国产高清videossex| 久久天堂一区二区三区四区| 午夜成年电影在线免费观看| 精品国产美女av久久久久小说| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 久久ye,这里只有精品| 欧美激情 高清一区二区三区| 精品第一国产精品| 免费在线观看完整版高清| 9色porny在线观看| 久久久久精品人妻al黑| 日日夜夜操网爽| 90打野战视频偷拍视频| 亚洲一区二区三区不卡视频| 18禁美女被吸乳视频| 国产精品乱码一区二三区的特点 | 欧美日韩黄片免| 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| e午夜精品久久久久久久| 国产成人系列免费观看| 亚洲精品久久午夜乱码| 啪啪无遮挡十八禁网站| av天堂在线播放| 久久热在线av| 黄频高清免费视频| ponron亚洲| 国产片内射在线| 欧美激情高清一区二区三区| 欧美日韩av久久| 久久性视频一级片| 国产欧美日韩一区二区三区在线| 日本wwww免费看| 91成人精品电影| 精品欧美一区二区三区在线| 欧美av亚洲av综合av国产av| 成人免费观看视频高清| 一本综合久久免费| av超薄肉色丝袜交足视频| 亚洲精品国产区一区二| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 多毛熟女@视频| 国产欧美日韩精品亚洲av| 丝袜美足系列| 99国产精品一区二区蜜桃av | 99国产综合亚洲精品| 夜夜躁狠狠躁天天躁| 国产有黄有色有爽视频| 亚洲精品成人av观看孕妇| 波多野结衣一区麻豆| 色在线成人网| 9色porny在线观看| 俄罗斯特黄特色一大片| 在线观看免费视频日本深夜| 99久久国产精品久久久| 精品一区二区三卡| 欧洲精品卡2卡3卡4卡5卡区| 欧美老熟妇乱子伦牲交| 看黄色毛片网站| 51午夜福利影视在线观看| 亚洲成人免费电影在线观看| 午夜老司机福利片| 精品久久久久久,| 国产片内射在线| 国产一区二区激情短视频| 久久精品亚洲精品国产色婷小说| 一级片免费观看大全|