• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single Pt Atoms Supported on Oxidized Graphene as a Promising Catalyst for Hydrolysis of Ammonia Borane

    2018-11-09 06:53:24HongWuQiqunLuoRuiqiZhngWenhuZhngbcdJinlongYngc
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Hong WuQi-qun LuoRui-qi ZhngWen-hu ZhngbcdJin-long Yngc

    a.Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    b.Key Laboratory of Materials for Energy Conversion,Chinese Academy of Sciences,University of Science and Technology of China,Hefei 230026,China

    c.Synergetic Innovation Center of Quantum Information Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    d.Department of Applied Mathematics,School of Physics and Engineering,Australian National University,Canberra,ACT 2600,Australia

    Key words:Density functional theory,Single atom catalysis,Platinum,Oxidized graphene,Ammonia borane hydrolysis

    I.INTRODUCTION

    Hydrogen is considered as one of the most potential clean and renewable energy carriers in future.Safe storage and transport of hydrogen is important for its real application[1].It is expected that hydrogen is stored in types of stable materials under mild condition and can be released steadily by the trigger of catalysts[1–5].Ammonia borane(NH3BH3)is regarded as a promising candidate molecule for hydrogen storage due to its nontoxicity,high hydrogen content(19.6wt%H),and high thermal stability even in water solvent at ambient temperature[6–9].The best scenario is that per NH3BH3molecule can completely release three hydrogen molecules and can be recovered easily[3,5–8].Respect to direct dissociation of NH3BH3at high temperature,hydrolysis of NH3BH3on catalysts is more promising for room temperature hydrogen generation.

    Pt-based catalysts,such as small Pt nanoparticles supported on SiO2[10],γ-Al2O3[10],porous chromium terephthalate(MIL-101)[11],carbon nanotubes(CNT)[12,13],and reduced graphene oxide[14],exhibit superior catalytic activity for hydrolysis of NH3BH3.Transition non-noble metals such as Co[15–18],Ni[19–22],and Cu[23–25]are also widely studied to explore the possibility to replace noble metals for their low price.Both experimental and theoretical work were performed to better understand the hydrolysis mechanism of NH3BH3and get clues for catalysts improvement.In early stage,it was proposed that the hydrolysis starts from the B?N bond breaking by the attacking of water molecule[10]or the dissociation of H2O in the hydroxylation process of the adsorbed NH3BHxfrom B?H breaking[26].Recently,the O?H bond cleavage of water is experimentally suggested as the ratelimiting step of NH3BH3hydrolysis on the Pt/CNT[27],PtRu/CNT[28],Co/CTF[17],Ni/ZIF-8[21],and atomically dispersed Pt on the surface of Ni particle[29],etc.by kinetic isotope effect(KIE)method.Theoretically,it is suggested that the rate-limiting step could be water assisted B?N bond breaking[19],attacking of surfaced adsorbed OH group to break B?N bond[30],and even the dissociation of an O?H bond in H2O[29]for the production of the first hydrogen molecule.Moreover,the whole picture of the full hydrolysis of NH3BH3with catalysts has not been provided yet.

    Till now,the lack of abundance of Pt limits its practical use as catalysts and the catalytic performance of non-noble transition metals is relatively lower than that of Pt[31].Searching for new types of catalysts is still demanding.An alternative way is to maximize the utilization of noble metal by downsizing the size of nanoparticles even to single atoms on designed substrates[32–34].Reduced graphene oxide is a good candidate for substrates to anchor single metal atoms[35]for its large surface area,rich and controllable surface structures.Recently,the isolated Pt and Pd atoms supported on reduced graphene oxide have been successfully prepared and exhibited excellent catalytic activity for methanol oxidation[36]and selective hydrogenation of 1,3-butadiene at mild reaction conditions[37],respectively.Also,the isolated Pt anchored by two interfacial oxygen at the edge of reduced graphene oxide was active for the partial hydrolysis of NH3BH3with about one hydrogen molecule released by per NH3BH3molecule[38].Considering the rich structure con figurations on reduced graphene oxide,it is anticipated to design a con figuration of single Pt atoms supported on reduced graphene oxide with high catalytic activity for the full hydrolysis of NH3BH3.

    Herein,in this work we design a single Pt atom supported on trivacancy structure terminated by an oxygen adatom to form an ether group in graphene nanosheet(Pt1/Gr-O).Pt1/Gr-O catalyzed full hydrolysis process of NH3BH3is studied,and it is found the rate limiting step is the hydratation of?BHNH3with an energy barrier of 16.1 kcal/mol.The low activation energy indicates that on Pt1/Gr-O the full hydrolysis of NH3BH3can proceed at room temperature.Thus Pt1/Gr-O may be a promising catalyst for NH3BH3hydrolysis.

    II.COMPUTATIONAL DETAILS

    All the calculations were performed by using spinpolarized density functional theory(DFT)method.The DFT semi-core pseudopotentials method(DSPP)[39]with a single effective potential replacing core electrons and the double numerical basis set together with polarization functions(DNP)were adopted to form the Perdew-Burke-Ernzerhof(PBE)exchange-correlation functional within the generalized gradient approximation(GGA)[40],implemented in DMol3package[41,42]. A smearing of 0.005 Ha(1 Ha=27.21 eV)to the orbital occupation was applied to achieve electronic convergence in geometric optimization and transition state search program.The real-space global cuto ffradius was set to be 4.5?.A hexagonal supercell containing(6×6)unit cells of graphene monolayer with 20? vacuum layer was used as a support for a single Pt atom.The convergence tolerances of energy,force,and displacement for the geometry optimization were 1×10?5Ha,0.002 Ha/?,and 0.005 ?,respectively.In self-consistent- field(SCF)procedures a convergence criterion of 1×10?6Ha and fermi occupation were adopted.3×3×1k-points grid was used to describe the Brillouin zone for geometric optimization and self-consistent calculations.The transition state for each elementary step was determined by LST/QST method and con firmed via frequency calculations.The H2O solvent environment was simulated by using a conductor-like screening model(COSMO)[43]in all calculations.The dielectric constant was set to 78.54 for H2O.To verify the accuracy of our calculation method,we calculated the B?N bond breakage of NH3BH3attacked by one H2O molecule in aqueous phase.The calculated energy barrier of 38.0 kcal/mol is close to that of 32.9 kcal/mol calculated at CCSD(T)//M06-2X/6-311+G(d,p)level[44].The adsorption energies of surface species are de fined as:

    whereEX/catalyst,Ecatalyst,andEXrepresent the energies of adsorbed systems,catalyst itself,and surface species,respectively.This hydrogen bond(H-bond)energy is calculated by the following formula:

    whereE?X···H2O,E?X,andEH2O(l)represent the energies of the total systems,the adsorbed X species on Pt1/Gr-O,and a liquid phase H2O molecule(H2O(l)),respectively.?X denotes the adsorbed intermediates in the process of NH3BH3hydrolysis.The total energy of Pt1/Gr-O with one NH3BH3and three H2O molecules in water solvent is set as zero point for the relative energy for NH3BH3hydrolysis.

    III.RESULTS AND DISCUSSION

    A.Adsorption on the Pt1/Gr-O Surface

    A trivacancy with an edge ether on graphene basal plane(Gr-O)is designed to anchor a single Pt atom(denoted as Pt1/Gr-O).In the most stable con figuration of Pt1/Gr-O as shown in FIG.1(a),the three Pt?C bond lengths are 1.92,1.95,and 2.00?,respectively,which are shorter than the Pt?O bond length of 2.14 ?.The binding energy of a single Pt atom respecting to Pt bulk is calculated as?46.7 kcal/mol,which can effectively prevent the aggregation of single Pt atoms.

    FIG.1 Top and side views of the most stable con figuration of a single Pt atom adsorbed on the Gr-O sheet(a),the optimized structures of NH3BH3(b),H2O(c),and H2(d)adsorbed on the Pt1/Gr-O surface,respectively.The black,red,celadon,pink,blue,and white spheres represent C,O,Pt,B,N,and H atoms,respectively.Critical bond lengths are labeled(in unit of?).

    In the moststableadsorption con figuration of NH3BH3on Pt1/Gr-O,a NH3BH3molecule binds with Pt atom through two hydrogen atoms of BH3group as shown in FIG.1(b).The adsorption energy of NH3BH3on Pt1/Gr-O is calculated as?9.8 kcal/mol.The bond distances between Pt and two hydrogen atoms are 1.96 and 1.97?,respectively.For the interaction between Pt and H,the two B?H bonds are elongated to 1.26 and 1.27? from 1.21? in isolated solvated NH3BH3.Meanwhile,the B?N bond is shortened by 0.03 ?.The changes in the B?H and B?N bond lengths agree with the results of NH3BH3adsorbed on Pd2/MgO and Pd4/MgO[45].

    The adsorption energy of one H2O molecule on Pt1/Gr-O is calculated as 0.2 kcal/mol,which is much lower than that of NH3BH3.The distance between the oxygen atom in the H2O molecule and Pt atom is 2.37?,as shown in FIG.1(c),which also suggests a weak interaction between water and Pt1/Gr-O.The adsorption of one hydrogen molecule is also investigated. With molecularly adsorbed con figuration as shown in FIG.1(d),the adsorption energy is calculated as 2.8 kcal/mol,which indicates the molecularly adsorbed hydrogen is ready to desorb from the catalyst.The bond length of H?H is elongated to 0.81? and two Pt?H bond lengths are 1.94 and 1.97 ?,respectively.

    B.The elementary reactions of NH3BH3hydrolysis on the Pt1/Gr-O surface

    1.The B?H bond activation pathways

    Two possible mechanisms have been proposed to initiate the hydrolysis of NH3BH3.One is the bond breakage of B?N bonds attacked by H2O molecules[10]and the other is the dehydrogenation of BH3group[26].On Pt1/Gr-O,the energy barrier of B?N bond breakage with the help of one water molecule is calculated as high as 37.7 kcal/mol(FIG.S1(a)in supplementary materials),which is similar to the result over Ni2P nanoparticles(38.1 kcal/mol)[19].While the energy barrier of B?H bond breaking is only 11.3 kcal/mol,which indicates the adsorbed NH3BH3molecule prefers B?H bond breaking rather than B?N bond breaking.At transition state TS1,a Pt?H?B three-membered ring con figuration is formed,and the Pt?H,B?H,and Pt?B distances are 1.64,1.84,and 2.41 ? as shown in FIG.2,respectively.After the breaking of B?H bond,the hydrogen atom locates at the bridge site of Pt?C and the?BH2NH3group binds to Pt site with the Pt?B bond length of 2.21?(I2).The carbon atom near the Pt atom is also active for trapping hydrogen atom,which resembles the Fe?C bridge site for NH3BH3dehydrogenation on prototype iron pincer catalyst[46].

    For the next step,four possible reaction pathways(i.e.,N?H bond breaking to form BH2NH2,directly producing a gas phase hydrogen molecule,hydrolysis of?BH2NH3,and the second B?H bond breaking to form a molecularly adsorbed hydrogen)are investigated as shown in FIG.S1(b)?(d)in supplementary materials and FIG.2.The energy barriers of these four possible elementary steps are calculated as 33.9,21.4,21.4,and 10.0 kcal/mol,respectively.The formation of a molecularly adsorbed hydrogen via bond breaking of the second B?H bond has the lowest energy barrier.At transition state(TS2),the C?H and Pt?B bond lengths elongate by 0.76 and 0.12?,respectively.The formed molecular hydrogen weakly adsorbs on Pt1/Gr-O and easily desorbs from catalyst with an energy barrier of 0.9 kcal/mol via transition state(TS3).The production of the first hydrogen releases 1.8 kcal/mol relative to the adsorbed NH3BH3system.

    2.Hydroxylation pathways of B atom in NH3BH3

    FIG.2 The relative energy pro files of the releasing of the first hydrogen molecule from NH3BH3catalyzed by Pt1/Gr-O.Critical bond lengths are labeled(in unit of?).

    FIG.3 The relative energy pro files of the hydrolysis of NH3BH3by the first and second H2O molecules on Pt1/Gr-O.Critical bond lengths are labeled(in unit of?).

    After desorption of the first hydrogen molecule,the left?BHNH3adsorbs at bridge site of Pt?C.Four possible ways of the evolution of?BHNH3including the breaking of B?H bond,the breaking of N?H bond and also the attachment of water molecule to form Pt(or C)bound?BH(H2O)NH3are considered as shown in FIG.S2(a)?(c)in supplementary materials and FIG.3. The energy barriers are calculated as 42.7,32.1,23.0,and 16.1 kcal/mol for the four possible reaction ways,respectively.The combination of a H2O molecule with?BHNH3to form C?BH(H2O)NH3is the most kinetically favorable way.At initial state,a H2O molecule interacts with the?BHNH3group through the weak O···H?N hydrogen bond with bond energy of?6.0 kcal/mol as the intermediate I5 and the geometric parameters are shown in FIG.3.At transition state(TS4)the distance between O and B is shortened to 2.19 ? from 3.32 ? in I5.The formed?BH(H2O)NH3group locates on the C atom neighboring to Pt atom(I6).The O?H bond pointing to Pt atom is 0.04? longer than the other one.The elongated O?H bond easily breaks with an energy barrier of 8.9 kcal/mol,the released reaction energy is 11.7 kcal/mol.At transition state(TS5),the O?H bond length is 1.98?.The detached hydrogen atom adsorbs on the Pt?C bridge site and the?BH(OH)NH3group binds to Pt atom(I7).

    FIG.4 The relative energy(with I11′′included)pro files of the recovery of Pt1/Gr-O catalyst.Critical bond lengths are labeled(in unit of?).

    Then for the evolution of I7,the most favorable way is the attachment of the second H2O molecule to?BH(OH)NH3,which is shown in FIG.3 as the formation of I9 from I8 via TS6.The formation of?BH(OH)(H2O)NH3by combination of a H2O molecule and?BH(OH)NH3is an exothermic step(7.1 kcal/mol)with a relatively low energy barrier of 7.3 kcal/mol.At transition state(TS6),?BH(OH)NH3leaves from the Pt atom with the Pt?B distance of 4.12 ? and the bond distance of O?B is 2.91 ?.At I9,?BH(OH)(H2O)NH3adsorbs on the catalyst through one hydrogen atom in(H2O)fragment and the O?H bond length is elongated to 1.04?.The breaking of the elongated O?H bond needs to conquer an energy barrier of 9.7 kcal/mol and it is an endothermic process with a reaction energy of 4.8 kcal/mol.The formed BH(OH)2NH3physically adsorbs on the Pt1/Gr-O surface and the second isolated H atom adsorbs on the C atom(I10).The adsorption energy of BH(OH)2NH3is only 0.3 kcal/mol and it is supposed that the formed BH(OH)2NH3can easily dissolve in water solution.

    3.Recovery of Pt1/Gr-O catalyst

    After the releasing of BH(OH)2NH3,two hydrogen atoms present on Pt1/Gr-O(I11′).By removing hydrogen atoms,the Pt1/Gr-O catalyst can be recovered.The release of molecular hydrogen can be separated as the transfer of C bonded atomic hydrogen,the formation of chemically adsorbed molecular hydrogen and the desorption of hydrogen molecule.H transfers from I11′to I12 via TS8 with an energy barrier of 11.6 kcal/mol.The distance between two hydrogen atoms are 3.71,2.51,and 2.04 ? in I11′,TS8,and I12,respectively.Then the two hydrogen atoms combine with each other to form chemically adsorbed dihydrogen with an energy barrier of 8.8 kcal/mol.At transition state(TS9),the H?H bond length is 1.17?.The adsorption energy of chemically adsorbed hydrogen molecule is 2.8 kcal/mol,which indicates that the formed dihydrogen is ready to desorb from the catalyst.After the releasing of gas phase hydrogen molecule,the Pt1/Gr-O catalyst recovers.The recovery of catalyst is an endothermic process with energy of 8.3 kcal/mol,which is easy to be conquered at room temperature if the entropy increasing is considered for the releasing of gas phase hydrogen molecule.

    4.The release of the third hydrogen

    Now,only two hydrogen molecules are released from one BH3NH3molecule.The third molecular hydrogen comes from further hydrolysis of formed solvated BH(OH)2NH3.In solvated BH(OH)2NH3,the B?N bond length is 1.67?,which is 0.05? longer than that of the solvated isolated BH3NH3.The B?N bond is easy to be broken with the attack of one water molecule with an energy barrier of 10.6 kcal/mol,which is close to the reported B?N bond dissociation energy of 10.0 kcal/mol in NH3BH2OH[47]and much lower than that of the B?N bond breaking in BH3NH3(38.0 kcal/mol).After the cleavage of B?N bond,the resulted BH(OH)2,H2O and NH3molecules form a cluster(I15)by HO···HO?H and NH···OH2hydrogen bonds.Then a complex BH(OH)3···NH4(I16)is formed by the dissociation of water with an energy barrier of 2.8 kcal/mol.The hydrogen bond length in I16 is 1.49 ? and the distance between the left H(?B)and the nearest H(?N)is 3.22 ?.The combination of the two hydrogen atoms conquers an energy barrier of 11.6 kcal/mol and releases energy of 8.6 kcal/mol.At transition state(TS13),the bond lengths of B?H and N?H are elongated to 1.52 and 1.39 ?,respectively,while the H?H distance is shortened to 0.95?.The generated products also include NH3and B(OH)3.The species of products have not been de finitely determined yet.Banuet al.used B(OH)3,H2and NH3as the products for hydrolysis of NH3BH3without catalysts in gas phase and aqueous phase[44].Chenet al.proposed that a NH4B(OH)4?B(OH)3mixture rather than NH4BO2is the main B-containing byproducts after hydrolysis of BH3NH3catalyzed by a Pt/CNT catalyst[27].But this may be the evolution of hydrolysis species,which are not critical for the production of hydrogen.

    FIG.5 The relative energy(with I11′included)pro files of hydrolysis of the resulted BH(OH)2NH3group in water solution.Critical bond lengths are labeled(in unit of?).

    The hydrolysis of the resulted BH(OH)2group in I15 over Pt1/Gr-O surface is also considered. It is found a BH(OH)2molecule adsorbs weakly on Pt1/Gr-O catalyst with the adsorption energy of?0.04 kcal/mol,which is much lower than that of NH3BH3(?9.8 kcal/mol).The hydrolysis of BH(OH)2groups can also proceed on Pt1/Gr-O(as shown in FIG.S3 in supplementary materials)without the precover with NH3BH3or atomic hydrogen.The energy barrier of BH(OH)2hydrolysis on Pt1/Gr-O is significantly reduced to 4.8 kcal/mol compared to that(39.5 kcal/mol)of BH(OH)2hydrolysis without catalysts reported by Banuet al.[44].

    Based on the aforementioned reaction pathways,the optimal reaction processes of NH3BH3hydrolysis on Pt1/Gr-O are depicted in FIG.6 as:(i)the preferential adsorption of one NH3BH3molecule on Pt1/Gr-O and the activation of B?H bonds,(ii)the first B?H bond breaking,(iii)the formation of molecularly adsorbed dihydrogen from the second B?H bond breaking,(iv)the desorption of the first gas phase hydrogen molecule;(v)the attacking of the first water molecule,(vi)the attacking of the second water molecule,(vii)the desorption of BH(OH)2NH3,(viii)the desorption of the second gas phase hydrogen molecule and the recovery of catalyst,(ix)the attacking of the third water molecule,(x)the releasing of the third hydrogen molecule and the formation of final products.

    FIG.6 Proposed mechanism for NH3BH3hydrolysis over Pt1/Gr-O surface.

    FIG.7 Left panels are structures of I5,TS4,and I6 in FIG.3,right panel is the local density of states(LDOS)projected onto B atom and H2O molecule in the I5,TS4,and I6 over Pt1/Gr-O surface.Efdenotes the Fermi level.The dot dashed line shows the density states(energy levels)of isolated water molecule with solvent effect included.The energy levels are shifted according to the O 1s orbitals of water molecule in I5 and H2O(l).

    Through the whole reaction pathways for NH3BH3hydrolysis, it is found that the attacking of first H2O molecule toB(H2O)HNH3)is the rate-limiting step on Pt1/Gr-O with an energy barrier of 16.1 kcal/mol.To gain more insight into the origin of the reaction activity of H2O molecules reacting with the?BNH3group,the local density of states(LDOS)projected onto B atom and H2O molecule in the I5,TS4,and I6 over Pt1/Gr-O has been split as shown in FIG.7.The highest occupied molecular orbital(HOMO)of water,1b1state,is contributed by the lone pair electrons of oxygen atom.B atom has empty orbitals which can accept electrons from donation atom.At TS4,the density states of 1b1expanded and slightly overlapped with the orbitals of B atom.For the interaction between water and?BHNH3group,the empty orbitals shift towards low energy direction.At I6,the orbitals of water molecule effectively overlap with that of B atom,which indicates the chemical bonding between water molecule and B atom.For the donation of lone pair electrons,the density of states of water molecule decreases and that of B atom increases below fermi level.The orbitals above fermi level shift towards low energy direction for the formation of chemical bond,which makes the hydrolysis of?BHNH3group proceed.

    IV.CONCLUSION

    In conclusion,the NH3BH3hydrolysis mechanisms on single Pt atom anchored to the plane of graphene with a defective carbon atom replaced by an oxygen atom were examined by using first-principles calculations.The Pt1/Gr-O catalyst prefers to activate the B?H bonds,and first hydrogen molecule is released by two detached H atoms from B?H bonds.The left?BHNH3combines with two H2O molecules to proceed the hydrolysis process.The combination of left?BHNH3with the first H2O molecule is the rate-limiting step with an energy barrier of 16.1 kcal/mol.Both attached water molecules detach one hydrogen atom to form NH3BH(OH)2,which can be easily hydrolyzed in water solvent to release one hydrogen molecule without catalyst.By combination and releasing of the two surface left hydrogen atoms,Pt1/Gr-O can be recovered.A whole mechanism of NH3BH3hydrolysis over solid catalysts is presented for the first time.Based on the calculated results the Pt1/Gr-O catalyst exhibits high catalytic activity for NH3BH3hydrolysis at room temperature.Thus Pt single atoms anchored at a designed con figuration on graphene nanosheet can perform high activity for hydrolysis of NH3BH3at room temperature.

    Supplementary materials:The bond breakage of B?N bond in NH3BH3attacked by one H2O molecule;the three possible reaction pathways of the?BH2NH3including N?H bond breaking to form BH2NH2,direct production of a gas phase hydrogen molecule,and hydrolysis of?BH2NH3;the three possible reaction pathways of the?BHNH3including the B?H bond breaking,the N?H bond breaking,and the attachment of one water molecule to form Pt bound BH(H2O)NH3;and the hydroxylation pathways of BH(OH)2on Pt1/Gr-O are shown in FIG.S1?S3.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.21473167 and No.21688102)and the National Key Research and Development Program of China(No.2016YFA0200604),and the Fundamental Research Funds for the Central Universities(WK3430000005,WK2340000065),and the China Scholarship Council(CSC)(No.201706345015).We used computational resources of Super-computing Center of University of Science and Technology of China,Guangzhou and Shanghai Supercomputer Centers.

    [1]U.Eberle,M.Felderho ff,and F.Sch¨uth,Angew.Chem.Int.Ed.48,6608(2009).

    [2]T.B.Marder,Angew.Chem.Int.Ed.46,8116(2007).

    [3]C.W.Hamilton,R.T.Baker,A.Staubitz,and I.Manners,Chem.Soc.Rev.38,279(2009).

    [4]J.Yang,A.Sudik,C.Wolverton,and D.J.Siegel,Chem.Soc.Rev.39,656(2010).

    [5]M.Yadav and Q.Xu,Energy Environ.Sci.5,9698(2012).

    [6]F.H.Stephens,V.Pons,and R.Tom Baker,Dalton Trans.2,2613(2007).

    [7]B.Peng and J.Chen,Energy Environ.Sci.1,479(2008).

    [8]A.Staubitz,A.P.M.Robertson,and I.Manners,Chem.Rev.110,4079(2010).

    [9]A.Karkamkar,C.Aardahl,and T.Autrey,Mater.Sci.10,6(2007).

    [10]M.Chandra and Q.Xu,J.Power Sources 168,135(2007).

    [11]H.Shioyama and Q.Xu,J.Am.Chem.Soc.134,13926(2012).

    [12]W.Chen,J.Ji,X.Feng,X.Duan,G.Qian,P.Li,X.Zhou,D.Chen,and W.Yuan,J.Am.Chem.Soc.136,16736(2014).

    [13]W.Chen,J.Ji,X.Duan,G.Qian,P.Li,X.Zhou,D.Chen,and W.Yuan,Chem.Commun.50,2142(2014).

    [14]Y.Chen,X.Yang,M.Kitta,and Q.Xu,Nano Res.10,3811(2017).

    [15]K.Aranishi,Q.L.Zhu,and Q.Xu,ChemCatChem.6,1375(2014).

    [16]J.Hu,Z.Chen,M.Li,X.Zhou,and H.Lu,ACS Appl.Mater.Interfaces 6,13191(2014).

    [17]Z.Li,T.He,L.Liu,W.Chen,M.Zhang,G.Wu,and P.Chen,Chem.Sci.8,781(2017).

    [18]P.Liu,X.Gu,K.Kang,H.Zhang,J.Cheng,and H.Su,ACS Appl.Mater.Interfaces 9,10759(2017).

    [19]C.Y.Peng,L.Kang,S.Cao,Y.Chen,Z.S.Lin,and W.F.Fu,Angew.Chem.Int.Ed.54,15725(2015).

    [20]G.Zhao,J.Zhong,J.Wang,T.K.Sham,X.Sun,and S.T.Lee,Nanoscale 7,9715(2015).

    [21]C.Wang,J.Tuninetti,Z.Wang,C.Zhang,R.Ciganda,L.Salmon,S.Moya,J.Ruiz,and D.Astruc,J.Am.Chem.Soc.139,11610(2017).

    [22]K.Guo,H.Li,and Z.Yu,ACS Appl.Mater.Interfaces 10,517(2018).

    [23]Q.Xu and M.Chandra,J.Power Sources 163,364(2006).

    [24]M.Kaya,M.Zahmakiran,S.¨Ozkar,and M.Volkan,ACS Appl.Mater.Interfaces 4,3866(2012).

    [25]D.Zhang,P.Liu,S.Xiao,X.Qian,H.Zhang,M.Wen,Y.Kuwahara,K.Mori,H.Li,and H.Yamashita,Nanoscale 8,7749(2016).

    [26]H.Ma and C.Na,ACS Catal.5,1726(2015).

    [27]W.Chen,D.Li,Z.Wang,G.Qian,Z.Sui,X.Duan,X.Zhou,I.Yeboah,and D.Chen,AIChE J.63,60(2017).

    [28]W.Chen,D.Li,C.Peng,G.Qian,X.Duan,D.Chen,and X.Zhou,J.Catal.356,186(2017).

    [29]Z.Li,T.He,D.Matsumura,S.Miao,A.Wu,L.Liu,G.Wu,and P.Chen,ACS Catal.7,6762(2017).

    [30]C.C.Hou,Q.Li,C.J.Wang,C.Y.Peng,Q.Q.Chen,H.F.Ye,W.F.Fu,C.M.Che,N.López,and Y.Chen,Energy Environ.Sci.10,1770(2017).

    [31]W.W.Zhan,Q.L.Zhu,and Q.Xu,ACS Catal.6,6892(2016).

    [32]B.Qiao,A.Wang,X.Yang,L.F.Allard,Z.Jiang,Y.Cui,J.Liu,J.Li,and T.Zhang,Nat.Chem.3,634(2011).

    [33]H.Zhang,T.Watanabe,M.Okumura,M.Haruta,and N.Toshima,Nat.Mater.11,49(2012).

    [34]X.Yang,A.Wang,B.Qiao,and J.Li,Acc.Chem.Res.46,1740(2013).

    [35]Y.Tang,X.Dai,Z.Yang,L.Pan,W.Chen,D.Ma,and Z.Lu,Phys.Chem.Chem.Phys.16,7887(2014).

    [36]S.Sun,G.Zhang,N.Gauquelin,N.Chen,J.Zhou,S.Yang,W.Chen,X.Meng,D.Geng,M.N.Banis,R.Li,S.Ye,S.Knights,G.A.Botton,T.K.Sham,and X.Sun,Sci.Rep.3,1775(2013).

    [37]H.Yan,H.Cheng,H.Yi,Y.Lin,T.Yao,C.Wang,J.Li,S.Wei,and J.Lu,J.Am.Chem.Soc.137,10484(2015).

    [38]H.Yan,Y.Lin,H.Wu,W.Zhang,Z.Sun,H.Cheng,W.Liu,C.Wang,J.Li,X.Huang,T.Yao,J.Yang,S.Wei,and J.Lu,Nat.Commun.8,1(2017).

    [39]B.Delley,Phys.Rev.B 66,155125(2002).

    [40]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).

    [41]B.Delley,J.Chem.Phys.92,508(1990).

    [42]B.Delley,J.Chem.Phys.113,7756(2000).

    [43]A.Klamt and G.Sch¨u¨urmann,J.Chem.Soc.Perkin Trans.2,799(1993).

    [44]T.Banu,T.Debnath,T.Ash,and A.K.Das,J.Chem.Phys.143,194305(2015).

    [45]M.Tong,Z.Yin,Y.Wang,and G.Chen,Int.J.Hydrogen Energy 38,15285(2013).

    [46]Y.Zhang,Y.Zhang,Z.H.Qi,Y.Gao,W.Liu,and Y.Wang,Int.J.Hydrogen Energy 41,17208(2016).

    [47]H.A.LeTourneau,R.E.Birsch,G.Korbeck,and J.L.Radkiewicz-Poutsma,J.Phys.Chem.A 109,12014(2005).

    啦啦啦啦在线视频资源| 久久精品人妻少妇| 大又大粗又爽又黄少妇毛片口| 嘟嘟电影网在线观看| 18禁裸乳无遮挡免费网站照片| 在线观看午夜福利视频| 精品免费久久久久久久清纯| 日韩欧美三级三区| 精品久久久久久久久亚洲| 亚洲精品亚洲一区二区| 欧美三级亚洲精品| 国产精品.久久久| 一个人看视频在线观看www免费| 看片在线看免费视频| 午夜视频国产福利| 精品国内亚洲2022精品成人| 内地一区二区视频在线| 久久99热6这里只有精品| 国产精品嫩草影院av在线观看| 99久久无色码亚洲精品果冻| 欧美日韩乱码在线| 国产成人福利小说| av免费在线看不卡| 婷婷六月久久综合丁香| 久久精品国产自在天天线| 在线观看一区二区三区| 日本免费一区二区三区高清不卡| 悠悠久久av| 中文亚洲av片在线观看爽| 白带黄色成豆腐渣| 精品少妇黑人巨大在线播放 | 欧美高清性xxxxhd video| 久久99热6这里只有精品| 美女 人体艺术 gogo| 久99久视频精品免费| 久久久国产成人免费| 能在线免费观看的黄片| 国产淫片久久久久久久久| 禁无遮挡网站| 国产成人影院久久av| 嫩草影院入口| 在线观看美女被高潮喷水网站| 偷拍熟女少妇极品色| 欧美一区二区亚洲| 六月丁香七月| 国产精品久久视频播放| 好男人视频免费观看在线| 日韩av在线大香蕉| av在线天堂中文字幕| 国产黄a三级三级三级人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲无线观看免费| 国内精品久久久久精免费| 精品日产1卡2卡| 欧美丝袜亚洲另类| 99在线视频只有这里精品首页| 毛片一级片免费看久久久久| 噜噜噜噜噜久久久久久91| 在线免费观看的www视频| 亚洲真实伦在线观看| 国内少妇人妻偷人精品xxx网站| 日本成人三级电影网站| 亚洲国产精品合色在线| 欧美潮喷喷水| 久久久a久久爽久久v久久| 又爽又黄无遮挡网站| 欧美色欧美亚洲另类二区| 人妻系列 视频| 久久久国产成人免费| 插阴视频在线观看视频| 少妇裸体淫交视频免费看高清| 淫秽高清视频在线观看| 亚州av有码| 国产精品一及| 国产成人91sexporn| 看非洲黑人一级黄片| 男人舔女人下体高潮全视频| 精品熟女少妇av免费看| 夜夜看夜夜爽夜夜摸| 高清午夜精品一区二区三区 | 日韩av在线大香蕉| 午夜福利在线观看吧| 男插女下体视频免费在线播放| 欧美成人一区二区免费高清观看| 18禁在线播放成人免费| 国国产精品蜜臀av免费| 国产精品日韩av在线免费观看| 最近视频中文字幕2019在线8| 狠狠狠狠99中文字幕| 女人十人毛片免费观看3o分钟| 性插视频无遮挡在线免费观看| 亚洲婷婷狠狠爱综合网| 午夜福利在线观看吧| 国产精华一区二区三区| 成人无遮挡网站| 色播亚洲综合网| 性色avwww在线观看| 能在线免费观看的黄片| 秋霞在线观看毛片| 桃色一区二区三区在线观看| 午夜激情欧美在线| 美女 人体艺术 gogo| 国模一区二区三区四区视频| 成年女人永久免费观看视频| 精品久久久久久久久亚洲| 最好的美女福利视频网| 91aial.com中文字幕在线观看| 婷婷六月久久综合丁香| 精品午夜福利在线看| 麻豆国产97在线/欧美| a级毛片免费高清观看在线播放| 国产精品女同一区二区软件| 69人妻影院| 午夜福利视频1000在线观看| 亚洲国产色片| 少妇猛男粗大的猛烈进出视频 | 在线免费观看的www视频| 99热只有精品国产| 床上黄色一级片| 校园人妻丝袜中文字幕| 丝袜美腿在线中文| 美女cb高潮喷水在线观看| 99久国产av精品国产电影| 久久精品夜色国产| 在线免费观看不下载黄p国产| 精品99又大又爽又粗少妇毛片| 真实男女啪啪啪动态图| 午夜久久久久精精品| 天堂网av新在线| 在线国产一区二区在线| 两性午夜刺激爽爽歪歪视频在线观看| 免费无遮挡裸体视频| 99久久九九国产精品国产免费| 国产精品一区二区在线观看99 | 婷婷色综合大香蕉| 成人国产麻豆网| 成年女人永久免费观看视频| 国产黄片视频在线免费观看| 久久午夜福利片| 精品人妻熟女av久视频| 一级av片app| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久久免费视频| 国产大屁股一区二区在线视频| 99久久精品一区二区三区| 国产精品99久久久久久久久| av.在线天堂| 日韩人妻高清精品专区| 99国产极品粉嫩在线观看| 精品一区二区免费观看| 国产av不卡久久| 一级毛片电影观看 | av在线蜜桃| 黄片无遮挡物在线观看| 久久精品久久久久久噜噜老黄 | 欧美日韩精品成人综合77777| 亚洲av成人av| 听说在线观看完整版免费高清| 天天躁日日操中文字幕| 51国产日韩欧美| 午夜福利成人在线免费观看| a级一级毛片免费在线观看| 97超碰精品成人国产| 国产精品一区二区三区四区免费观看| 国产一级毛片七仙女欲春2| 美女脱内裤让男人舔精品视频 | 国产一级毛片七仙女欲春2| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 超碰av人人做人人爽久久| 午夜精品在线福利| 久久久久久久久大av| 国产成人精品婷婷| 免费人成视频x8x8入口观看| 午夜激情欧美在线| 久久久久久久久久久丰满| 波多野结衣巨乳人妻| 波野结衣二区三区在线| 国产亚洲5aaaaa淫片| 亚洲av.av天堂| 嫩草影院新地址| 可以在线观看的亚洲视频| 在线播放国产精品三级| 精品少妇黑人巨大在线播放 | 九九在线视频观看精品| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产av玫瑰| 两个人视频免费观看高清| 成人av在线播放网站| 亚洲av不卡在线观看| 中文字幕久久专区| 免费av不卡在线播放| eeuss影院久久| 九色成人免费人妻av| 一区二区三区免费毛片| a级毛色黄片| 国产乱人偷精品视频| 日韩国内少妇激情av| 久久精品人妻少妇| 丰满人妻一区二区三区视频av| 免费人成视频x8x8入口观看| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线观看播放| 一级黄色大片毛片| www日本黄色视频网| 久久久精品94久久精品| 男女视频在线观看网站免费| 久久久色成人| 久久草成人影院| 国产精品电影一区二区三区| 国产高清不卡午夜福利| 亚洲自拍偷在线| 亚洲欧洲日产国产| 亚洲va在线va天堂va国产| 九九爱精品视频在线观看| 亚洲欧美成人精品一区二区| av在线蜜桃| 免费电影在线观看免费观看| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 观看免费一级毛片| 欧美激情久久久久久爽电影| 此物有八面人人有两片| 亚洲av男天堂| 欧美成人a在线观看| 欧美成人免费av一区二区三区| 97超碰精品成人国产| 色哟哟哟哟哟哟| 国产成人91sexporn| 精品久久久久久久末码| 成人鲁丝片一二三区免费| 亚洲人成网站在线观看播放| 身体一侧抽搐| 日日撸夜夜添| 色播亚洲综合网| 99久国产av精品| 国产精品人妻久久久久久| 久久久久久九九精品二区国产| 五月玫瑰六月丁香| 国产精华一区二区三区| 国产乱人偷精品视频| 婷婷亚洲欧美| 免费看a级黄色片| 淫秽高清视频在线观看| 久久精品夜色国产| 成人美女网站在线观看视频| 小说图片视频综合网站| 国产高清激情床上av| 一级二级三级毛片免费看| 国产老妇伦熟女老妇高清| 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线| 99热网站在线观看| 性插视频无遮挡在线免费观看| 别揉我奶头 嗯啊视频| 成人高潮视频无遮挡免费网站| 日本与韩国留学比较| 欧美一区二区亚洲| a级毛色黄片| 午夜免费男女啪啪视频观看| 久久热精品热| 欧美一区二区国产精品久久精品| 亚洲四区av| 亚洲精品乱码久久久v下载方式| 老熟妇乱子伦视频在线观看| 国产精品无大码| 青青草视频在线视频观看| 国产精品蜜桃在线观看 | 欧美又色又爽又黄视频| 97在线视频观看| 人妻系列 视频| 国产午夜精品论理片| 亚洲自拍偷在线| 偷拍熟女少妇极品色| 老司机影院成人| 三级毛片av免费| 两个人视频免费观看高清| 日日撸夜夜添| 欧美又色又爽又黄视频| 久久精品国产亚洲av涩爱 | 91aial.com中文字幕在线观看| 亚洲精品久久久久久婷婷小说 | 欧美变态另类bdsm刘玥| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 亚洲精品久久国产高清桃花| 国产精品久久电影中文字幕| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 99久久精品国产国产毛片| 内地一区二区视频在线| 国产精品一区二区在线观看99 | 久久精品国产亚洲av天美| 国产精品久久久久久久电影| 国产成人精品婷婷| 久久精品国产亚洲网站| 日本熟妇午夜| 美女国产视频在线观看| 日韩欧美精品免费久久| 美女被艹到高潮喷水动态| 国产 一区精品| 免费人成视频x8x8入口观看| 乱码一卡2卡4卡精品| 两个人的视频大全免费| 日本爱情动作片www.在线观看| 国产精品永久免费网站| 久久精品久久久久久噜噜老黄 | 特级一级黄色大片| 99九九线精品视频在线观看视频| 国产亚洲精品av在线| 色哟哟·www| 亚洲在线自拍视频| 国产精品国产三级国产av玫瑰| 欧洲精品卡2卡3卡4卡5卡区| 久久99蜜桃精品久久| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 午夜福利视频1000在线观看| 精品熟女少妇av免费看| 午夜免费激情av| av福利片在线观看| 国产成人a∨麻豆精品| 亚洲性久久影院| 国国产精品蜜臀av免费| 中文字幕av在线有码专区| 少妇的逼好多水| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 亚洲精品456在线播放app| 亚洲精品日韩在线中文字幕 | 亚洲欧美精品专区久久| 国产精品一二三区在线看| 亚洲av中文av极速乱| 成人性生交大片免费视频hd| 天天躁夜夜躁狠狠久久av| 久久久久网色| 午夜福利高清视频| 国产麻豆成人av免费视频| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 国内精品一区二区在线观看| 亚洲国产精品成人综合色| 国产成人freesex在线| 免费观看人在逋| 国产亚洲精品av在线| 一级毛片电影观看 | 九草在线视频观看| 少妇猛男粗大的猛烈进出视频 | 国产片特级美女逼逼视频| 日本成人三级电影网站| 男插女下体视频免费在线播放| 国产老妇女一区| 免费搜索国产男女视频| 老熟妇乱子伦视频在线观看| 午夜福利在线观看吧| 国产精品一区二区在线观看99 | 久久久久久伊人网av| 日本在线视频免费播放| 色综合亚洲欧美另类图片| 直男gayav资源| 日韩精品有码人妻一区| 国产精品永久免费网站| av免费在线看不卡| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 欧美一区二区国产精品久久精品| 国产午夜精品一二区理论片| 淫秽高清视频在线观看| 成人永久免费在线观看视频| 亚洲七黄色美女视频| 国产精品99久久久久久久久| 欧美激情在线99| 成年版毛片免费区| 国模一区二区三区四区视频| 九九在线视频观看精品| 精品欧美国产一区二区三| 永久网站在线| 搡女人真爽免费视频火全软件| 高清毛片免费看| avwww免费| 亚洲国产精品久久男人天堂| 美女黄网站色视频| 天堂网av新在线| 久久精品影院6| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 成人永久免费在线观看视频| 一区二区三区四区激情视频 | 高清毛片免费观看视频网站| av.在线天堂| 精品欧美国产一区二区三| 两个人的视频大全免费| 99热全是精品| 深夜a级毛片| 中文字幕制服av| av免费观看日本| 校园春色视频在线观看| 国产私拍福利视频在线观看| 成人美女网站在线观看视频| 97在线视频观看| 在线播放无遮挡| 国产黄色小视频在线观看| 精品少妇黑人巨大在线播放 | 干丝袜人妻中文字幕| 欧美日韩在线观看h| 晚上一个人看的免费电影| 一区福利在线观看| 真实男女啪啪啪动态图| 亚洲欧洲日产国产| 国产成人一区二区在线| 女人十人毛片免费观看3o分钟| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 亚洲欧美精品自产自拍| 中文字幕精品亚洲无线码一区| 亚洲精品久久久久久婷婷小说 | 丝袜喷水一区| 精品午夜福利在线看| 中文字幕久久专区| 舔av片在线| 成人永久免费在线观看视频| 毛片一级片免费看久久久久| 不卡一级毛片| 人妻系列 视频| 村上凉子中文字幕在线| 亚洲精品乱码久久久v下载方式| 99久久中文字幕三级久久日本| 国内精品久久久久精免费| 久久久久久久午夜电影| 精品少妇黑人巨大在线播放 | 在线播放国产精品三级| 亚洲av成人av| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 在线天堂最新版资源| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区| 亚洲欧美精品综合久久99| 热99在线观看视频| 黄色欧美视频在线观看| 久久久久久国产a免费观看| 尾随美女入室| 精品久久久久久久末码| av.在线天堂| 亚洲精品久久国产高清桃花| 国产精品一区二区性色av| 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 午夜福利成人在线免费观看| 黑人高潮一二区| 小蜜桃在线观看免费完整版高清| av在线播放精品| av福利片在线观看| 成人性生交大片免费视频hd| 久久国产乱子免费精品| 成年版毛片免费区| videossex国产| 悠悠久久av| 国产日本99.免费观看| 哪个播放器可以免费观看大片| 久久久久久久久久久丰满| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 69av精品久久久久久| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 欧美又色又爽又黄视频| 亚洲人成网站在线播| 免费电影在线观看免费观看| 人人妻人人看人人澡| 岛国在线免费视频观看| 亚洲欧美精品自产自拍| 国产亚洲欧美98| 婷婷六月久久综合丁香| 真实男女啪啪啪动态图| 综合色av麻豆| 国内精品一区二区在线观看| 国产精华一区二区三区| 久久99精品国语久久久| 国产精品永久免费网站| 国产精品日韩av在线免费观看| 亚洲在久久综合| 午夜老司机福利剧场| 中文字幕av成人在线电影| 极品教师在线视频| 国产成人91sexporn| 欧美潮喷喷水| 中国国产av一级| 99久久九九国产精品国产免费| 久久午夜亚洲精品久久| 国产亚洲5aaaaa淫片| 亚洲国产精品久久男人天堂| 亚洲欧洲日产国产| 婷婷亚洲欧美| 成人性生交大片免费视频hd| 国产一区二区在线观看日韩| 成人综合一区亚洲| 免费大片18禁| 亚洲电影在线观看av| 少妇人妻精品综合一区二区 | 亚洲成a人片在线一区二区| 草草在线视频免费看| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频 | 美女高潮的动态| 亚洲综合色惰| 亚洲精华国产精华液的使用体验 | 国内少妇人妻偷人精品xxx网站| 国产v大片淫在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久九九精品二区国产| 久久草成人影院| 99热只有精品国产| 国产精品不卡视频一区二区| 六月丁香七月| 日韩精品青青久久久久久| 亚洲美女搞黄在线观看| 97在线视频观看| 国产白丝娇喘喷水9色精品| 午夜爱爱视频在线播放| 精品久久久久久久久亚洲| 国内精品久久久久精免费| 国产黄色小视频在线观看| 天堂中文最新版在线下载 | 日韩一本色道免费dvd| 国产91av在线免费观看| 有码 亚洲区| 99久久九九国产精品国产免费| 麻豆国产av国片精品| av免费观看日本| 日韩大尺度精品在线看网址| 久久综合国产亚洲精品| 在线a可以看的网站| 一级黄片播放器| 美女国产视频在线观看| 日日摸夜夜添夜夜添av毛片| 日本一二三区视频观看| 久久人人精品亚洲av| av在线老鸭窝| 免费大片18禁| 国内精品美女久久久久久| 国产v大片淫在线免费观看| 又粗又硬又长又爽又黄的视频 | 久久久精品欧美日韩精品| 黄色日韩在线| 热99re8久久精品国产| 色综合亚洲欧美另类图片| 在线播放无遮挡| 亚洲精品国产av成人精品| 亚洲自拍偷在线| 国产日韩欧美在线精品| 久久6这里有精品| 天天躁夜夜躁狠狠久久av| 别揉我奶头 嗯啊视频| 噜噜噜噜噜久久久久久91| 熟女电影av网| 一级av片app| 国产国拍精品亚洲av在线观看| 看免费成人av毛片| 亚洲成人久久爱视频| 久久99热这里只有精品18| 日韩在线高清观看一区二区三区| 春色校园在线视频观看| 久久国产乱子免费精品| 一级毛片aaaaaa免费看小| 天天躁日日操中文字幕| 日产精品乱码卡一卡2卡三| 丝袜喷水一区| av视频在线观看入口| 天天躁夜夜躁狠狠久久av| 亚洲国产精品国产精品| 舔av片在线| 天堂中文最新版在线下载 | 免费看a级黄色片| 国产精品麻豆人妻色哟哟久久 | 舔av片在线| 亚洲第一区二区三区不卡| 人妻久久中文字幕网| 欧美性猛交黑人性爽| 高清午夜精品一区二区三区 | 国产精品人妻久久久影院| 久久久久国产网址| 最近的中文字幕免费完整| 色吧在线观看| 人妻制服诱惑在线中文字幕| 欧美xxxx性猛交bbbb| 国产精品,欧美在线| 久久久久久久久久成人| 人妻少妇偷人精品九色| 免费av毛片视频| 欧美激情国产日韩精品一区| 成人性生交大片免费视频hd| 色综合亚洲欧美另类图片| 国产精品99久久久久久久久| 国产人妻一区二区三区在| 免费av毛片视频| 两性午夜刺激爽爽歪歪视频在线观看| 人妻少妇偷人精品九色| 高清日韩中文字幕在线| 天天一区二区日本电影三级| 热99re8久久精品国产| 爱豆传媒免费全集在线观看| 色综合色国产| 亚洲成a人片在线一区二区| 久久精品影院6| 一级黄色大片毛片| 久久草成人影院| 亚洲无线在线观看| 成年女人看的毛片在线观看| 成年av动漫网址| 18禁在线播放成人免费| 一进一出抽搐gif免费好疼|