• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemical Study on Hydrogen Evolution and CO2Reduction on Pt Electrode in Acid Solutions with Different pH

    2018-11-09 06:53:20JingYangJieWeiWeiChenYanxiaChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Jing YangJie WeiWei ChenYan-xia Chen

    Hefei National Laboratory for Physical Science at the Microscale and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Key words:Hydrogen evolution reaction,CO2Reduction,Pt(111),Acidic solution,pH effect,Infrared spectroscopy

    I.INTRODUCTION

    Electrochemical reduction of CO2(CO2RR)is considered to be a promising approach toward production of value-added chemicals or fuels powered by intermittent renewable energy sources[1,2].In this field,extensive studies have been carried out[3]. Earlier studies on CO2RR on precious metals like Pt and Pd in NaHCO3solution revealed that the major cathodic current(>99%)is from hydrogen evolution reaction(HER)[4].In solution with pH=1,besides the adsorbed CO[5],small amount of formic acid,formaldehyde,and methanol are detected during CO2reduction on Pt[6].However,their current efficiency has not been quantitatively analyzed yet.

    In 1990,Bocarslyet al.reported that in pyridine(Pyr)-containing acidic solution with pH close to the pKaof Pyr(Pyr+H+=PyrH+,pKa=5.3),the Faradaic yield for CH3OH generation from CO2reduction on Pt can be up to 30%with HER as the main competitive reaction[7].Since then,extensive studies on Pyr catalyzed CO2RR have been carried out,several mechanisms have also been proposed[2,8].However,a few recent studies of CO2RR on Pt electrodes questioned the catalytic activity of Pyr as well as the reproducibility of earlier results[9–11].Since HER is the major competitive reaction during CO2reduction on Pt with or without molecular electrocatalysts such as Pyr,understanding the electrochemical behavior,the effect of the existence of CO2and its reaction intermediates on HER kinetics will be of great help:(i)to unravel the role of Pyr on CO2RR,(ii)to reveal the viability of using Pt for CO2reduction,(iii)to figure out the optimum conditions for CO2RR electrolysers.We have systematically studied CO2RR on Pt in acid solution with different pH,with or without Pyr and how it competes with HER.In this contribution,we report part of these results of HER on Pt(111)in CO2saturated solution with pH close to the pKaof Pyr.

    II.EXPERIMENTS

    The electrolyte solutions with 0.1 mol/L NaClO4+xmol/L HClO4(x=10?1,10?2,10?3,3×10?3,10?4,10?5,and 5×10?6mol/L)were prepared using NaClO4(99.99%,Suprapure,SigmaAldrich)andHClO4(70%,Suprapure,Sigma Aldrich)and ultra-pure water(18.2 M?·cm,from Mili Q water system).The pH values of the solutions were determined using a pH meter.Before each experiment,all solutions were purged with N2(99.999%,the Linde Group,China)for 20 min.CO2saturated solution was ensured by further purging the solution with CO2(99.99%,the Linde Group,China)for 15 min continuously during the measurements.

    Pt(111)and thin Pt film deposited on the flat reflecting face of a hemi-cylindrical Si prism were used as the working electrodes.The preparation,pretreatment,and characterization of Pt(111)electrode were described in detail in Ref.[12].The base CV for the Pt(111)electrode in 0.1 mol/L HClO4is given in FIG.1(a).It displays the well-de fined features reported previously,con firming that the homemade Pt(111)is well-ordered and the cell system used in our study is clean.The Pt thin film electrode with a thickness of ca.50 nm was deposited by electrolessplating,following a procedure described elsewhere[13].The active surface area of the film electrode was ca.3.7 cm2estimated from the charge for the oxidation of a saturated Hadlayer formed in the potential region from 0.4 V to 0.05 V.

    A conventional two-compartment electrochemical cell was used for the electrochemical experiment,while the flow cell used for the infrared spectroscopic measurement under attenuated total re flection con figuration is described in detail in Ref.[14].A Pt foil(99.99%)and a reversible hydrogen electrode(RHE)were used as counter and reference electrodes respectively.The measurements with single crystalline electrodes were done under hanging meniscus rotating disk electrode con figuration.The electrode rotation speed was controlled by a modulated rotator(Pine Instruments Company).The electrode potentials were controlled by a potentiostat(CHI700C,Shanghai ChenHua).All potentials are quoted against the RHE.When recording theI-Ecurves,Ohmic compensation is done automatically by the potentiostat.All experiments were carried out at room temperature(ca.25?C).

    III.RESULTS AND DISCUSSION

    A.Cyclic voltammetric study on HER on Pt(111)in CO2 saturated electrolyte

    FIG.1(b)displays two representative CVs of Pt(111)in 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4with and without saturated CO2(pH=5.3)under stationary condition.For the CV without CO2,the small cathodic peak at ca.0.6 V in the negative-going potential scan is the reductive desorption of OHadthrough

    which is followed by the reductive desorption of OHadthrough

    FIG.1 Cyclic voltammogram of Pt(111)in(a)0.1 mol/L HClO4and(b)0.1 mol/L NaClO4+5.0×10?6mol/L HClO4 with(circle)and without(star)CO2,scan rate:50 mV/s,electrode rotation speed:0 r/min.

    when the consumption of proton near the electrode surface is much faster than its supply by diffusion from the bulk solution.As a result,the pH near the electrode surface(denoted as pHshereafter)becomes higher than 7,which explains why reaction(2)occurs at more negative potentials than that for reaction(1)[15].As a result of high pHs,the onset potential for under potential deposition(UPD)of H occurs only atE<0.2 V.When the scan direction is reversed at?0.2 V,oxidation of UPD-H occurs immediately.After part of the Hadatoms are oxidized,the pHsdecreases,and the rest of UPD-H is oxidized at higher potentials with a small peak at ca.0.3 V as typical for those in acidic environments.Reaction induced change of the interfacial pH as well as its impact on the related electrode reaction in solution with low H+or OH?concentration and without buffer has been discussed thoroughly by our group previously[15–17].

    From the CV recorded in CO2saturated solution,we found that there is a pair of symmetric anodic and cathodic peaks in the potential region from 0.5 V to 0.8 V,which are from the adsorption and desorption of carbonate through

    as well con firmed by using infrared spectroscopy[18].The good symmetry of the anodic and cathodic current wave for carbonate adsorption and desorption suggests that the kinetics for its adsorption and desorption is fast.By comparing the CV recorded in CO2saturated solution with the CV given in FIG.1(a),we see that the onset potential for bicarbonate adsorption is ca.50 mV more negative than that for OHadadsorption,whose adsorption will inhibit the OHadadsorption,as similar to the case of acetate adsorption[19].In contract to the case in CO2free solution,in CO2saturated solution,it is found that the current waves for H-UPD and for the oxidation of UPD-H are symmetric,which occur in the potential region as that for the case with pH=1(on the RHE scale)(FIG.1(a)).This indicates that in CO2saturated solution,the pHsnear Pt surface will not change significantly upon the UPD of H due to the buffer capability of CO2even when the pH of the bulk solution is 5.3.WhenEis more negative than 0.1 V,HER through

    occurs,it increases sharply with the negative shift in potential and reaches a plateau whenEis negative than?0.05 V due to the small H+concentration in the bulk solution with pH=5.3.WhenEis more negative than?0.1 V,the cathodic current increases again,which mainly comes from

    Instead of CO2reduction(for further evidence,see text below)[20,21].After scanning to?0.25 V and then reversing the potential scan,anodic current appears atE>0.05 V,with an amplitude much higher than that for UPD-H during the cathodic scan in the same potential region.The extra current comes from H2oxidation,which is formed during previous negative-going scan down to?0.25 V.

    In order to further con firm this,CVs with the same scan rate but under different electrode rotation speed or with different scan rate under stationary conditions are recorded,which are shown in FIG.2 and FIG.3.From FIG.2,we see that with the increase of the electrode rotation speed,the current wave in the potential region from 0.05 V to 0.4 V decreases,only H-UPD current is observed when rotation speed is higher than 1600 r/min.Since the oxidation currents for CO2reduction products,such as HCOOH,CO,and CH3OH are very small in the potential region withE<0.4 V[14,22],the anodic current observed in the potential region from 0.05 V to 0.4 V must come from the oxidation of H2formed at negative potential which has not been diffused away from the surface.This is further con firmed by the data given in FIG.3,where we found that with the increase of potential scan rate the pseudo capacitance for bicarbonate adsorption does not change,while that in the H-UPD region decreases.At lower potential scan rate,more time is spent at HER potentials.As a result,more H2are produced(FIG.3(b)),hence more H2are available near the electrode surface to be oxidized in the H-UPD potential region.

    Furthermore,we found that the diffusion limiting current for HER through reaction(4)is much larger than what is predicted by the Levich equation,Eq.(6)(inset in FIG.2):

    FIG.2 Cyclic voltammogram of Pt(111)in 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4with CO2under different electrode rotation speed,scan rate:50 mV/s.The inset shows the the measured(square)and estimated(circle)diffusion limiting current for HER at?0.1 V with H+as reactant.

    wherenis the number of electrons,Fis the Faraday constant,D0is the diffusion coefficient,νis the dynamic viscosity,C0is the bulk concentration,andωis the rotation speed.

    The higher HER current is explained by the buffer capability of CO2when the rate of the consumption of proton can be fast compensated by the dissociation of H2CO3.AtE

    FIG.3(a)Cyclic voltammogram and(b)capacitance of Pt(111)in 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4with CO2under different potential scan rates,electrode rotation speed:0 r/min.

    In solutions with low pH(≤1),it is well con firmed by infrared spectroscopy that COadwill be formed at potentials where HER or UPD-H occurs[5,23–26].In order to check whether COador other intermediates may be formed under present condition with high local pH,which may affect the HER or HOR kinetics,a preliminary study was carried out by holding the potential in the HER potential region for 2 min,then examining the CV with and without such holding treatment(FIG.5).We found that the CVs recorded with and without such holding are nearly the same,indicating that both the HER and HOR activities are not affected by any possible intermediates formed during CO2reduction.Slightly higher current at ca.0.7 V which is superimposed on the current wave for carbonate adsorption is probably due to the oxidation of COadon Pt(111).This will be further discussed in Section III.B.The contribution of all simultaneous reactions in our system,such as HER,HOR,and CO2RR,is unclear when only considering the current data.However,such question can be solved by combination of otherin situelectrochemical techniques like differential electrochemical mass spectrometry(DEMS).

    FIG.4 Cyclic voltammogram of Pt(111)in(a)CO2and(b)H2saturated 0.1 mol/L NaClO4+x mol/L HClO4(x=10?1,10?2,10?3,3×10?3,10?4,and 10?5mol/L)of different pH as indicated in the figure,scan rate:50 mV/s,electrode rotation speed for(a)0 r/min and(b)1600 r/min,respectively.

    The results discussed in this section can be summarized as follows:(i)in solutions with pH>2,the interfacial pH increases abruptly during HER,which cannot be buffered by CO2;(ii)as a result,HER with H+as reactant occurs at lower overpotentials;while at higher overpotentials,HER with H2O as reactant occurs;(iii)carbonate adsorption is observed in the potential region from 0.55 V to 0.8 V;(iv)the kinetics of both HER and HOR are not affected by the adsorbed intermediates which is formed by CO2reduction;(v)the good symmetry of the anodic and cathodic current waves for carbonate adsorption and desorption suggests that the kinetics for its adsorption and desorption is fast.

    FIG.5 Cyclic voltammogram of Pt(111)in CO2saturated 0.1 mol/L NaClO4+x mol/L HClO4(x=10?2,10?3,and 10?4mol/L)of different pH(a)pH=2,(b)pH=3,(c)pH=4,with(star)and without(circle)holding at?0.1 V for 2 min,scan rate:50 mV/s,electrode rotation speed:0 r/min.

    B.Infrared spectroscopic study on the interface Pt/CO2 saturated electrolyte and its impact on HER

    In order to get more insights into whether CO2reduction also occurs during HER and how the adsorbed intermediates formed from CO2RR affect the HER kinetics,we have carried out electrochemicalin-situinfrared spectroscopic measurements of the Pt interface under attenuated total re flection con figuration(ATRFTIRS).FIG.6 displays the cyclic voltammogram of Pt film in N2or CO2saturated 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4.Note that in order to get IR spectra with good quality,the potential scan rate is limited to 10 mV/s.As similar to the case for Pt(111)in N2saturated solution,due to the low proton concentration as well as lacking of buffer capability,the current wave for H-UPD and its oxidative removal is displaced by ca.0.4 V.In contrast,in CO2saturated solution,due to the buffer capability of CO2,the potential for H-UPD and its oxidation removal is only shifted toward negative values by ca.0.2 V.The anodic current wave in CO2saturated solution is much broader than that in N2saturated solution,which is probably due to the superimposition of H2oxidation.Because of the slow scan rate as well as stationary condition without stirring,the contribution of the current wave from HER and HOR is very obvious.As a result,the current wave for carbonate adsorption/desorption in the potential region from 0.5 V to 0.8 V becomes less obvious.

    FIG.6 Cyclic voltammogram of thin Pt film electrode in 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4with(circle)and without(star)CO2,scan rate:10 mV/s.

    FIG.7(a)displays the IR spectra of Pt interface at some selected potentials in N2saturated solution recorded simultaneously with the CV given in FIG.7.From FIG.7(a)we see that there is barely no spectral features atE>0 V.WhenEis below 0 V,only the bending(1645 cm?1)and stretching mode(3000?3600 cm?1)[27]of water are observed,whose band intensity increases with decreasing the electrode potential. Such water species are assigned to water molecules which form hydrogen bonds with UPD-H atoms adsorbed on Pt surface,its band intensity displays roughly a linear relationship with the coverage of UPD-H atoms,similar to previous observations in solution with pH=1[28,29].

    In the CO2saturated solution,again,the positivepointing OH stretching appears in the H-UPD potential region,while that for the water bending is not obvious.This is probably due to the appearance of the negative-pointing carbonate band at ca.1545 cm?1[30,31],which appears at ca.0.7 V,whose band intensity increases with further negative shift in potential and reaches the maximum at ca.0.4 V,in good agreement with the indications given by CV(FIG.1 and FIG.6).This con firms that the carbonate is desorbed atE<0.5 V.Besides the water band,two positive bands at 1770 and 1989 cm?1appear whenEis below 0.2 V.These bands are assigned to adsorbed CO in multiply-bonded(COM)and linearly-bonded(COL)con figuration,respectively[27].In the reverse scan from?0.4 V to 0 V,both the band intensity and the peak frequencies of the CO band increase further with the positive shift in electrode potential.At higher poten-tials,the band intensity for COLincreases while that for COMdecreases,indicating there is a transfer of COMto COL.AtEabove 0.4 V the intensity of both bands decreases again and finally disappears whenEis above 0.8 V,which indicates that COadis oxidized at higher potentials.The IR data reveal that in solution with pH=5,COadcan be formed from CO2reduction in the potential region where H-UPD or HER occurs,similar to the case with pH=1[5].Besides the COad,no other adsorbed intermediates are detected by ATR-FTIRS in the potential region where H-UPD or HER occurs.

    FIG.7 Selected IR spectra at Pt film electrode in N2(a)and CO2(b,c)saturated 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4recorded during cyclic voltammetric potential scan,scan rate:10 mV/s

    FIG.8 Current transients for HER and CO2RR on Pt film electrode after stepping the potential from 0.9 V to 0.3 V(square),0 V(circle),and?0.3 V(triangle).

    In order to follow the kinetics for COadformation on Pt film electrode during H-UPD or HER,IR spectra were recorded with current transients upon stepping the electrode potential from 0.9 V to 0.3 V,0 V,or?0.3 V,and after holding at that potential for 30 s the potential is step back to 0.9 V again.The current transients are displayed in FIG.8 and the time-dependent IR spectra are shown in FIG.9.From FIG.8 we see that right after stepping the potential to 0.3 V or 0 V,only current for double layer charging was observed,and it decreases fast to zero.When stepping to?0.3 V,there is a large cathodic current right after the potential step,and it decreases fast with reaction time and reaches steady state at ca.20 s after the potential step.From the simultaneously recorded IR spectra,we found that the rate for COadbuild up is the slowest at 0.3 V and the fastest at 0 V.So far,it is not clear whether the amount of adsorbed H plays a role for such a difference,or it is just due to the change of thermodynamic driving force for CO2RR.For the case of stepping to?0.3 V,more COMis formed than that for COL,the IR band intensity of the COLand COMbands first increases with reaction time up to 20 s,then it does not increase anymore,although the overall COadsurface coverage is below 0.15 ML[5].This coincides with the fact that the current decreases with reaction time and it reaches steady state also at ca.20 s after potential step.Further studies are necessary to figure out whether this is because CO2RR to COadneeds special active sites which are fully occupied by COador HER.The limited COadformation under HER is probably due to dynamic turnover of Hadon the surface which limits the available sites and residence time for the reduction intermediates(Had)necessary for CO2adsorption and reduction.

    FIG.9 Selected IR spectra at Pt film electrode in CO2saturated 0.1 mol/L NaClO4+5.0×10?6mol/L HClO4recorded during stepping the potential from 0.9 V to 0.3 V(a),0 V(b),and?0.3 V(c).

    An interesting phenomenon we would like to point out here is that although the IR band intensities of the COadbands do not show obvious increase further with reaction time at ca.20 s after the potential is stepped to?0.3 V,the peak frequencies of the COadbands still display a continuous increase with reaction time(FIG.10).Similar increase of CO stretching frequency in the H-UPD potential region was observed before,but it was accompanied by an increase of the band intensity.The latter is explained by the adsorbed H-induced CO migration and COadislands formation.The enhanced dipole-dipole coupling between adsorbed CO at the neighboring sites is suggested to be the origin for the increase of both COadband intensity and peak frequency[32].However,in the HER region,as observed in present study only the increase of peak frequency is obvious,while that of CO band intensity is not.Our preliminary explanation for this is that under HER condition,CO also diffuses along Pt surface until it finds the proper sites.The electronic effect of adsorbed H in the neighboring sites may lead to less electrons transfer from Pt to the anti-bonding orbital of CO bond.As a result,the CO stretching frequency increases.A schematic illustration of surface adsorption of CO is given in FIG.11 for better understanding.Further studies with DFT calculations are underway to verify this.

    IV.CONCLUSION

    The competition of hydrogen evolution reaction and CO2reduction on Pt electrode is investigated by cyclic voltammetry and infrared spectroscopy. We found that in solution with pH>2,the interfacial pH increases abruptly during HER.As a result,HER with H+as reactant occurs at lower overpotentials,while at higher overpotentials,HER with H2O as reactant occurs.COadcan be formed by CO2reduction on Pt at potentials where UPD-H or HER occurs.The rate for COadformation increases with the coverage of UPD-H and reaches its maximum at the onset potential for HER.The decrease of COadformation under HER is attributed to the limited sites available and limited residence time for the reduction intermediates(Had)necessary for CO2adsorption and reduction.Furthermore,we found that under HER condition,the peak frequency for COadincreases continuously with reaction time,while its band intensity does not.The diffusion of COadon Pt surface introduced by the dynamic turnover of Hadis suggested to be the origin for such change.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21473175 and No.21273215)and the Ministry of Science and Technology of China(No.2015CB932301).

    FIG.11 Schematic illustration of reaction at Pt electeode in CO2saturated solution in different potential regions.

    [1]H.R.M.Jhong,S.Ma,and P.J.Kenis,Curr.Opin.Chem.Eng.2,191(2013).

    [2]R.Francke,B.Schille,and M.Roemelt,Chem.Rev.(2018).

    [3]Y.Hori,Modern Aspects of Electrochemistry No.42,C.G.Vayenas,R.E.White,and M.E.Gamboa-Aldeco,Eds.,New York,NY:Springer,89(2008).

    [4]Y.Hori,H.Wakebe,T.Tsukamoto,and O.Koga,Electrochim.Acta 39,1833(1994).

    [5]T.Smolinka,M.Heinen,Y.X.Chen,Z.Jusys,W.Lehnert,and R.J.Behm,Electrochim.Acta 50,5189(2005).

    [6]A.A.Ensa fi,H.A.Alinaja fi,and B.Rezaei,J.Electroanal.Chem.783,82(2016).

    [7]G.Seshadri,C.Lin,and A.B.Bocarsly,J.Electroanal.Chem.372,145(1994).

    [8]E.B.Cole,P.S.Lakkaraju,D.M.Rampulla,A.J.Morris,E.Abelev,and A.B.Bocarsly,J.Am.Chem.Soc.132,11539(2010).

    [9]C.Costentin,J.C.Canales,B.Haddou,and J.M.Saveant,J.Am.Chem.Soc.135,17671(2013).

    [10]C.X.Kronawitter,Z.Chen,P.Zhao,X.Yang,and B.E.Koel,Catal.Sci.Technol.7,831(2017).

    [11]H.Dridi,C.Comminges,C.Morais,J.C.Meledje,K.B.Kokoh,C.Costentin,and J.M.Saveant,J.Am.Chem.Soc.139,13922(2017).

    [12]J.Xu,D.Yuan,F.Yang,D.Mei,Z.Zhang,and Y.X.Chen,Phys.Chem.Chem.Phys.15,4367(2013).

    [13]N.Hoshi,E.Sato,and Y.Hori,J.Electroanal.Chem.540,105(2003).

    [14]W.Chen,J.Cai,J.Yang,M.M.Sartin,and Y.X.Chen,J.Electroanal.Chem.800,89(2017).

    [15]L.W.Liao,S.X.Liu,Q.A.Tao,B.Geng,P.Zhang,C.M.Wang,Y.X.Chen,and S.Ye,J.Electroanal.Chem.650,233(2011).

    [16]M.F.Li,L.W.Liao,D.F.Yuan,D.Mei,and Y.X.Chen,Electrochim.Acta 110,780(2013).

    [17]D.Mei,Z.D.He,Y.L.Zheng,D.C.Jiang,and Y.X.Chen,Phys.Chem.Chem.Phys.16,13762(2014).

    [18]R.Martinez-Hincapie,A.Berna,A.Rodes,V.Climent,and J.M.Feliu,J.Phys.Chem.C 120,16191(2016).

    [19]X.Q.Zuo,W.Chen,A.Yu,M.Le Xu,J.Cai,and Y.X.Chen,Electrochem.Commun.89,6(2018).

    [20]V.Grozovski,S.Vesztergom,G.G.Láng,and P.Broekmann,J.Electro.Chem.Soc.164,3171(2017).

    [21]D.Strmcnik,P.P.Lopes,B.Genorio,V.R.Stamenkovic,and N.M.Markovic,Nano Energy 29,29(2016).

    [22]Y.Wei,X.Q.Zuo,Z.Da He,W.Chen,C.H.Lin,J.Cai,M.Sartin,and Y.X.Chen,Electrochem.Commun.81,1(2017).

    [23]S.G.Sun and Z.Y.Zhou,Phys.Chem.Chem.Phys.3,3277(2001).

    [24]A.Rodes,E.Pastor,and T.Iwasita,J.Electroanal.Chem.369,183(1994).

    [25]A.Rodes,E.Pastor,and T.Iwasita,J.Electroanal.Chem.377,215(1994).

    [26]A.Rodes,E.Pastor,and T.Iwasita,J.Electroanal.Chem.373,167(1994).

    [27]S.X.Liu,L.W.Liao,Q.Tao,Y.X.Chen,and S.Ye,Phys.Chem.Chem.Phys.13,9725(2011).

    [28]K.Ataka,T.Yotsuyanagi,and M.Osawa,J.Phys.Chem.100,10664(1996).

    [29]M.Osawa,M.Tsushima,H.Mogami,G.Samjeske,and A.Yamakata,J.Phys.Chem.C 112,4248(2008).

    [30]A.Berna,A.Rodes,J.M.Feliu,F.Illas,A.Gil,A.Clotet,and J.M.Ricart,J.Phys.Chem.B 108,17928(2004).

    [31]T.Iwasita,A.Rodes,and E.Pastor,J.Electroanal.Chem.383,181(1995).

    [32]Y.X.Chen,M.Heinen,Z.Jusys,and R.J.Behm,J.Phys.Chem.C 111,435(2007).

    国产一区二区三区综合在线观看| 国产av一区在线观看免费| 欧美一级毛片孕妇| 久久青草综合色| 国产精品免费视频内射| 久久久国产欧美日韩av| 国产三级黄色录像| 久9热在线精品视频| 成年女人毛片免费观看观看9| 亚洲色图综合在线观看| 亚洲成人免费电影在线观看| 国产免费av片在线观看野外av| 一夜夜www| 99精品久久久久人妻精品| 后天国语完整版免费观看| 性欧美人与动物交配| 国产成人免费无遮挡视频| 麻豆一二三区av精品| 欧美乱色亚洲激情| 身体一侧抽搐| 国产野战对白在线观看| 国产一区二区激情短视频| 午夜福利在线观看吧| 老司机福利观看| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠躁躁| 女生性感内裤真人,穿戴方法视频| 一边摸一边抽搐一进一小说| 黄色丝袜av网址大全| 亚洲一区中文字幕在线| 精品一品国产午夜福利视频| 啪啪无遮挡十八禁网站| 欧美丝袜亚洲另类 | 免费在线观看影片大全网站| 波多野结衣av一区二区av| 日韩免费av在线播放| 欧美黑人精品巨大| 国产av精品麻豆| 亚洲五月天丁香| 黄色片一级片一级黄色片| 国产精品亚洲av一区麻豆| 国产高清videossex| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 波多野结衣av一区二区av| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全免费视频| 黄色片一级片一级黄色片| 精品久久久久久久久久免费视频 | av在线播放免费不卡| 女生性感内裤真人,穿戴方法视频| 久久天躁狠狠躁夜夜2o2o| av在线天堂中文字幕 | 成人18禁在线播放| 9191精品国产免费久久| 一级a爱视频在线免费观看| 老司机深夜福利视频在线观看| 动漫黄色视频在线观看| 亚洲国产精品999在线| 日韩三级视频一区二区三区| 一级片免费观看大全| 午夜精品久久久久久毛片777| 午夜影院日韩av| 两个人免费观看高清视频| 18禁国产床啪视频网站| av在线天堂中文字幕 | 日本vs欧美在线观看视频| 亚洲人成伊人成综合网2020| 中出人妻视频一区二区| 制服人妻中文乱码| 亚洲欧美一区二区三区久久| 国产精品乱码一区二三区的特点 | 欧美精品啪啪一区二区三区| 不卡一级毛片| 亚洲欧美日韩无卡精品| 岛国视频午夜一区免费看| 一个人免费在线观看的高清视频| av网站免费在线观看视频| 久久这里只有精品19| 久久国产精品人妻蜜桃| 高清欧美精品videossex| 超碰97精品在线观看| 国产不卡一卡二| 五月开心婷婷网| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 成年版毛片免费区| 亚洲av美国av| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 精品电影一区二区在线| 亚洲av日韩精品久久久久久密| 在线观看日韩欧美| 美国免费a级毛片| 村上凉子中文字幕在线| 亚洲五月天丁香| 欧美大码av| 精品国产亚洲在线| 亚洲人成77777在线视频| x7x7x7水蜜桃| 无限看片的www在线观看| 天天影视国产精品| 国产精品偷伦视频观看了| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 国产成人精品久久二区二区91| 免费久久久久久久精品成人欧美视频| 久久精品91蜜桃| 男女床上黄色一级片免费看| 一进一出抽搐动态| 女性被躁到高潮视频| 久久狼人影院| 又大又爽又粗| 久久 成人 亚洲| av中文乱码字幕在线| 男女之事视频高清在线观看| 制服人妻中文乱码| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 级片在线观看| 大型黄色视频在线免费观看| 久久中文字幕人妻熟女| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 亚洲人成77777在线视频| 欧美中文日本在线观看视频| 亚洲精品成人av观看孕妇| 日韩欧美三级三区| 操出白浆在线播放| 岛国在线观看网站| 亚洲久久久国产精品| 18禁黄网站禁片午夜丰满| 香蕉久久夜色| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 国产熟女xx| 亚洲第一av免费看| 国产成人影院久久av| 亚洲在线自拍视频| 国产三级在线视频| 免费搜索国产男女视频| 久久热在线av| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 黄片播放在线免费| 一级a爱片免费观看的视频| 老鸭窝网址在线观看| 久久热在线av| 久久人人精品亚洲av| 高清黄色对白视频在线免费看| 多毛熟女@视频| 日本黄色视频三级网站网址| 91成年电影在线观看| 欧美中文日本在线观看视频| 亚洲精品国产区一区二| 日日干狠狠操夜夜爽| 久久久久精品国产欧美久久久| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕一二三四区| 国产高清videossex| 99久久久亚洲精品蜜臀av| 国产成人精品在线电影| 正在播放国产对白刺激| 久久人人精品亚洲av| 日韩人妻精品一区2区三区| xxx96com| 一级a爱片免费观看的视频| 又大又爽又粗| 午夜日韩欧美国产| 两个人免费观看高清视频| 午夜精品在线福利| 女性被躁到高潮视频| 久久中文看片网| 99精品久久久久人妻精品| 一本综合久久免费| 男人舔女人下体高潮全视频| av福利片在线| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 水蜜桃什么品种好| 91成年电影在线观看| 亚洲欧美精品综合久久99| 在线观看66精品国产| 天堂动漫精品| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 日本a在线网址| 黑人猛操日本美女一级片| 久久久久久免费高清国产稀缺| 国产成年人精品一区二区 | 动漫黄色视频在线观看| 国产有黄有色有爽视频| 黄色a级毛片大全视频| 免费看a级黄色片| 亚洲五月天丁香| 丁香六月欧美| 黄色女人牲交| 国产成人一区二区三区免费视频网站| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 最新美女视频免费是黄的| 亚洲伊人色综图| 国产成人精品无人区| 高清av免费在线| 色哟哟哟哟哟哟| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 精品国产国语对白av| 精品人妻在线不人妻| 国产精品美女特级片免费视频播放器 | 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 久久这里只有精品19| 亚洲精品成人av观看孕妇| 亚洲狠狠婷婷综合久久图片| 黄色a级毛片大全视频| 亚洲国产精品sss在线观看 | 丰满饥渴人妻一区二区三| av在线天堂中文字幕 | 在线观看免费视频网站a站| 欧美色视频一区免费| 久久久久国产精品人妻aⅴ院| 亚洲男人天堂网一区| 国产成人欧美在线观看| 99久久人妻综合| 丝袜人妻中文字幕| 757午夜福利合集在线观看| 成年人免费黄色播放视频| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 琪琪午夜伦伦电影理论片6080| 免费久久久久久久精品成人欧美视频| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 麻豆成人av在线观看| 天天添夜夜摸| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 婷婷丁香在线五月| 午夜免费成人在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜两性在线视频| 日日干狠狠操夜夜爽| 国产1区2区3区精品| 他把我摸到了高潮在线观看| 一级片'在线观看视频| 国产精品综合久久久久久久免费 | 91国产中文字幕| 欧美国产精品va在线观看不卡| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 大型黄色视频在线免费观看| 99riav亚洲国产免费| 香蕉久久夜色| 淫秽高清视频在线观看| 日日夜夜操网爽| 黄色女人牲交| 国产激情久久老熟女| www.自偷自拍.com| 十八禁人妻一区二区| 日韩国内少妇激情av| 国产午夜精品久久久久久| 久久伊人香网站| 亚洲少妇的诱惑av| 操出白浆在线播放| 12—13女人毛片做爰片一| 精品福利永久在线观看| www日本在线高清视频| 女生性感内裤真人,穿戴方法视频| 黄色丝袜av网址大全| 亚洲精品国产区一区二| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区免费| 99在线人妻在线中文字幕| 高清在线国产一区| 精品久久久久久,| 黄频高清免费视频| 国产99久久九九免费精品| 婷婷六月久久综合丁香| 99精品久久久久人妻精品| 99久久99久久久精品蜜桃| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 99国产极品粉嫩在线观看| 大香蕉久久成人网| 国产精品1区2区在线观看.| 黑丝袜美女国产一区| 久久青草综合色| 他把我摸到了高潮在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| 麻豆av在线久日| 热99国产精品久久久久久7| 成人亚洲精品一区在线观看| 91精品国产国语对白视频| 亚洲av美国av| 最近最新中文字幕大全电影3 | 欧美激情久久久久久爽电影 | 97超级碰碰碰精品色视频在线观看| 亚洲精品在线美女| 久久精品亚洲av国产电影网| 亚洲成人免费电影在线观看| 十八禁人妻一区二区| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 中文字幕av电影在线播放| 精品国产美女av久久久久小说| 性欧美人与动物交配| 波多野结衣高清无吗| 午夜精品在线福利| 欧美成人午夜精品| 久久久久国内视频| 一二三四在线观看免费中文在| 少妇裸体淫交视频免费看高清 | 欧美老熟妇乱子伦牲交| av网站在线播放免费| 久久人人精品亚洲av| 人人妻人人澡人人看| 精品一区二区三区视频在线观看免费 | 国产区一区二久久| 国产欧美日韩一区二区三区在线| av福利片在线| 国产精品综合久久久久久久免费 | 性少妇av在线| 亚洲伊人色综图| 久99久视频精品免费| 成人特级黄色片久久久久久久| 久久久久久久久久久久大奶| 老司机在亚洲福利影院| 交换朋友夫妻互换小说| 欧美不卡视频在线免费观看 | 黑人巨大精品欧美一区二区mp4| а√天堂www在线а√下载| 好看av亚洲va欧美ⅴa在| 亚洲精品国产精品久久久不卡| 亚洲情色 制服丝袜| 丰满的人妻完整版| 亚洲精品国产色婷婷电影| 亚洲片人在线观看| 国产精品永久免费网站| 两个人免费观看高清视频| 一级片'在线观看视频| 亚洲国产精品sss在线观看 | 亚洲精品在线观看二区| x7x7x7水蜜桃| 国产三级在线视频| 老司机午夜十八禁免费视频| 精品人妻1区二区| 在线观看日韩欧美| 亚洲 国产 在线| 男人的好看免费观看在线视频 | 99香蕉大伊视频| 在线观看www视频免费| 中国美女看黄片| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 国产精品免费视频内射| a在线观看视频网站| 精品少妇一区二区三区视频日本电影| 丝袜人妻中文字幕| 激情视频va一区二区三区| 免费看十八禁软件| 精品国产亚洲在线| 一级作爱视频免费观看| ponron亚洲| 国产色视频综合| 精品国产亚洲在线| 99香蕉大伊视频| 午夜视频精品福利| 午夜老司机福利片| 身体一侧抽搐| 色精品久久人妻99蜜桃| 在线观看舔阴道视频| 午夜福利一区二区在线看| 无人区码免费观看不卡| 精品国产亚洲在线| 国产成人av激情在线播放| 一进一出抽搐gif免费好疼 | 色老头精品视频在线观看| 亚洲精品美女久久av网站| 中出人妻视频一区二区| 成人国产一区最新在线观看| 午夜免费激情av| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 黑人巨大精品欧美一区二区mp4| 精品久久久久久久毛片微露脸| 亚洲精品国产色婷婷电影| 女人高潮潮喷娇喘18禁视频| 99香蕉大伊视频| av免费在线观看网站| 亚洲性夜色夜夜综合| 黑人欧美特级aaaaaa片| 日本 av在线| 亚洲欧美激情综合另类| 亚洲精品国产区一区二| 久久精品成人免费网站| 九色亚洲精品在线播放| 国产精华一区二区三区| 精品电影一区二区在线| 最新在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲精品国产一区二区精华液| 久久狼人影院| 久久国产精品人妻蜜桃| 亚洲中文av在线| 丝袜美足系列| 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 亚洲一码二码三码区别大吗| 亚洲精品一卡2卡三卡4卡5卡| 麻豆av在线久日| 激情视频va一区二区三区| 久久久国产成人免费| 好男人电影高清在线观看| 日韩一卡2卡3卡4卡2021年| 午夜影院日韩av| 老司机福利观看| 国产蜜桃级精品一区二区三区| 成人影院久久| 长腿黑丝高跟| 亚洲av片天天在线观看| 一夜夜www| 777久久人妻少妇嫩草av网站| a在线观看视频网站| 老司机靠b影院| 精品无人区乱码1区二区| 亚洲国产精品sss在线观看 | 欧美在线黄色| 男女高潮啪啪啪动态图| 国产精品一区二区三区四区久久 | 女警被强在线播放| 村上凉子中文字幕在线| 国内久久婷婷六月综合欲色啪| 宅男免费午夜| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 亚洲色图av天堂| 久久久久国内视频| 999久久久国产精品视频| aaaaa片日本免费| 亚洲精品一区av在线观看| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 久久久久久亚洲精品国产蜜桃av| 男女做爰动态图高潮gif福利片 | 成人永久免费在线观看视频| 欧美在线一区亚洲| 国产无遮挡羞羞视频在线观看| 欧美日韩一级在线毛片| 99国产极品粉嫩在线观看| 99久久综合精品五月天人人| 亚洲视频免费观看视频| 国产精品野战在线观看 | 变态另类成人亚洲欧美熟女 | 免费一级毛片在线播放高清视频 | 亚洲欧美精品综合久久99| 国产免费av片在线观看野外av| 亚洲欧美日韩高清在线视频| 亚洲狠狠婷婷综合久久图片| 欧美日韩精品网址| tocl精华| 国产三级在线视频| 黄色丝袜av网址大全| 国产一区二区三区综合在线观看| 成人永久免费在线观看视频| 免费看十八禁软件| 成人国产一区最新在线观看| 亚洲avbb在线观看| 91精品三级在线观看| 欧美日韩国产mv在线观看视频| 交换朋友夫妻互换小说| 老汉色∧v一级毛片| 日韩一卡2卡3卡4卡2021年| 男女下面进入的视频免费午夜 | 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 国产片内射在线| 日韩三级视频一区二区三区| 不卡av一区二区三区| 免费看十八禁软件| 国产深夜福利视频在线观看| 午夜久久久在线观看| 中文字幕人妻丝袜一区二区| 9191精品国产免费久久| 亚洲黑人精品在线| 12—13女人毛片做爰片一| 性欧美人与动物交配| 亚洲激情在线av| 91精品国产国语对白视频| 满18在线观看网站| 丝袜在线中文字幕| 精品欧美一区二区三区在线| 男女床上黄色一级片免费看| 亚洲专区字幕在线| 国产精华一区二区三区| 久久人人精品亚洲av| 天堂影院成人在线观看| 亚洲av日韩精品久久久久久密| 女性被躁到高潮视频| 成年人黄色毛片网站| 午夜影院日韩av| 黑人猛操日本美女一级片| 国产精品九九99| 在线十欧美十亚洲十日本专区| 中文欧美无线码| 免费看a级黄色片| 国产高清videossex| 久久精品人人爽人人爽视色| 国产精品一区二区精品视频观看| 国产国语露脸激情在线看| 男女下面进入的视频免费午夜 | 欧美日韩一级在线毛片| av在线播放免费不卡| 欧美最黄视频在线播放免费 | 欧美激情极品国产一区二区三区| 久久久久国产精品人妻aⅴ院| 午夜精品在线福利| 亚洲第一av免费看| 久久青草综合色| 欧美成人性av电影在线观看| 国产精品亚洲一级av第二区| 久久这里只有精品19| 久久精品国产亚洲av香蕉五月| 人人妻人人添人人爽欧美一区卜| 久久人妻福利社区极品人妻图片| 国产精品亚洲一级av第二区| 桃色一区二区三区在线观看| 精品乱码久久久久久99久播| 高清欧美精品videossex| 成人手机av| 欧美av亚洲av综合av国产av| 亚洲欧美日韩高清在线视频| 满18在线观看网站| 久久精品91蜜桃| 女人被狂操c到高潮| 深夜精品福利| 免费日韩欧美在线观看| 男人操女人黄网站| 天天躁夜夜躁狠狠躁躁| www国产在线视频色| 国产精品香港三级国产av潘金莲| 免费久久久久久久精品成人欧美视频| 在线永久观看黄色视频| 精品一区二区三区av网在线观看| 午夜福利免费观看在线| 欧美乱色亚洲激情| 久久久久国内视频| 久久人人97超碰香蕉20202| 欧美中文日本在线观看视频| 精品人妻在线不人妻| 一级毛片女人18水好多| 亚洲狠狠婷婷综合久久图片| 岛国在线观看网站| 久久性视频一级片| 自线自在国产av| 欧美成人免费av一区二区三区| 亚洲精品一二三| 亚洲精品久久午夜乱码| 91成年电影在线观看| 亚洲专区字幕在线| 亚洲国产欧美一区二区综合| 老汉色∧v一级毛片| av片东京热男人的天堂| 国产主播在线观看一区二区| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 女人爽到高潮嗷嗷叫在线视频| 99国产精品一区二区蜜桃av| 欧美黄色片欧美黄色片| 另类亚洲欧美激情| 淫妇啪啪啪对白视频| 成在线人永久免费视频| 9热在线视频观看99| 99riav亚洲国产免费| 亚洲全国av大片| e午夜精品久久久久久久| 男女下面进入的视频免费午夜 | 午夜影院日韩av| 久久久久精品国产欧美久久久| 国产三级黄色录像| 欧美国产精品va在线观看不卡| 在线观看免费日韩欧美大片| 99国产极品粉嫩在线观看| 国产成人啪精品午夜网站| 国产主播在线观看一区二区| 我的亚洲天堂| 亚洲av电影在线进入| 又黄又爽又免费观看的视频| 久久精品亚洲av国产电影网| 韩国精品一区二区三区| 亚洲免费av在线视频| 日韩精品免费视频一区二区三区| 人人澡人人妻人| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 亚洲 欧美 日韩 在线 免费| 午夜老司机福利片| 国产高清激情床上av| 久久青草综合色| 性色av乱码一区二区三区2| 亚洲欧美激情在线| 免费在线观看黄色视频的| 国产在线观看jvid| 夜夜躁狠狠躁天天躁| 一个人免费在线观看的高清视频| 岛国在线观看网站|