• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and Theoretical Study on Dissociative Photoionization of Cyclopentanone

    2018-11-09 06:53:18ZhaohuiLiYepengYuXuanLinJunChenHangZhangYanboLiHuanhuanWangQinghuiMengRuiruiSunXiaobinShanFuyiLiuLiusiSheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Zhao-hui LiYe-peng YuXuan LinJun ChenHang ZhangYan-bo LiHuan-huan WangQing-hui MengRui-rui SunXiao-bin ShanFu-yi LiuLiu-si Sheng

    National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China

    Key words:Cyclopentanone,Synchrotron radiation,Photoionization and dissociation,ab initio calculations

    I.INTRODUCTION

    The production of excellent alternative clean fuels from raw biomass,which is generally known as lignocelluosic bio-re finery,has attracted more and more attention in view of the urgent demand of sustainable and clean fuels[1?3].Cyclopentanone,a lignocellulosic platform compound,is one of the selective hydrogenation products of furfural and is regaining attention as a building block for the synthesis of high-density renewable fuels[4?6].Hence,a better understanding of the energetics for cyclopentanone is clearly desirable.In this work,we report a quantitative study on the photoionization and dissociative photoionization of cyclopentanone.

    Wanget al.[7]studied the dissociation dynamics of cyclopentanone in intense 788 nm,90 fs pulses of radiation using a time-of- flight(TOF)ion mass spectrometer.The ionization rate constants and branching ratios were investigated according to quantum chemical computations.Wuet al.[8]performed a combined experimental and theoretical study on the photoionization/dissociation of cyclopentanone,and proposed several possible reaction channels. Price and co-workers[9]measured the absolute photoionization cross sections of cyclopentanone via a multiplexed photoionization mass spectrometer(PIMS)equipped with synchrotron radiation source in the energy range of 8?11 eV.More recently,Pastoorset al.[10]theoretically and experimentally investigated the photoionization and the thermal decomposition mechanisms of cyclopentanone using an imaging photoelectron photoion coincidence spectroscopy(iPEPICO)apparatus with VUV synchrotron radiation source which was tuned from 8.0 eV to 11.7 eV.For the dissociative photoionization,the fragmentation of the molecule ions is dominated by loss of CO,C2H4,and C2H5to form C4H8+,C3H4O+,and C3H3O+,respectively.They calculated possible structures of three main dissociative fragments along with their respective appearance energies and a model for the possible fragmentation mechanism was constructed.

    As mentioned above,despite that considerable experimental and theoretical work was performed on neutral and cationic cyclopentanone,the detailed mechanisms for the formation of fragment ions are still not well understood. In the present study,we utilized tunable VUV photoionization TOF mass spectrometry combined withab initiomolecular orbital calculations to investigate the possible reaction mechanism in the dissociative photoionization of cyclopentanone. The ionization energy(IE)of cyclopentanone and the appearance energies(AEs)for major fragment ions were obtained by measuring their photoionization efficiency curves.Additionally,the possible mechanisms of the dissociation pathways are discussed with the aid ofab initiocalculations.

    II.EXPERIMENTS AND CALCULATED METHODS

    Experiments were performed using the Atomic and Molecular Physics Beamline(U14A)of National Synchrotron Radiation Laboratory in Hefei,China.Photoionization mass spectra and PIE curves of cyclopentanone for fragment ions were obtained in the energy range of 9.0?15.5 eV.Only a brief summary of the experimental apparatus is given here,the more details of this apparatus have been described elsewhere[11?13].Synchrotron radiation generated by an undulator at U14 beamline from 800 MeV electron storage ring at NSRL,and a high-resolution spherical-grating monochromator were employed to select the VUV light.The grating was installed in the chamber,covering the energy ranges from 7.5 eV to 22.5 eV with the energies resolving power(E/?E)about 1000.A Si photodiode was used for measuring the photo flux of synchrotron VUV.The average photo flux was measured to be 5×1013photons per second at the ionization region.Argon(IE=15.759 eV)as the filter gas was utilized for eliminating the higher harmonic produced by the undulator.

    Cyclopentanone sample was purchased from Alfa Aesar(≥99%purity),and used directly without further treatment.Cyclopentanone was contained in a stainless evaporator,which is connected to the molecule expansion chamber by a 6 mm diameter stainless steel pipeline.We chose He(purity 99.99%)as the carrier gas and the stagnation pressure was about 0.15 MPa.After the sample was introduced into the beam source chamber,the gaseous cyclopentanone molecules were introduced into the ionization chamber by supersonic expansion through a 70μm diameter nozzle and one skimmer with diameter of 1.5 mm.Then the cold skimmed molecular beam was injected into the ionized region to perpendicularly intersect the monochromatic VUV radiation.Subsequently,the produced ions were massanalyzed using a homemade RTOF-MS.

    In this study,the high-accuracyab initiomethod was utilized for obtaining the most stable con figuration of the cyclopentanone and its fragments. Previous studies have indicated that theωB97X-D[14]functional can significantly reduce self-interaction errors and has been widely used to provide reliable results.The coupled cluster theory with single and double excitations and perturbative estimate of triple excitations CCSD(T)[15]can obtain more accurate singlepoint energy.Therefore,geometry optimizations of the cyclopentanone,parent cations,transition states(TS),intermediate(INT)ions and fragments ions,were carried out with theωB97X-D theoretical functional using the 6-31G(d,p)[16]basis set and the reliable singpoint energies were obtained at the CCSD(T)level using the cc-pVTZ basis set.The unscaledωB97X-D zero-point vibrational energy(ZPVE)was used to correct all CCSD(T)energies.In order to further validate the transition states connecting the desired reactants and products,internal reaction coordinate(IRC)[17]calculations were carried out at the same level with geometry optimization.All these computational calculations were performed using the Gaussian 09 suite of programs on the Supercomputing Center of University of Science and Technology of China[18].The adiabatic ionization energy(AIE)of cyclopentanone is defined as,whererefers the total electronic energy of theis the total electronic energy of the

    FIG.1 Photoionization mass spectra of cyclopentanone at the photon energy of 9.5,13.0,15.5 eV.

    III.RESULTS AND DISCUSSION

    A.VUV photoionization mass spectra

    In this work,the photoionization mass spectra were collected continuously by changing the photon energy between 9.0 and 15.5 eV at 298 K.FIG.1 depicts the typical photoionization mass spectra of cyclopentanone at 15.5,13.0,and 9.5 eV,respectively.At the low photon energy of 9.5 eV,only the molecular ion(m/z=86)is observed.With photon energy increasing to 13.0 eV,two strong fragments,namely(m/z=56)by CO-loss or(m/z=56)byloss,and(m/z=55)byloss,were yielded.In addition,more fragment ions atm/z28,40,41,42,43,44,69,83 are detected.At the photon energy of 15.5 eV,ionic fragments atm/z28,41,42,55,56 have become stronger.Meanwhile,two weak fragments,namely(m/z=29)and(m/z=33)are also observed.All observed fragments are considered to be originated from dissociation of parent ion since no signal at mass greater than that of(m/z=84)is detected.The ion peak ofm/z=55 is the strongest one in the dissociative photoionization of cyclopentanone,which indicates thation is the dominated channel of cyclopentanone ion.

    FIG.2 The PIE curves of parent ion(a)and the main fragments(e),and

    TABLE I Experimental and calculated ionization energies(IEs)of cyclopentanone and appearance energies(AEs)of the major fragments.

    The photoionization efficiency curves of cyclopentanone cation and its fragment ionswere obtained by integrating the area of each mass spectral peak at each photon energy. FIG.2 is the PIE curves of cyclopentanone and its main fragment ions.The appearance energies of all ions were determined from the PIE curves,detailed methods on analyzing the PIE curve have been reported elsewhere previously[19,20].Table I presents the AEs of all ions and summarizes the calculated energies of related species,as well as possible formation pathways for the dissociation processes. For the parent ion,the measured IE value is(9.23±0.03)eV,which is in good agreement with previously reported data of(9.28±0.03)eV[8],(9.30±0.05)eV[9],(9.28±0.01)eV[21]and(9.25±0.02)eV[22].Cyclopentanone has a nonplanar five membered ring conformation with C2symmetry.FIG.3 shows the calculation structures for the ground state neutral and ionized molecules,and it is found that the C1?O distance is shortened from 1.210? to 1.189? after photoionization.Meanwhile,both the lengths of theα-C?C bonds(C1?C2 and C1?C5)connected to the carbonyl group change from 1.524? to 1.552?.This suggests that the initial ionization result is an electron removing from theσnetwork of the five membered ring.The results are consistent with a previous study by Priceet al.[9]who proposed that the initial ionization is caused by removal of an electron from a bonding orbital localized on theαandα′carbons’sigma bonds and antibonding C?Oπorbital.

    FIG.3 The optimized ground state structures of(a)neutral and(b)ionic cyclopentanone at the ωB97X-D/6-31G(d,p)level.

    B.Dissociation mechanisms

    With the increasing of photon energy,the parent ion will undergo a series of dissociative reactions to generate fragments.Detailed dissociation pathways of the cyclopentanone cation are established with the aid of calculations at theωB97X-D/6-31+G(d,p)level.The fragmentation pathways,the relative energies and structures of each species are shown in FIGs.4?7.

    The proposed pathway for this reaction is described in FIG.4.Firstly,parent ion undergoes a ring-open process by C?C bond cleavage via TS1 to form INT1.Afterward,a H atom migration step from C5 to C2 occurs to produce INT2 via TS2 with the energy barrier of 0.44 eV.Then,INT2 undergoes a H migration to produce INT3 via transition state TS3.Subsequently,C5H7O+is produced via a H atom elimination in C2 atom.The calculated energy barrier for P1,10.87 eV,matches perfectly with experimental value of(10.88±0.05)eV.The most possible con figuration ofis CH3CH2CHCHOH+.

    FIG.4 The formation pathways for(P2)and (P5).

    FIG.5 The formation pathways for C4H8+(P3),C3H4O+(P4),C2H4O+(P7)and(P8).

    The formation pathway for C4H5O+is assumed to remove a methyl directly as reaction(2). The calculated appearance energy for direct dissociation is 10.87 eV,which is lower than the experimental value of(11.03±0.06)eV.Then,we scanned the C4?C5 bond length from 1.35? to 3.5? to search the transition state,and found the TS4 for which energy barrier is 10.97 eV.Finally,the C4H5O+is generated by breaking the C4?C5 bond in INT3,with a concomitant loss of a methyl radical.In the whole reaction pathway,the highest energy step is TS4(10.97 eV),which is consis-tent with experimental value.

    FIG.6 The formation pathway for(P12).

    FIG.7 The formation pathways for (P10)and(P11).

    There are two probable candidate structures,(P3),and C3H4O+(P4),that can correspond to the peak atm/z=56 according to calculation. For formation of(P3), firstly,rotation around the C1?C2 bond can transform INT1 into isomer INT4.Secondly,theis formed by a CO elimination step from INT4. The calculated AE ofis 10.86 eV,which is consistent with the experimental value of(10.64±0.03)eV and the other experimental data(10.44 eV[8]and 10.76 eV[10])as well.However,Priceet al.[9]gave the experimental AE value of(9.75±0.05)eV for,the reason for this deviations is not known.

    The ion C3H4O+is formed by lossing C2H4from parent ion(reaction(4)).In this pathway, firstly,INT1 proceeds to undergo bond cleavage of C3?C4 via transition state TS6 and the barrier is located to be 10.90 eV above neutral cyclopentantone.Then C3H4O+(P4)and C2H4are produced by the bond fission of C3?C4.The calculated overall energy barrier is 11.01 eV,which is in good agreement with the observed threshold value(11.25±0.08 eV).This suggests that C4H8+is formed at low energy while the isomer C3H4O+may be generated at high energy threshold.

    4.Formation pathway of C3H3O+(m/z=55)

    As the dominant dissociation product from C5H8O+,the fragment ion C3H3O+(P5)is considered to be produced by the direct bond fission of C3?C4 in INT3(FIG.4).The corresponding AE is calculated to be 10.89 eV,which is close to the experimental value of(11.18±0.04)eV and the previous value(11.14 eV)reported by Pastoorset al.[10]as well.

    It should be noted that,initially we thought that the species atm/z=55 was C4H7+.However,the reaction barrier for this pathway is computed to be at least 11.65 eV,which is higher than the experimental AE of 11.18 eV.

    5.Formation pathway of C4H6+(m/z=54)

    C3is produced by C2H2O elimination from INT1.As shown in FIG.5,the reaction(8)is derived from the C?C bond cleavage in INT1.The C2?C3 bond length has been scanned from 1.45? to 3.4? and no transition state is found.The total barrier of this process is calculated to be 11.73 eV,which is in excellent agreement with the experimental value of(11.78±0.03)eV.

    The detailed formation pathway ofis also shown in FIG.7.First,2-propenyl cationundergoes a 1,2-hydrogen shift to generate the INT9 by overcoming a barrier of 1.22 eV.Then,H migration toward the terminal carbon atom in 2-propenyl cation leads to the formation of intermediate INT10 via transition state TS14 with an energy barrier of 1.47 eV.Finally,two H atoms of methyl group in INT10 get close to each other by passing through a transition state(TS15)located at 14.37 eV,leading to the formation of C3H3+and hydrogen molecule(reaction(9)).This pathway is consistent with the literature results[23,24].8.Formation pathways of C(m/z=28)

    IV.CONCLUSION

    The photoionization and dissociation of cyclopentanone have been investigated experimentally using reflection time-of- flight mass spectrometer with the tunable vacuum ultraviolet synchrotron radiation as the ionization source.The ionization energy and appearance energies for cyclopentanone and 12 fragment ions are obtained from their PIE curves.The IE and AEs for cyclopentanone and fragments,are determined to be 10.88,11.03,10.64/11.25,11.18,12.05,12.32,11.78,12.32,14.33,12.98,and 12.44 eV,respectively.The dissociative photoionization mechanisms of C5H8O are proposed with the help of theab initiocalculations at theωB97X-D/6-31+G(d,p)level.Ring opening and hydrogen migrations are the predominant processes in the fragmentation pathways of cyclopentanone.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.91544105,No.U1532137,No.U1232209,and No.11575178). The authors are grateful to the Supercomputing Center of University of Science and Technology of China for generous allocation of computing resources.

    [1]A.Corma,O.de la Torre,M.Renz,and N.Villandier,Angew.Chem.Int.Ed.50,2375(2011).

    [2]G.W.Huber,J.N.Chheda,C.J.Barrett,and J.A.Dumesic,Science 308,1446(2005).

    [3]P.Anbarasan,Z.C.Baer,S.Sreekumar,E.Gross,J.B.Binder,H.W.Blanch,D.S.Clark,and F.D.Toste,Nature 491,235(2012).

    [4]J.Cueto,L.Faba,E.Dìaz,and S.Ordóňez,Chem-CatChem 9,1765(2017).

    [5]M.Hronec,K.Fulajtárova,T.Liptaj,M.?tolcová,N.Prónayová,and T.Soták,Biomass and Bioenergy 63,291(2014).

    [6]J.Yang,N.Li,G.Li,W.Wang,A.Wang,X.Wang,Y.Cong,and T.Zhang,Chem.Commun.(Camb)50,2572(2014).

    [7]Q.Q.Wang,D.Wu,M.Jin,F.Liu,F.Hu,X.Cheng,H.Liu,Z.Hu,D.Ding,H.Mineo,Y.A.Dyakov,A.M.Mebel,S.D.Chao,and S.H.Lin,J.Chem.Phys.129,204302(2008).

    [8]D.Wu,X.H.Cheng,Q.Q.Wang,C.C.Wang,F.F.Hu,M.X.Jin,D.J.Ding,T.C.Zhang,T.Yuan,and L.S.Liu,J.At.Mol.Phys.25,1(2008).

    [9]C.Price,Y.Fathi,and G.Meloni,J.Mass Spectrom.52,259(2017).

    [10]J.I.M.Pastoors,A.Bodi,P.Hemberger,and J.Bouwman,Chem.Eur.J.23,13131(2017).

    [11]R.Kong,X.Shan,S.Wang,Y.Zhang,L.Sheng,L.Hao,and Z.Wang,J.Electron Spectrosc.Relat.Phenom.160,49(2007).

    [12]S.Wang,R.Kong,X.Shan,Y.Zhang,L.Sheng,Z.Wang,L.Hao,and S.Zhou,J.Synchrotron Rad.13,415(2006).

    [13]R.R.Sun,Q.H.Meng,M.Wang,W.F.Fei,Y.M.Zhang,J.Chen,W.Z.Fang,X.B.Shan,F.Y.Liu,and L.S.Sheng,J.Phys.B 50,11(2017).

    [14]J.D.Chai and M.Head-Gordon,Phys.Chem.Chem.Phys.10,6615(2008).

    [15]K.Raghavachari,G.W.Trucks,J.A.Pople,and M.Headgordon,Chem.Phys.Lett.157,479(1989).

    [16]Y.P.Pan and M.A.McAllister,J.Mol.Struct.427,221(1998).

    [17]K.Fukui,Acc.Chem.Res.14,363(1981).

    [18]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,H.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.M.Martain,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian 09,Revision A.1,Wallingford,CT:Gaussian,Inc.,(2009).

    [19]K.R.Wilson,L.Belau,C.Nicolas,M.Jimenez-Cruz,S.R.Leone,and M.Ahmed,Int.J.Mass Spectrom.249,155(2006).

    [20]S.Y.Chiang,M.Bahou,K.Sankaran,Y.P.Lee,H.F.Lu,and M.D.Su,J.Chem.Phys.118,62(2003).

    [21]B.J.Cocksey,J.H.D.Eland,and C.J.Danby,J.Chem.Soc.B 790(1971).

    [22]L.Weiler.,D.Chadwic,and D.C.Frost,J.Am.Soc.Mass.Spectrom.93,4320(1971).

    [23]I.Fischer,T.Sch¨u?ler,H.J.Deyerl,M.Elhanine,and C.Alcaraz,Int.J.Mass Spectrom.261,227(2007).

    [24]T.Maihom,E.Schuhfried,M.Probst,J.Limtrakul,T.D.M¨ark,and F.Biasioli,J.Phys.Chem.A 117,5149(2013).

    [25]R.Thissen,O.Dutuit,H.E.Audier,and P.Mourgues,J.Mass Spectrom.34,850(1999).

    深夜精品福利| 国产欧美日韩综合在线一区二区| 97在线视频观看| 最后的刺客免费高清国语| 黄色视频在线播放观看不卡| 狠狠精品人妻久久久久久综合| 水蜜桃什么品种好| 国产精品久久久av美女十八| 日韩一区二区视频免费看| 不卡视频在线观看欧美| 国产黄色免费在线视频| 一级片'在线观看视频| 日日爽夜夜爽网站| 天堂俺去俺来也www色官网| 亚洲精品第二区| 18禁观看日本| 精品人妻熟女毛片av久久网站| 一级毛片黄色毛片免费观看视频| 视频区图区小说| 欧美另类一区| 成年人午夜在线观看视频| 久久久久久久国产电影| 两个人免费观看高清视频| 免费大片黄手机在线观看| 精品福利永久在线观看| 亚洲国产精品专区欧美| 天堂8中文在线网| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| 亚洲丝袜综合中文字幕| 插逼视频在线观看| 99热国产这里只有精品6| 国产精品三级大全| 免费日韩欧美在线观看| 国产精品久久久久久精品古装| 久久国产精品男人的天堂亚洲 | 久久久国产精品麻豆| 一级,二级,三级黄色视频| 国产成人91sexporn| 国产日韩一区二区三区精品不卡| 精品卡一卡二卡四卡免费| 亚洲精品成人av观看孕妇| 国产亚洲av片在线观看秒播厂| 中国美白少妇内射xxxbb| 天堂中文最新版在线下载| 国产极品粉嫩免费观看在线| 国产成人av激情在线播放| www日本在线高清视频| 蜜桃国产av成人99| 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 欧美老熟妇乱子伦牲交| 中文天堂在线官网| 我的女老师完整版在线观看| 一区二区三区乱码不卡18| 下体分泌物呈黄色| 亚洲三级黄色毛片| 国产免费福利视频在线观看| 亚洲综合色惰| 一级毛片我不卡| 999精品在线视频| 午夜免费观看性视频| 欧美日韩综合久久久久久| 亚洲美女黄色视频免费看| 又粗又硬又长又爽又黄的视频| 91精品伊人久久大香线蕉| 97精品久久久久久久久久精品| 久久久久久久亚洲中文字幕| 国产福利在线免费观看视频| 久久久久视频综合| 亚洲精品国产av成人精品| 女人被躁到高潮嗷嗷叫费观| 99re6热这里在线精品视频| 久久久亚洲精品成人影院| 日韩中文字幕视频在线看片| 最近手机中文字幕大全| 99久久人妻综合| 精品一区二区三卡| 久久99一区二区三区| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 国产精品99久久99久久久不卡 | 国产成人av激情在线播放| 亚洲综合精品二区| 欧美日韩av久久| 男女午夜视频在线观看 | 精品一区二区三区四区五区乱码 | av女优亚洲男人天堂| 欧美 日韩 精品 国产| 久久毛片免费看一区二区三区| 岛国毛片在线播放| 国产国语露脸激情在线看| 精品第一国产精品| 国产精品久久久久成人av| 97人妻天天添夜夜摸| 成年人午夜在线观看视频| 国产女主播在线喷水免费视频网站| 看十八女毛片水多多多| 黑丝袜美女国产一区| 永久网站在线| 国产精品久久久久久久电影| 狠狠婷婷综合久久久久久88av| 亚洲av日韩在线播放| av有码第一页| 女人久久www免费人成看片| 免费高清在线观看日韩| 国产熟女欧美一区二区| 天天操日日干夜夜撸| 欧美亚洲 丝袜 人妻 在线| 欧美日韩视频精品一区| 午夜av观看不卡| 最新中文字幕久久久久| 亚洲国产av新网站| 五月玫瑰六月丁香| 一级a做视频免费观看| 国产av国产精品国产| 最近手机中文字幕大全| 亚洲精品第二区| 丝袜在线中文字幕| 亚洲性久久影院| 国产精品偷伦视频观看了| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| √禁漫天堂资源中文www| 亚洲欧美中文字幕日韩二区| 熟女av电影| 亚洲一区二区三区欧美精品| 久久影院123| 最近的中文字幕免费完整| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 久久久国产一区二区| 老司机亚洲免费影院| 国产高清三级在线| 欧美精品人与动牲交sv欧美| 国产av国产精品国产| videos熟女内射| 国产成人精品无人区| 91久久精品国产一区二区三区| 妹子高潮喷水视频| 国产精品久久久久久久电影| 青青草视频在线视频观看| 久久久久久人妻| 亚洲欧美精品自产自拍| 美女xxoo啪啪120秒动态图| 久久久久久人人人人人| 欧美xxⅹ黑人| 久久青草综合色| 国产精品99久久99久久久不卡 | 色哟哟·www| 国产 精品1| 人妻 亚洲 视频| 久久久亚洲精品成人影院| 男女高潮啪啪啪动态图| 久久99热6这里只有精品| 免费在线观看完整版高清| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 成年av动漫网址| 大陆偷拍与自拍| 国产成人免费观看mmmm| 国产 精品1| 亚洲人成网站在线观看播放| 男人操女人黄网站| 亚洲国产最新在线播放| 精品亚洲成国产av| 国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看 | 最新的欧美精品一区二区| 亚洲av电影在线观看一区二区三区| 韩国av在线不卡| 人妻一区二区av| 欧美精品一区二区免费开放| 精品国产国语对白av| 国产乱人偷精品视频| 久久久久久久久久人人人人人人| 欧美人与性动交α欧美精品济南到 | 国产一区二区激情短视频 | 视频区图区小说| 18禁在线无遮挡免费观看视频| 韩国精品一区二区三区 | 午夜激情av网站| 国产午夜精品一二区理论片| 亚洲天堂av无毛| 黑人欧美特级aaaaaa片| 久久久久网色| 妹子高潮喷水视频| 亚洲精品久久午夜乱码| 日韩制服骚丝袜av| 毛片一级片免费看久久久久| 婷婷成人精品国产| 久热这里只有精品99| 老司机影院毛片| 国产极品粉嫩免费观看在线| 午夜免费鲁丝| 在线观看人妻少妇| 国产白丝娇喘喷水9色精品| 视频区图区小说| 毛片一级片免费看久久久久| 如何舔出高潮| 免费看光身美女| 69精品国产乱码久久久| 9色porny在线观看| 熟女人妻精品中文字幕| 久久国产精品男人的天堂亚洲 | 爱豆传媒免费全集在线观看| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 少妇人妻久久综合中文| 97在线视频观看| 99久久综合免费| 麻豆精品久久久久久蜜桃| 精品人妻一区二区三区麻豆| 精品少妇黑人巨大在线播放| 午夜福利在线观看免费完整高清在| 国产精品无大码| 九色成人免费人妻av| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 性色av一级| 国产欧美日韩一区二区三区在线| 新久久久久国产一级毛片| 日韩电影二区| 成人亚洲精品一区在线观看| 欧美精品一区二区大全| 久久精品久久久久久噜噜老黄| 一本—道久久a久久精品蜜桃钙片| 在线观看美女被高潮喷水网站| 亚洲综合精品二区| 午夜精品国产一区二区电影| 日韩视频在线欧美| 国产有黄有色有爽视频| 超色免费av| 亚洲欧洲日产国产| 欧美xxxx性猛交bbbb| 亚洲第一av免费看| 免费看光身美女| 香蕉丝袜av| 亚洲欧美精品自产自拍| 国产熟女午夜一区二区三区| 一本久久精品| 午夜免费观看性视频| 香蕉国产在线看| 日本av手机在线免费观看| 51国产日韩欧美| 高清视频免费观看一区二区| 18禁裸乳无遮挡动漫免费视频| 久久国内精品自在自线图片| 亚洲美女搞黄在线观看| 日韩电影二区| 国产av码专区亚洲av| 久久久亚洲精品成人影院| 看免费av毛片| 欧美97在线视频| 日产精品乱码卡一卡2卡三| 91精品国产国语对白视频| 欧美精品高潮呻吟av久久| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 国产亚洲精品第一综合不卡 | 美女国产视频在线观看| 日韩av免费高清视频| 亚洲 欧美一区二区三区| 美女国产高潮福利片在线看| 国产一区二区激情短视频 | 大香蕉97超碰在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产极品粉嫩免费观看在线| 中文字幕最新亚洲高清| 亚洲精品国产av蜜桃| 全区人妻精品视频| 制服人妻中文乱码| 日本欧美视频一区| 少妇被粗大猛烈的视频| 51国产日韩欧美| 亚洲中文av在线| 日韩av免费高清视频| 18禁观看日本| 欧美精品一区二区免费开放| 夜夜骑夜夜射夜夜干| 在线精品无人区一区二区三| 欧美少妇被猛烈插入视频| 亚洲精品一区蜜桃| 制服诱惑二区| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 亚洲高清免费不卡视频| 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图| 乱码一卡2卡4卡精品| 午夜av观看不卡| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 我的女老师完整版在线观看| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| 免费不卡的大黄色大毛片视频在线观看| 婷婷成人精品国产| 蜜臀久久99精品久久宅男| av不卡在线播放| 国产在线免费精品| 精品第一国产精品| 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 韩国高清视频一区二区三区| 1024视频免费在线观看| a级毛片黄视频| 夫妻性生交免费视频一级片| 中文字幕av电影在线播放| 国产又色又爽无遮挡免| 精品久久国产蜜桃| 久久国产精品男人的天堂亚洲 | 伊人久久国产一区二区| 最黄视频免费看| 99热6这里只有精品| 亚洲第一区二区三区不卡| 久久 成人 亚洲| 日韩成人伦理影院| 国产片内射在线| 巨乳人妻的诱惑在线观看| 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 国产福利在线免费观看视频| 咕卡用的链子| 亚洲人成77777在线视频| 亚洲 欧美一区二区三区| 久久久欧美国产精品| 日韩中文字幕视频在线看片| 乱码一卡2卡4卡精品| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 欧美日韩视频精品一区| 久久精品久久久久久久性| 美女大奶头黄色视频| 热99国产精品久久久久久7| 亚洲成色77777| 亚洲精品av麻豆狂野| 中国美白少妇内射xxxbb| 有码 亚洲区| 国产高清三级在线| 最近最新中文字幕免费大全7| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久小说| 麻豆精品久久久久久蜜桃| 亚洲av欧美aⅴ国产| 国产精品嫩草影院av在线观看| 国产成人精品在线电影| 热re99久久国产66热| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 18+在线观看网站| 国产激情久久老熟女| 国产精品久久久av美女十八| 女人精品久久久久毛片| 男女午夜视频在线观看 | 国产色婷婷99| 亚洲国产欧美在线一区| 国产日韩欧美在线精品| 精品久久蜜臀av无| 久久久久久久亚洲中文字幕| 日韩中文字幕视频在线看片| 男人添女人高潮全过程视频| 一级片'在线观看视频| 侵犯人妻中文字幕一二三四区| 男的添女的下面高潮视频| 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花| 久久97久久精品| 国产成人一区二区在线| 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 黑人欧美特级aaaaaa片| 国产精品国产av在线观看| 2018国产大陆天天弄谢| 久久婷婷青草| 免费av中文字幕在线| 久久久a久久爽久久v久久| 亚洲国产精品专区欧美| av在线app专区| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 午夜影院在线不卡| 又粗又硬又长又爽又黄的视频| 又黄又爽又刺激的免费视频.| 亚洲成国产人片在线观看| 91成人精品电影| 最近最新中文字幕免费大全7| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 久久婷婷青草| 久久午夜综合久久蜜桃| 亚洲性久久影院| 两个人看的免费小视频| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 91精品三级在线观看| 欧美日韩视频高清一区二区三区二| 尾随美女入室| 亚洲精品久久午夜乱码| 九草在线视频观看| 亚洲成人手机| 久久人妻熟女aⅴ| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 五月天丁香电影| 在线看a的网站| 久久久久网色| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o| freevideosex欧美| 免费看av在线观看网站| 最黄视频免费看| 韩国精品一区二区三区 | 久热这里只有精品99| 精品久久国产蜜桃| 尾随美女入室| 国产免费视频播放在线视频| 久久国产精品大桥未久av| 99九九在线精品视频| 精品国产一区二区三区久久久樱花| 我要看黄色一级片免费的| 成人毛片60女人毛片免费| 曰老女人黄片| 性高湖久久久久久久久免费观看| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 午夜影院在线不卡| 日韩av不卡免费在线播放| 色视频在线一区二区三区| 自线自在国产av| 99精国产麻豆久久婷婷| 在线观看三级黄色| 国产爽快片一区二区三区| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 国产精品嫩草影院av在线观看| 免费黄频网站在线观看国产| www.av在线官网国产| 日产精品乱码卡一卡2卡三| 久久影院123| 欧美成人午夜免费资源| 久久免费观看电影| 久久精品国产综合久久久 | 成人国产av品久久久| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 久久热在线av| 国产乱来视频区| 亚洲国产毛片av蜜桃av| 国产在线免费精品| 免费观看a级毛片全部| 狂野欧美激情性xxxx在线观看| av女优亚洲男人天堂| 乱人伦中国视频| 久久精品国产亚洲av涩爱| 欧美日韩成人在线一区二区| 亚洲精品乱码久久久久久按摩| av有码第一页| 亚洲精品久久成人aⅴ小说| 久久久久久久国产电影| 亚洲精品第二区| 久久久久国产精品人妻一区二区| 高清毛片免费看| 午夜影院在线不卡| 天天影视国产精品| 在线观看一区二区三区激情| 丁香六月天网| 一个人免费看片子| 国产免费又黄又爽又色| 久久国产精品男人的天堂亚洲 | 午夜福利网站1000一区二区三区| 亚洲欧美日韩卡通动漫| 天天影视国产精品| 精品人妻偷拍中文字幕| av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 成人午夜精彩视频在线观看| 国产 一区精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品一区三区| 成年动漫av网址| 亚洲av男天堂| 老司机影院成人| 男人舔女人的私密视频| 久久av网站| 老司机影院毛片| 1024视频免费在线观看| 中国三级夫妇交换| 9色porny在线观看| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 我要看黄色一级片免费的| h视频一区二区三区| 在线看a的网站| 777米奇影视久久| 亚洲图色成人| 男的添女的下面高潮视频| 久久影院123| 在线观看一区二区三区激情| 亚洲人成77777在线视频| 欧美日韩成人在线一区二区| 毛片一级片免费看久久久久| av视频免费观看在线观看| 中文欧美无线码| 亚洲国产最新在线播放| 九草在线视频观看| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 国产av一区二区精品久久| 日韩av免费高清视频| 国产免费又黄又爽又色| 精品午夜福利在线看| 日韩视频在线欧美| 五月玫瑰六月丁香| 日本91视频免费播放| 一本—道久久a久久精品蜜桃钙片| 韩国精品一区二区三区 | 亚洲欧美中文字幕日韩二区| 亚洲精品aⅴ在线观看| 亚洲国产色片| 亚洲成人av在线免费| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| videosex国产| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 国产成人精品在线电影| 色哟哟·www| 欧美 日韩 精品 国产| 免费观看av网站的网址| av一本久久久久| 国产淫语在线视频| 午夜久久久在线观看| 成人午夜精彩视频在线观看| 一本—道久久a久久精品蜜桃钙片| 涩涩av久久男人的天堂| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区 | 精品少妇久久久久久888优播| 乱码一卡2卡4卡精品| 欧美日韩成人在线一区二区| 性色avwww在线观看| 国产精品国产av在线观看| 极品人妻少妇av视频| 97精品久久久久久久久久精品| 色94色欧美一区二区| 一级毛片电影观看| 老熟女久久久| av在线观看视频网站免费| 亚洲国产最新在线播放| 亚洲国产精品999| 我的女老师完整版在线观看| 在线观看www视频免费| av.在线天堂| 91在线精品国自产拍蜜月| 巨乳人妻的诱惑在线观看| 欧美日韩精品成人综合77777| 人妻少妇偷人精品九色| 国产探花极品一区二区| 色哟哟·www| av在线app专区| 亚洲天堂av无毛| 美女国产高潮福利片在线看| 亚洲成色77777| 久久综合国产亚洲精品| 亚洲国产看品久久| 成人国产麻豆网| 天堂俺去俺来也www色官网| 肉色欧美久久久久久久蜜桃| 国产综合精华液| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 91在线精品国自产拍蜜月| 国产午夜精品一二区理论片| 亚洲av.av天堂| 丝袜在线中文字幕| 在线观看美女被高潮喷水网站| 丁香六月天网| 99热国产这里只有精品6| 亚洲精品成人av观看孕妇| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 中国美白少妇内射xxxbb| 亚洲综合色网址| 亚洲国产精品国产精品| 99香蕉大伊视频| 亚洲精品成人av观看孕妇| 男女下面插进去视频免费观看 | 国产精品不卡视频一区二区| 亚洲综合色网址| 国产色爽女视频免费观看| 日本wwww免费看| 欧美日韩亚洲高清精品| 蜜臀久久99精品久久宅男| 熟女人妻精品中文字幕| 男女免费视频国产| videossex国产| 黄色一级大片看看| 久久综合国产亚洲精品| 久久久欧美国产精品| √禁漫天堂资源中文www| 宅男免费午夜| 91久久精品国产一区二区三区| 巨乳人妻的诱惑在线观看|