• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Location Effect in a Photocatalytic Hybrid System of Metal-Organic Framework Interfaced with Semiconductor Nanoparticles

    2018-11-09 06:53:16QichaoShangXinzuoFangacHailongJiangacQunZhang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2018年5期

    Qi-chao ShangXin-zuo FangacHai-long JiangacQun Zhang

    a.Hefei National Laboratory for Physical Sciences at the Microscale,School of Chemistry and Materials Science,University of Science and Technology of China,Hefei 230026,China

    b.Department of Chemical Physics,Synergetic Innovation Center of Quantum Information&Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    c.Department of Chemistry,CAS Key Laboratory of Soft Matter Chemistry,Collaborative Innovation Center of Suzhou Nano Science and Technology,University of Science and Technology of China,Hefei 230026,China

    Key words:Metal-organic framework,Photocatalysis,Ultrafast spectroscopy,Transient absorption

    I.INTRODUCTION

    Metal-organic frameworks(MOFs),a class of porous coordination polymers formed by metal ions and organic ligands,have shown great promise in photoelectrochemical applications due to their unique properties such as high specific surface areas,outstanding porosity,and structural diversity[1?3].MOF-based heterogeneous composites,in which metal or semiconductor nanoparticles(NPs)are interfaced with a MOF material,have been exploited to optimize the desired performance in photocatalysis[4?10].Recently,in a prototypical metal-MOF hybrid system,i.e.,platinum(Pt)NPs interfaced with UiO-66-NH2,we revealed that the Pt location(i.e.,either incorporated inside or supported onto the MOF)can significantly in fluence the photocatalytic efficiency for hydrogen production[6].In this case the MOF functions as an electron donor while the Pt NPs serve as a co-catalyst,facilitating electron transfer and promoting charge separation therein.During the carrier-transfer process within heterostructures,MOFs could act as either electron donors[4?6]or electron acceptors[7?10].Notably,it would be more bene ficial when the MOF behaves as an electron acceptor in the hybrid system given that the MOF offers extensive active sites for photocatalysis[11].Recent efforts have been made to develop semiconductor-MOF hybrid systems,in which the MOF receives electrons donated by the interfaced semiconductor component[7?10].

    It is interesting to see if the location effect observed in metal-MOF system also manifests in semiconductor-MOF system. A useful way to examine this is to track in real time the interface electron dynamics in the system by ultrafast optical spectroscopy[12?16].To this end,we have performed a set of femtosecond(fs)time-resolved transient absorption(TA)measurements on a typical semiconductor-MOF system with TiO2NPs being incorporated inside or supported onto Cu3(BTC)2(BTC=benzene-1,3,5-tricarboxylate),forming the two composites denoted TiO2@Cu3(BTC)2and TiO2/Cu3(BTC)2,respectively.Analysis of our fs-TA results revealed that the interface states formed between TiO2and Cu3(BTC)2can serve as an effective relay for electron transfer,whose efficiency is highly dependent on the relative location of the two components.It is such a subtle location effect that leads to their different photocatalytic performances in CO2reduction.

    II.EXPERIMENTS

    A.Materials

    Polyvinylpyrrolidone(PVP,MW=29000)and 1,3,5-benzenetricarboxylic acid(H3BTC)were purchased from Sigma-Aldrich.Cuprous oxide(Cu2O)was purchased from Alfa Aesar. Tetrabutyl titanate,N,N-dimethylformamide(DMF),and ethanol were purchased from Sinopharm Chemical Reagent Co.,Ltd.All of the chemicals were used as received without further purification.

    B.Synthesis of the samples

    1.Synthesis of TiO2

    1 mL tetrabutyl titanate was added into a Pyrex vial.The vial was then placed into an oven and kept at 85?C.The precursor,tetrabutyl titanate,was hydrolyzed smoothly and the resulting white powders were dehydrated to yield the amorphous sample of TiO2NPs.

    2.Synthesis of Cu3(BTC)2

    1.48 g PVP was dissolved in 10 mL pure water and heated at 70?C under magnetic stirring.8 mL of DMF containing 21 mg H3BTC was added into the PVP solution,which was heated for 10 min.Then,2 mL of DMF containing 5.6 mg Cu2O was added and further heated at 70?C for 30 min.The product was washed with ethanol three times to remove PVP.The resulting product was dispersed in ethanol again.After 2 h the supernatant was taken out and centrifuged to obtain the Cu3(BTC)2microcrystals.

    3.Synthesis of TiO2@Cu3(BTC)2

    5 mg Cu3(BTC)2was activated by evacuation at 130?C for 1 day in a Pyrex reaction tube.After being cooled to room temperature,Cu3(BTC)2was immersed with 1 mL tetrabutyl titanate under evacuation for another day.Subsequently,the sample was removed from the Schlenk flask and washed with ethanol to remove tetrabutyl titanate on the surface.Finally,the sample was dried to yield the TiO2@Cu3(BTC)2composites.

    4.Synthesis of TiO2/Cu3(BTC)2

    5 mg Cu3(BTC)2was dispersed in 1 mL ethanol,and then 50 L tetrabutyl titanate was added into ethanol under stirring.The mixture was dehydrated quickly to yield the TiO2/Cu3(BTC)2composites.

    C.Characterization

    1.Routine characterizations

    The concentrations of Ti and Cu were measured with a Thermo Scientific Plasma Quad III inductively coupled plasma mass spectrometry(ICP-MS)with the samples being dissolved in HCl/HNO3(3:1,V:V).The sample morphology of TiO2,Cu3(BTC)2,TiO2@Cu3(BTC)2,and TiO2/Cu3(BTC)2was examined by transmission electron microscopy(TEM,JEOL-2010).Prior to electron microscopy characterizations,a drop of the aqueous suspension of particles was placed onto a piece of carbon-coated copper grid or silicon wafer and dried under ambient conditions. Powder X-ray diffraction(XRD)was carried out on a Japan Rigaku Smart Lab rotation anode X-ray diffractometer equipped with graphite monochromatized Cu Kαradiation(λ=1.54 ?).The X-ray photoelectron spectroscopy(XPS)characterization was performed on a Thermo Scientific ESCALAB 250 X-ray photoelectron spectrometer,using nonmonochromatized Al KαX-ray as the excitation source.The expected charging of samples was corrected by setting the C 1s binding energy of the adventitious carbon to 284.5 eV.The steady-state UV-Vis diffuse re flectance spectra(270?510 nm)were recorded on a Shimadzu Solid Spec-3700 spectrophotometer(reference:BaSO4).

    2.Ultrafast spectroscopy

    The fs-TA measurements were performed under ambient conditions in an integrated Helios spectrometer(Ultrafast Systems LLC)with pump and probe beams derived from an amplified femtosecond laser system(Coherent).The 320-nm pump pulses(~50 nJ/pulse at the sample cell)were delivered by a travelling-wave optical parametric amplifier system(TOPAS-800-fs),which was excited by a Ti:sapphire regenerative amplifier(Legend Elite-1K-HE;800 nm,35 fs,3 mJ/pulse,and 1 kHz repetition rate)seeded with a mode-locked Ti:sapphire laser system(Micra 5)and then pumped with an Nd:YLF laser(Evolution 30).The pump power was adjusted through a series of neutral-density filter wheels.The stable white-light continuum(WLC)probe pulses(450?650 nm)were generated by attenuating and focusing the 800-nm beam(split from the regenerative amplifier,~400 nJ/pulse)onto a sapphire crystal plate.To correct the pulse-to-pulse fluctuation of the WLC,the WLC was split into a probe beam and a reference beam.The time delays between the pump and probe pulses were controlled by a motorized optical delay line.The instrument response function(IRF)was determined to be~100 fs by measuring solvent responses under the same experimental conditions(with the exception of a higher excitation power).A mechanical synchronized chopper operating at 500 Hz was used to modulate the pump pulses such that the fs-TA spectra with and without the pump pulses can be recorded alternately.The temporal and spectral profiles(chirp corrected)of the pump-induced differential transmission of the WLC probe light(i.e.,absorbance change)were visualized by an optical fiber-coupled multichannel spectrometer(with a complementary metaloxide-semiconductor sensor)and further processed by the Surface Xplorer software equipped with the Helios system.The samples were well dispersed in a mixture of spectrum-pure acetonitrile(CH3CN)and ethylene glycol.The solution was contained in a 0.7-mL sealed quartz cuvette under a continuous magnetic stirring condition,ensuring that the photoexcited volume of the sample was kept fresh during the fs-TA measurements.

    3.Photocatalytic tests

    The photocatalytic CO2reduction tests were carried out in a 100-mL optical reaction vessel under stirring at ambient temperature using a 300-W Xe lamp as the light source.In addition,a 400-nm short-wave-pass cutofffilter was used.The catalyst(10 mg)was dispersed in CH3CN(19 mL)with 1 mL triethanolamine(TEOA)being added as a sacrificial reagent.The mixture was bubbled with CO2under stirring for 40 min.The product was measured by a gas chromatograph(Shimadzu GC-2014,nitrogen as carrier gas),during which 200μL of the product was injected and quantified by a calibration plot against the internal CO standard.

    III.RESULTS AND DISCUSSION

    The two composites with an identical mass ratio of TiO2over Cu3(BTC)2(i.e.,~0.2)were prepared based on the pre-synthesized Cu3(BTC)2product.TEM images(FIG.1)revealed that the MOF morphology(i.e.,octahedron-shaped Cu3(BTC)2microcrystal with a lateral size of~800 nm)was well maintained upon being integrated with TiO2NPs.As for TiO2@Cu3(BTC)2,one can see that the surfaces of Cu3(BTC)2were very smooth(FIG.1(a))and TiO2NPs were well con fined within the Cu3(BTC)2(FIG.1(b),which is an enlarged view of the selected region in FIG.1(a)).In contrast,as for TiO2/Cu3(BTC)2,the surfaces of Cu3(BTC)2were rough and covered with TiO2NPs(FIG.1(c)and(d)).The excellent encapsulation of TiO2NPs inside MOF for TiO2@Cu3(BTC)2and nearly uniform coverage of TiO2with MOF for TiO2/Cu3(BTC)2clearly indicated the different locations of TiO2NPs for the two composites.FIG.2 shows the comparison of the size distribution of TiO2NPs in TiO2@Cu3(BTC)2and TiO2/Cu3(BTC)2,which shows no significant difference,precluding the possible impact of size distribution of TiO2NPs on the interface electron dynamics in the hybrid systems.Moreover,the observation of nearly identical powder XRD patterns(FIG.3)suggested that the crystalline structure of Cu3(BTC)2was well maintained for the two composites.

    FIG.1 Typical TEM images for the two hybrid systems under investigation:(a,b)TiO2@Cu3(BTC)2and(c,d)TiO2/Cu3(BTC)2.Panels(b)and(d)are the enlarged views of the selected regions(red rectangles)in panels(a)and(c),respectively.

    FIG.2 Comparison of the size distribution of TiO2NPs in TiO2@Cu3(BTC)2and TiO2/Cu3(BTC)2.

    FIG.4 exhibits the valence-band(VB)XPS spectra recorded on the two composites and the two bare samples of TiO2and Cu3(BTC)2.The VB edges for TiO2and Cu3(BTC)2were determined to be at 2.74 and 2.25 eV,respectively,below the Fermi level.Notably,both composites turned out to hold an identical VB edge at 1.92 eV below the Fermi level,suggesting that the different loading locations of TiO2NPs in the composites would not bring on significant modification for the electronic structures and properties of Cu3(BTC)2.The survey and high resolution XPS spectra recorded on the two composites can be found in FIG.S1 in the supplementary materials.

    FIG. 3 Powder XRD patterns recorded on TiO2@Cu3(BTC)2andTiO2/Cu3(BTC)2,showingno obvious difference.

    FIG.4 Valence-band XPS spectra recorded on the two composite samples of TiO2@Cu3(BTC)2and TiO2/Cu3(BTC)2 as well as the two bare samples of TiO2and Cu3(BTC)2.

    To track the real-time photoexcited electron dynamics in the two hybrid systems,we performed fs-TA spectroscopy characterization.A routine pump-probe con figuration with an ultraviolet(UV)pump(320 nm)and a white-light continuum probe(450?650 nm)was adopted.The 320-nm photoexcitation(~3.88 eV)is suited to induce interband transition in TiO2(bandgap~3.2 eV).FIG.5(a)displays the fs-TA spectra taken at several representative probe delays for the two composite samples(lower panels)and two reference samples(upper panels).Bare Cu3(BTC)2exhibits nearly indiscernible fs-TA signal as compared to bare TiO2,echoing to their steady-state UV-Vis absorption spectra(see FIG.S2 in the supplementary materials).Markedly,the negative probe bleach(PB)signal of bare TiO2is completely reversed to the positive photoinduced absorption(PA)signal upon being interfaced with Cu3(BTC)2.As for bare TiO2,the PB evolution probed in 450?650 nm,a red-shifted region relative to the 320-nm pump,tracks via stimulated emission the population of photoexcited electrons in its conduction band(CB)[13,15]. As for the two hybrid systems,however,the PA evolution observed in the same region should not correspond to the excited-state absorption(i.e.,upward probing)from the CB electrons on the TiO2side,but rather re flects that of the electrons transferred rapidly from the CB of TiO2to the interface states formed between TiO2and Cu3(BTC)2.There should occur a sort of efficient TiO2-to-Cu3(BTC)2interface electron-transfer process,given that the photoexcited component is dominantly TiO2instead of Cu3(BTC)2.The mechanistic picture is illustrated in FIG.5(b).

    FIG.5(a)Representative fs-TA spectra(pump at 320 nm)for the two hybrid systems(lower panels)and for the two reference systems(upper panels).(b)Schematic illustration of the interface electro-transfer processes in the semiconductor-MOF hybrid system.

    FIG.6 Representative fs-TA kinetics(pump at 320 nm,probe at 560 nm)for the two hybrid systems as well as for the two reference systems.

    To gain more insights into the interface electron transfer and the subsequent relaxation processes in the hybrid systems,we turn our attention to the involved PA kinetics.FIG.6 exhibits a set of representative fs-TA kinetics data taken at 560 nm.As for bare TiO2,the negative PB signal builds up within the instrument response function(IRF)of~100 fs and then recovers with an average lifetime of~110 ps.The fast buildup(<100 fs)re flects the initial generation and cooling of hot excitons,while the following recovery(~110 ps)accounts for the subsequent exciton trapping and recombination[12,17].Also,the early-time build-up for the two hybrid systems occurs within the IRF,suggesting that the interface electron-transfer process therein is extremely fast(indicated by a grey,wiggly arrow in FIG.5(b)).Strikingly,the subsequent relaxation,which should be linked to the event that the promptly accumulated interface-state electrons are redistributed into the electron acceptor states of Cu3(BTC)2(indicated by a red,wiggly arrow in FIG.5(b)),exhibits a pronounced difference:τ1=(182±16)ps(69.1%)andτ2=(1006±323)ps(30.9%)(or(769±292)ps on average)for TiO2@Cu3(BTC)2,whileτ1=10.1±1.1 ps(51.2%)andτ2=(157±7)ps(48.8%)(or(148±6)ps on average)for TiO2/Cu3(BTC)2.A roughly 5-fold acceleration(in terms of average lifetime)was detected for TiO2/Cu3(BTC)2relative to TiO2@Cu3(BTC)2.This evidences that the interface states formed between semiconductor and MOF can act as an effective relay for semiconductor-to-MOF electron transfer,whose efficiency is highly dependent on the relative location of the two components. In the current case,such a relay effect in the system with TiO2NPs being supported onto Cu3(BTC)2(i.e.,TiO2/Cu3(BTC)2)was proven more efficient than in the system with TiO2NPs being incorporated inside Cu3(BTC)2(i.e.,TiO2@Cu3(BTC)2),suggesting that the coupling between the interface states and the electron acceptor states of MOF is stronger in TiO2/Cu3(BTC)2than in TiO2@Cu3(BTC)2.

    FIG.7 CO conversion rates for TiO2,TiO2@Cu3(BTC)2,and TiO2/Cu3(BTC)2in the recycling tests of photocatalytic CO2reduction.The product mole yields were calibrated against the 15-mg photoactive TiO2.Signals for by-products were indiscernible.

    Considering that the higher efficiency in interface states-mediated electron transfer would promote electron-hole separation(on the photoexcited semiconductor side)and electron redistribution(on the electron-accepting MOF side),we anticipated that TiO2/Cu3(BTC)2could achieve a better photocatalytic performance than TiO2@Cu3(BTC)2.This expectation was verified by a set of photocatalytic CO2reduction tests,in which TiO2/Cu3(BTC)2was found to stand out among others(FIG.7).Notably,the two composites were found to possess an identical mass ratio of TiO2NPs over Cu3(BTC)2(i.e.,~0.2)and a similar size distribution of TiO2NPs(FIG.2),as discussed above.On the basis of these observations,it is safe to conclude that the difference in photocatalytic performance for the two composite samples should not simply be due to the slight differences in the loading distribution and density of TiO2NPs,but rather related to the different interface electron-transfer efficiencies for the two samples.

    IV.CONCLUSION

    We have presented an ultrafast spectroscopy investigation addressing the subtle location effect in a prototypical semiconductor-MOF hybrid system with TiO2nanoparticles being incorporated inside or supported onto Cu3(BTC)2,denoted TiO2@Cu3(BTC)2and TiO2/Cu3(BTC)2,respectively.By tracking in real time the interface electron dynamics in the hybrid system,we find that the interface states formed between TiO2and Cu3(BTC)2can act as an effective relay for electron transfer,whose efficiency rests on the relative location of the two components.Such a subtle location effect is responsible for the performance difference in photocatalytic CO2reduction using the two hybrid systems.The mechanistic insights into the involved interface electron-transfer effect provide a helpful perspective for rational design of MOF-based hybrid systems for photoelectrochemical applications.

    Supplementary materials:XPS spectra and steadystate UV-Vis absorption spectra of the samples are available in the supplementary materials.

    V.ACKNOWLEDGMENTS

    This work was supported by the Ministry of Science and Technology of China(No.2016YFA0200602),the National Natural Science Foundation of China(No.21573211 and No.21633007),and the Fundamental Research Funds for the Central Universities of China(No.WK2340000063).

    [1]H.C.Zhou,J.R.Long,and O.M.Yaghi,Chem.Rev.112,673(2012).

    [2]P.Falcaro,R.Ricco,A.Yazdi,I.Imaz,S.Furukawa,D.Maspoch,R.Ameloot,J.D.Evans,and C.Doonan,Coord.Chem.Rev.307,237(2016).

    [3]Q.H.Yang,Q.Xu,and H.L.Jiang,Chem.Soc.Rev.46,4774(2017).

    [4]C.Wang,K.E.deKrafft,and W.B.Lin,J.Am.Chem.Soc.134,7211(2012).

    [5]L.Y.Chen,Y.Peng,H.Wang,Z.Z.Gu,and C.Y.Duan,Chem.Commun.50,8651(2014).

    [6]J.D.Xiao,Q.C.Shang,Y.J.Xiong,Q.Zhang,Y.Luo,S.H.Yu,and H.L.Jiang,Angew.Chem.Int.Ed.55,9389(2016).

    [7]R.Li,J.H.Hu,M.S.Deng,H.L.Wang,X.J.Wang,Y.L.Hu,H.L.Jiang,J.Jiang,Q.Zhang,Y.Xie,and Y.J.Xiong,Adv.Mater.26,4783(2014).

    [8]S.B.Wang and X.C.Wang,Appl.Catal.B 162,494(2015).

    [9]L.Shi,T.Wang,H.B.Zhang,K.Chang,and J.H.Ye,Adv.Funct.Mater.25,5360(2015).

    [10]D.A.Giannakoudakis,N.A.Travlou,J.Secor,and T.J.Bandosz,Small 13,1601758(2017).

    [11]J.Y.Lee,O.K.Farha,J.Roberts,K.A.Scheidt,S.B.T.Nguyen,and J.T.Hupp,Chem.Soc.Rev.38,1450(2009).

    [12]D.A.Wheeler and J.Z.Zhang,Adv.Mater.25,2878(2013).

    [13]S.Bai,J.Jiang,Q.Zhang,and Y.J.Xiong,Chem.Soc.Rev.44,2893(2015).

    [14]B.Pattengale,S.Z.Yang,J.Ludwig,Z.Q.Huang,X.Y.Zhang,and J.E.Huang,J.Am.Chem.Soc.138,8072(2016).

    [15]Q.Zhang and Y.Luo,High Power Laser Sci.Eng.4,e22(2016).

    [16]Q.Y.Li and T.Q.Lian,Nano Lett.17,3152(2017).

    [17]W.A.Tisdale,K.J.Williams,B.A.Timp,D.J.Norris,E.S.Aydil,and X.Y.Zhu,Science 328,1543(2010).

    久久久久九九精品影院| 国产99久久九九免费精品| 男人的好看免费观看在线视频 | 亚洲中文日韩欧美视频| 99久久99久久久精品蜜桃| 国产成人精品久久二区二区免费| 亚洲国产日韩欧美精品在线观看 | 在线av久久热| 精品日产1卡2卡| 亚洲avbb在线观看| 日韩大尺度精品在线看网址 | 亚洲熟妇熟女久久| 两性夫妻黄色片| 国产精品永久免费网站| 亚洲色图av天堂| 成人三级黄色视频| 久久人妻熟女aⅴ| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 亚洲国产欧美日韩在线播放| 国产成年人精品一区二区| 中国美女看黄片| 精品久久久久久成人av| 曰老女人黄片| 日韩欧美一区二区三区在线观看| 久久久久国内视频| www.熟女人妻精品国产| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 一级毛片精品| 国产精品影院久久| 日本a在线网址| 国产97色在线日韩免费| 国产亚洲精品一区二区www| 日韩精品青青久久久久久| 欧美激情极品国产一区二区三区| 热99re8久久精品国产| 看免费av毛片| 韩国精品一区二区三区| 久久人妻熟女aⅴ| 在线av久久热| 国语自产精品视频在线第100页| 国产xxxxx性猛交| 51午夜福利影视在线观看| 国产亚洲欧美98| 热re99久久国产66热| 久久久久久人人人人人| 国产一区二区三区在线臀色熟女| 国产精品亚洲av一区麻豆| 91在线观看av| 成人三级黄色视频| 亚洲熟妇熟女久久| 日本一区二区免费在线视频| 中文字幕高清在线视频| 久久久国产欧美日韩av| 99国产精品一区二区蜜桃av| 级片在线观看| 丝袜在线中文字幕| 亚洲中文av在线| av福利片在线| 亚洲午夜理论影院| 日韩成人在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| av欧美777| cao死你这个sao货| 久久影院123| 精品不卡国产一区二区三区| 久久中文看片网| 国产精华一区二区三区| 成人欧美大片| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 大码成人一级视频| 亚洲五月色婷婷综合| 久热这里只有精品99| 一级片免费观看大全| 国产高清videossex| 成年版毛片免费区| 99热只有精品国产| 国产色视频综合| 精品久久久久久久久久免费视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲七黄色美女视频| 精品欧美一区二区三区在线| 在线观看免费视频日本深夜| av有码第一页| 精品欧美一区二区三区在线| 欧美日韩精品网址| 亚洲久久久国产精品| 男人操女人黄网站| 免费一级毛片在线播放高清视频 | 极品人妻少妇av视频| 在线国产一区二区在线| 男女下面进入的视频免费午夜 | 一级作爱视频免费观看| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 美女午夜性视频免费| cao死你这个sao货| 免费在线观看日本一区| 亚洲成人精品中文字幕电影| 久久精品成人免费网站| 一区二区三区国产精品乱码| 久久狼人影院| 午夜精品在线福利| 亚洲午夜理论影院| 亚洲国产毛片av蜜桃av| 亚洲人成电影观看| 看黄色毛片网站| 国产男靠女视频免费网站| 欧美激情高清一区二区三区| av天堂久久9| 精品一区二区三区视频在线观看免费| 国产精品爽爽va在线观看网站 | 成人18禁在线播放| 一进一出抽搐gif免费好疼| 宅男免费午夜| 在线天堂中文资源库| 亚洲国产欧美日韩在线播放| 国产不卡一卡二| 久久精品人人爽人人爽视色| 真人一进一出gif抽搐免费| 国产精品亚洲av一区麻豆| 免费观看精品视频网站| 亚洲午夜精品一区,二区,三区| 丝袜在线中文字幕| 宅男免费午夜| 亚洲国产精品成人综合色| 精品欧美国产一区二区三| 亚洲男人的天堂狠狠| 免费在线观看日本一区| 国产精品99久久99久久久不卡| 不卡一级毛片| 美女午夜性视频免费| 91成年电影在线观看| 久久午夜亚洲精品久久| 欧美日韩亚洲国产一区二区在线观看| 50天的宝宝边吃奶边哭怎么回事| 曰老女人黄片| 午夜影院日韩av| 天堂动漫精品| 亚洲国产欧美一区二区综合| 亚洲成a人片在线一区二区| 欧美一级a爱片免费观看看 | 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 亚洲av成人一区二区三| 国产av一区二区精品久久| 欧美乱妇无乱码| 在线国产一区二区在线| 国产一卡二卡三卡精品| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 午夜福利免费观看在线| 黄色丝袜av网址大全| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 成熟少妇高潮喷水视频| 18禁观看日本| 免费看十八禁软件| 香蕉久久夜色| 深夜精品福利| 国产97色在线日韩免费| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久久久人妻精品电影| 国产在线精品亚洲第一网站| 美女免费视频网站| 又大又爽又粗| 无限看片的www在线观看| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕| 午夜日韩欧美国产| 1024香蕉在线观看| 中出人妻视频一区二区| 国产精品综合久久久久久久免费 | 亚洲色图综合在线观看| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 久久国产精品影院| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 免费在线观看影片大全网站| 亚洲黑人精品在线| 黑人操中国人逼视频| 亚洲片人在线观看| 国产精品美女特级片免费视频播放器 | 99国产精品免费福利视频| x7x7x7水蜜桃| 国产99白浆流出| 久久人妻福利社区极品人妻图片| 国内精品久久久久精免费| 村上凉子中文字幕在线| 禁无遮挡网站| 国产精品乱码一区二三区的特点 | 精品久久久精品久久久| 岛国视频午夜一区免费看| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 制服丝袜大香蕉在线| 日韩欧美国产在线观看| 村上凉子中文字幕在线| tocl精华| 手机成人av网站| 变态另类丝袜制服| 午夜久久久久精精品| 自线自在国产av| 免费人成视频x8x8入口观看| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久 | 高清在线国产一区| 国产精品久久久av美女十八| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看完整版高清| 最新在线观看一区二区三区| ponron亚洲| 人成视频在线观看免费观看| netflix在线观看网站| 久久婷婷人人爽人人干人人爱 | 欧美黑人精品巨大| 99久久精品国产亚洲精品| 亚洲中文字幕日韩| 香蕉丝袜av| 亚洲天堂国产精品一区在线| 亚洲第一av免费看| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 满18在线观看网站| 香蕉久久夜色| 视频区欧美日本亚洲| 国产精品久久电影中文字幕| 精品久久蜜臀av无| 国产亚洲av高清不卡| 国产av精品麻豆| 精品第一国产精品| 亚洲片人在线观看| 中文字幕色久视频| 黑人巨大精品欧美一区二区蜜桃| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 女性生殖器流出的白浆| 国产高清videossex| 国产三级在线视频| 99久久国产精品久久久| 中文亚洲av片在线观看爽| 极品教师在线免费播放| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱 | 午夜福利一区二区在线看| 性少妇av在线| 欧美一区二区精品小视频在线| 国产精品 国内视频| 一级毛片高清免费大全| 国产欧美日韩精品亚洲av| 美女扒开内裤让男人捅视频| 亚洲欧美日韩无卡精品| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| av超薄肉色丝袜交足视频| 国产亚洲精品综合一区在线观看 | 99re在线观看精品视频| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 人成视频在线观看免费观看| 亚洲国产日韩欧美精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 长腿黑丝高跟| 淫妇啪啪啪对白视频| 精品国产一区二区三区四区第35| e午夜精品久久久久久久| 国产99白浆流出| 一个人观看的视频www高清免费观看 | 人人妻人人澡欧美一区二区 | 午夜福利18| 麻豆国产av国片精品| 久久国产精品影院| a级毛片在线看网站| 美国免费a级毛片| 啦啦啦 在线观看视频| 中文字幕最新亚洲高清| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 久久欧美精品欧美久久欧美| 亚洲人成电影免费在线| 亚洲精品中文字幕在线视频| 黄片大片在线免费观看| 一级黄色大片毛片| 色播亚洲综合网| 久久精品国产综合久久久| 老汉色av国产亚洲站长工具| 91老司机精品| 免费在线观看完整版高清| 午夜久久久在线观看| 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 中文字幕久久专区| 最好的美女福利视频网| 69av精品久久久久久| 中文字幕最新亚洲高清| 成人国产一区最新在线观看| 久久久久久久午夜电影| 国产亚洲欧美98| 搞女人的毛片| 99re在线观看精品视频| www.www免费av| 人妻丰满熟妇av一区二区三区| 两个人免费观看高清视频| 亚洲免费av在线视频| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 身体一侧抽搐| 制服诱惑二区| 动漫黄色视频在线观看| 久久久久国内视频| 久久香蕉精品热| 免费人成视频x8x8入口观看| 免费无遮挡裸体视频| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 欧美国产精品va在线观看不卡| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 大型av网站在线播放| 亚洲专区字幕在线| 国产精品av久久久久免费| 波多野结衣巨乳人妻| 久久久水蜜桃国产精品网| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| av视频免费观看在线观看| 成人亚洲精品av一区二区| 色在线成人网| 国产97色在线日韩免费| 午夜免费成人在线视频| 性少妇av在线| 亚洲自拍偷在线| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 此物有八面人人有两片| 操美女的视频在线观看| 亚洲美女黄片视频| 成人国语在线视频| 亚洲欧美日韩无卡精品| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人澡欧美一区二区 | 亚洲精品在线美女| 久久久水蜜桃国产精品网| avwww免费| 亚洲精品美女久久av网站| 久久草成人影院| 麻豆成人av在线观看| 久久婷婷人人爽人人干人人爱 | 免费观看精品视频网站| 一级a爱片免费观看的视频| 亚洲一码二码三码区别大吗| 成人亚洲精品av一区二区| 激情视频va一区二区三区| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区黑人| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 黄片大片在线免费观看| 老司机深夜福利视频在线观看| 日本精品一区二区三区蜜桃| 精品欧美一区二区三区在线| 成人av一区二区三区在线看| 亚洲av熟女| 国产99久久九九免费精品| 男人舔女人下体高潮全视频| 成年人黄色毛片网站| 亚洲国产精品合色在线| 琪琪午夜伦伦电影理论片6080| www.精华液| 日韩精品青青久久久久久| 久久久久国内视频| 麻豆成人av在线观看| 亚洲人成电影观看| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 午夜福利高清视频| 国产免费av片在线观看野外av| 桃色一区二区三区在线观看| 久久久久久人人人人人| 久久久久久久午夜电影| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| 欧美成人午夜精品| 亚洲人成77777在线视频| 久久久久精品国产欧美久久久| 国产亚洲精品第一综合不卡| 如日韩欧美国产精品一区二区三区| 亚洲国产精品合色在线| 免费高清在线观看日韩| 精品第一国产精品| 欧美在线黄色| 国产麻豆成人av免费视频| 妹子高潮喷水视频| 亚洲精华国产精华精| 香蕉久久夜色| 欧美日本中文国产一区发布| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 免费在线观看完整版高清| 亚洲男人的天堂狠狠| 免费看a级黄色片| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| av在线天堂中文字幕| 中文字幕久久专区| 国产精品久久久久久精品电影 | 欧美日韩福利视频一区二区| 一边摸一边做爽爽视频免费| 欧美日韩乱码在线| 男男h啪啪无遮挡| 国产精品一区二区三区四区久久 | 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 制服人妻中文乱码| 久久久水蜜桃国产精品网| 色综合婷婷激情| 免费女性裸体啪啪无遮挡网站| 成人国产综合亚洲| 在线观看午夜福利视频| 亚洲精品中文字幕在线视频| 亚洲欧美激情综合另类| 男女下面进入的视频免费午夜 | 色播在线永久视频| 亚洲精品中文字幕一二三四区| 欧美精品亚洲一区二区| 制服诱惑二区| 国产男靠女视频免费网站| 精品日产1卡2卡| 一进一出好大好爽视频| 国产精品野战在线观看| 18禁美女被吸乳视频| 欧美精品亚洲一区二区| 国产欧美日韩一区二区精品| 真人一进一出gif抽搐免费| 777久久人妻少妇嫩草av网站| 免费看美女性在线毛片视频| 看片在线看免费视频| 国产精品二区激情视频| 黄色丝袜av网址大全| 巨乳人妻的诱惑在线观看| 桃色一区二区三区在线观看| 自线自在国产av| 99riav亚洲国产免费| 熟妇人妻久久中文字幕3abv| 久久久久久大精品| 91老司机精品| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 村上凉子中文字幕在线| 很黄的视频免费| 亚洲 国产 在线| 国产熟女午夜一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲精品久久国产高清桃花| 97人妻天天添夜夜摸| 搡老妇女老女人老熟妇| 精品久久久精品久久久| 精品久久久久久久毛片微露脸| 欧美一级a爱片免费观看看 | 国产aⅴ精品一区二区三区波| 黄色女人牲交| 欧美成人免费av一区二区三区| 午夜福利一区二区在线看| 啦啦啦观看免费观看视频高清 | 精品久久久精品久久久| 天天添夜夜摸| 一个人免费在线观看的高清视频| www国产在线视频色| 亚洲精品在线美女| 国产精品久久视频播放| 国产成+人综合+亚洲专区| 国产精品,欧美在线| 国产激情久久老熟女| 久久欧美精品欧美久久欧美| 日本 欧美在线| 中文字幕高清在线视频| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 亚洲少妇的诱惑av| 欧美日韩一级在线毛片| 一区二区三区高清视频在线| 别揉我奶头~嗯~啊~动态视频| 黄色 视频免费看| 好男人在线观看高清免费视频 | 国产精品国产高清国产av| 日日干狠狠操夜夜爽| 在线十欧美十亚洲十日本专区| 日韩欧美免费精品| av电影中文网址| 欧美日韩亚洲综合一区二区三区_| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 国产精品一区二区在线不卡| 亚洲第一青青草原| 淫妇啪啪啪对白视频| 亚洲精品美女久久av网站| 啦啦啦韩国在线观看视频| 亚洲精品粉嫩美女一区| 丁香六月欧美| 国产黄a三级三级三级人| 脱女人内裤的视频| 久久中文看片网| 正在播放国产对白刺激| 久久婷婷人人爽人人干人人爱 | 欧美av亚洲av综合av国产av| 国产单亲对白刺激| 黑人巨大精品欧美一区二区蜜桃| 久久这里只有精品19| 精品人妻1区二区| 国产麻豆69| 精品人妻1区二区| 亚洲欧美激情综合另类| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9| 啦啦啦免费观看视频1| 欧美一级毛片孕妇| 国产成人系列免费观看| 成人国语在线视频| 波多野结衣av一区二区av| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久亚洲av鲁大| 制服诱惑二区| 妹子高潮喷水视频| 亚洲aⅴ乱码一区二区在线播放 | 日日爽夜夜爽网站| 国产精品二区激情视频| 国产日韩一区二区三区精品不卡| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 性少妇av在线| 日韩精品青青久久久久久| 99久久精品国产亚洲精品| 久久人人精品亚洲av| av天堂久久9| 丝袜美腿诱惑在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看 | 国内久久婷婷六月综合欲色啪| 亚洲中文av在线| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 国产高清激情床上av| 午夜日韩欧美国产| 18禁裸乳无遮挡免费网站照片 | 国产一区在线观看成人免费| 亚洲精品av麻豆狂野| 夜夜爽天天搞| av天堂在线播放| 亚洲情色 制服丝袜| 制服丝袜大香蕉在线| 免费在线观看影片大全网站| 午夜久久久在线观看| 99精品欧美一区二区三区四区| 免费一级毛片在线播放高清视频 | 国产精品野战在线观看| 91成年电影在线观看| 亚洲一区二区三区不卡视频| 亚洲av熟女| 午夜两性在线视频| www国产在线视频色| 19禁男女啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 97超级碰碰碰精品色视频在线观看| 岛国视频午夜一区免费看| 757午夜福利合集在线观看| 人人妻人人澡人人看| 欧美老熟妇乱子伦牲交| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费观看网址| 熟妇人妻久久中文字幕3abv| 一级作爱视频免费观看| 色综合亚洲欧美另类图片| 国产成+人综合+亚洲专区| 亚洲一卡2卡3卡4卡5卡精品中文| 男女做爰动态图高潮gif福利片 | 国产一区二区在线av高清观看| 在线观看66精品国产| 亚洲成国产人片在线观看| 亚洲精品国产精品久久久不卡| 又紧又爽又黄一区二区| 久久精品国产99精品国产亚洲性色 | 欧美色视频一区免费| 两个人免费观看高清视频| 久久精品亚洲精品国产色婷小说| 一级作爱视频免费观看| 精品国产美女av久久久久小说| 日韩国内少妇激情av| 三级毛片av免费| 亚洲男人天堂网一区| 老司机在亚洲福利影院| 欧美日韩一级在线毛片|