• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于數(shù)據(jù)線控制發(fā)光的A-IGZO薄膜晶體管集成AMOLED像素電路

    2018-11-08 03:51:32王蘭蘭于天寶廖聰維黃生祥鄧聯(lián)文
    發(fā)光學(xué)報 2018年11期
    關(guān)鍵詞:數(shù)據(jù)線蘭蘭中南大學(xué)

    王蘭蘭, 魯 力, 于天寶, 廖聰維, 黃生祥, 鄧聯(lián)文

    (中南大學(xué) 物理與電子學(xué)院, 湖南 長沙 410083)

    1 Introduction

    As promising alternative to the conventional thin film transistor liquid crystalline display (TFT-LCD), active matrix organic light-emitting display (AMOLED) owns many merits, such as high contrast ratio, short response time, wide viewing angle[1-5]. However, the mass production of AMOLED panel with large display dimension of high resolution is still difficult up to date, as performances of TFT array are far from satisfactory[6-8]. In recent years, Indium-gallium-zinc-oxide (IGZO) TFTs might be a favorable candidate for the commercialization of AMOLED in TV application[9-13]. This is because, compared with hydrogenated amorphous silicon (a-Si∶H) or polycrystalline silicon (poly-Si) TFTs, IGZO TFTs own the advantages of decent mobility, acceptable reliability and much improved uniformity over large area[14-15]. However, measurements show that there is still threshold voltage (VTH) shift of IGZO TFTs due to the voltage biasing of long operating time[16-17]. In additions, there is still non-uniformity ofVTHand mobility over the overall display panel. Thus, image quality of AMOLED panel might be reversely influenced[18]. Therefore, compensation scheme forVTHshift and non-uniformity ofVTHand mobility are still necessary[19 ].

    The first in-array compensation AMOLED pixel circuit using IGZO TFTs was proposed by Chenetal.[20], where the current-scaling method was used to suppress mismatch current due to the threshold voltage shift and mobility variations. However, the current programming pixel circuits (CPPCs) are prone to have long settling time, especially in the case of OLED TV panel with ultra-high resolutions[21-22]. In later years, Moetal. proposed a voltage programming pixel circuit (VPPC) for the implementation of OLED TV[23], and threshold voltage can be compensated with the voltage bootstrapping method. Although the settling time is much decreased compared with CPPCs, the Mo’s method seems a little complicated as 5 TFTs and 2 capacitors are used, and 7 signals and power sources are required. Furthermore, the pixel current is still prone to shift due to mobility variations. And Kimetal. proposed another VPPC scheme by introducing a feedback structure to compensate mobility variations[24], assuming that the adjacent TFT to the driving transistor shares the same mobility. However, the previous pixel scheme requires much increased controlling signals, which increases the complex of external driving circuits and decreases the aperture ratio of pixels. Leeetal. pointed that the scan lines can be used to provide power source for the simplification of LTPS TFT pixels[25]. However, scan signal can’t be used as power source for the IGZO pixels and there is little investigation work on simplification of IGZO pixel structure up to date.

    In the proposed method, a new VPPC is proposed for IGZO TFT AMOLED panel. Threshold voltage is extracted by the diode discharging method. And for pixel simplification, the data line is also used to control switching transistor (TS) between power supplier (VDD) and driving transistor (TD) for OLED.

    2 Experiments

    The proposed pixel circuit (a) and timing diagram (b) are shown in Fig.1. The illustrated pixel unit consists of three switching TFTs (T1, T2and TS), one driving transistor (TD) and one capacitor (CS). The OLED device is serially connected with the switching transistor TSand the driving transistor TD, which is used to provide gray level related current. Here T1and TSare used for the resetting ofVGduring the initialization phase, whereVGis the gate voltage of TD. The gate electrodes of T1and T2are connected to the sameVSCAN. Thus T1is also playing the discharging role for the programming ofVG. And the data voltage is transferred to the source electrode of TDthrough the switching transistor T2.

    As shown in Fig.1(b), the voltage of scan line isVGHandVGLfor the selecting and the non-selection period, respectively. The voltage ofVDDisVDD_HandVDD_Lfor the emitting and non-emitting phases, respectively. And the voltage of data line isVREFandVHfor the initialization and emission phase, respectively. While for the programming phase,VDATAis with negative value. Fig.1(c) shows the array block diagram.

    Fig.1 The proposed AMOLED driving method with pixel circuit(a), timing diagram(b) and block diagram(c).

    Compared with the previous schematic, the main feature of the circuit is that the data line is connected with the gate electrode of TS. ThusVDATAis used to turn off TSto improve the accuracy of threshold voltage extraction for the programming phase, and also TScan be turned on withVDATAof high level. The operation details of the proposed pixel circuit are illustrated as follows.

    2.1 Initialization Phase

    For this phase,VSCANandVDATAare withVGHandVREFrespectively, andVDDisVDD_L. AsVREFis greater thanVDD_L, all the switching transistors,i.e. T1, T2and TSare turned on. As a result, G nodes of all the pixel circuits of AMOLED panel are pre-charged toVDD_L. On the other hand,VREFis less than the turn-on voltage of OLED. In consequence, OLED can be turned off to suppress the unexpected light emission for the initialization phase.

    2.2 Programming Phase

    In the programming phase, scan pulseVSCANare generated line by line, and data voltage can be transferred to the source electrode of TDthrough T2, thus OLED is also maintained off for contrast ratio improvement. Meanwhile, T1is also turned on and TSis switched off as the value ofVDATAis negative. Consequently, remaining charges of node G will be discharged through TDwhich is in a diode configuration. Thus by the end of programming phase, the gate voltage of TDequals the sum ofVDATAand threshold voltage of TD. TDworks in the saturation region due to the diode connection, and the transient response ofVGdischarging is

    (1)

    WhereμFE,CIare the field-effect mobility and gate capacitance per unit area, respectively.CGis the total capacitance in node G includingCSand capacitance existing adjacent TFTs .Also,WDandLDare the width and length of TDchannel.VDD_Lis the low level ofVDDandVDATAis the voltage of data line in the phase. By the integration of Eq.(1), transient ofVGis obtained:

    VG=VDATA+VTH+

    (2)

    Wheret0andt1is the starting and ending time ofVGdischarging. The second and the third terms of Eq. (2) are combined monotone increasing function ofVTHand decreasing function of mobility. That is to say, for increasedVTHor decreased mobility, the discharging current will be decreased, thus largerVGcan be maintained. Therefore, there is a negative feedback loop for maintaining constant current for OLED pixels.

    2.3 Emission Phase

    (3)

    whereCGPandCGIare the parasitic capacitance and intrinsic gate capacitance of TD, respectively. AsCGPandCGIare much smaller thanCS, Eq.(3) can be simplified as

    (4)

    consequently, the emitting current for OLED can be expressed as

    (5)

    whereVOLEDis the voltage of OLED’s anode in emission phase, and ΔVDDis the difference betweenVDD_HandVDD_L. As shown in Eq.(5), OLED current is a quadratic function ofVDATA, thus a wide programming range can be obtained by adjustingVDATA. And it is also proven thatVTHshift effect can be suppressed, asIOLEDis almost independent ofVTH. In additions, the pixel circuit can also compensate mobility variations as the third term in the bracket is reversely related with mobility.

    Eq.(2) indicates that certain programming time (TP) is required forVTHextraction. IfTPis sufficiently long,VGis approximatelyVDATA+VTH. Thus thekfactor is introduced for evaluating the discharging result ofVG:

    VG=(1-k)(VDATA+VTH),

    (6)

    where 0

    assuming that the mobility is 10 cm2/(V·s) andkis 0.1,TPis approximately 4 μs. Thus for the simultaneous emission driving scheme, the illumination time (TE) within the frame time (Tf) can be expressed asTE=Tf-TP×N, whereNis the number of rows of the panel. As a result, the effective illumination time will still be more than 12 ms, which is sufficient forHDformat.

    3 Results and Discussion

    For evaluation of the proposed pixel circuit, simulations are carried out using SmartSpice. Tab. 1 shows the device parameters. The OLED device is modeled by a diode connected TFT and a capacitance in parallel.VDD_Lis 0 V for theVTHextraction period, andVDD_His 15 V for the light emitting period. The other signal voltages (i.e.VSCANVDATA) are listed in Tab.1.

    Fig.2 shows the transient response ofVGby simulation and calculation of Eq.(2). It is demonstrated that the calculatedVGmatches well with the simulation value. Thus the afore-mentioned derivations are reliable for pixel circuit design,i.e. choosing of TFT size, timing, and voltage. However, there are still voltage deviations in the light emitting period. This might be caused by capacitance variations of node G, which is voltage dependent instead of constantly maintained.

    Tab.1 Parameters of the proposed pixel circuit

    Fig.2 Transient waveform of VG by calculation and simulations with VDATA=-4 V

    Fig.3 demonstrates the transient response ofVGwith ΔVTHof 0, 1, and 2 V, for the programming time of 4 μs (a) and 20 μs (b), respectively. It is observed that,VGincreases linearly with that of ΔVTH. ThusIOLEDis independent ofVTHshift. AndVTHextraction is still of high accurate evenTPis decreased to 4 μs, which agrees with Eq.(8). However, ifTPis further decreased,VTHextraction can’t be completed, and the linearity of ΔVGwith ΔVTHwill be decreased, which introduce decaying ofIOLED.

    Fig.3 Transient waveform of IOLED with VTH shift of TD for programming time of 4 μs(a), and 20 μs(b).

    Fig.4 shows the comparison results ofIOLEDversusVDATAfor the 2T1C pixel circuit, and the conventional 4T1C structure[26],and the proposed one.IOLEDdecreases by more than 70% due toVTHshift of 2 V for the conventional circuit, which implies limited short lifetime. In the case of the conventional 4T1C scheme, decreasing ofIOLEDwithVTHshift can be effectively suppressed. However,IOLEDdiscrepancy is still larger than 15% byVTHshift of 2 V. This might be contributed to the variations of anode voltage of OLED withVTHshift. TheIOLEDdiscrepancy ofVTHshift can be decreased to be less than 5% in the proposed circuit. In additions, the tuning rang ofVDATAforIOLEDis comparable with the simple 2T1C structure, thus power consumption and complexity of external driving circuits are acceptable.

    Fig.4 Evolution of IOLED versus VDATA for VTH shift, with 2T1C pixel(a), and the conventional pixel circuit (b), and the proposed pixel circuit(c).

    Fig.5 Evolution of ΔIOLED error ratio versus VDATA for mobility variations with the 2T1C pixel circuit(a), and the conventional 4T1C pixel circuit(b), and the proposed pixel circuit(c).

    Fig.5 shows comparison of the current error by mobility variations for the 2T1C pixel circuit, and the conventional 4T1C circuit, and the proposed one. It is observed that, in the case of 2T1C circuit,IOLEDis increased by 12% and 7% with the mobility increasing of 30% and 15%, respectively. For the conventional 4T1C scheme and the proposed one, ΔIOLEDcan be suppressed to 9% and 7% with the mobility increasing of 30% and 15%, respectively. The improved mobility compensation efficiency matches well with afore the derivedIOLEDexpression as shown in Eq.(5).

    For the verification of circuit function, the proposed pixel circuit is implemented with discrete n-type MOSFETs[27-28]. And OLED is substituted by a resistor, scanning signals are provided by the FPGA platform using Verilog programming. As the anode voltage of OLED (VAnode) is in proportion toIOLED, thenIOLEDcan be derived by the measuredVAnodeusing oscilloscope.

    Fig.6 shows the transient response of the drain’s and gate’s voltage of TD. For the initialization phase, both the drain and gate electrodes of TDare initialized toVDD-L=2.3 V. And in the following programming phase, drain and gate electrode of TDare discharged to 1.7 V (=VTH+VDATA) through T2, with the data voltage(VDATA) of 0.8 V and with the threshold voltage(VTH) of 1 V. In the light-emitting phase, the voltage increase of the power supply (ΔVDD=0.8 V) is coupled to the gate of TDthroughCS, thus the measured voltage of the gate and drain electrodes of TDis 2.5 V and 3.3 V respectively.

    Fig.7 shows the measuredIOLEDwith the supplied n data voltageVDATA. The measuredIOLEDis approximately a quadratic function ofVDATAin the caseVDATAis less than 1.25 V. However, the measuredIOLEDstarts to saturate withVDATAexceeding 1.25 V. And this is attributed to the driving limitation of FPGA board. To sum up, the programming ability of the proposed pixel circuit is well proved.

    Fig.6 Transient response of TD with the drain voltage(a), and the gate voltage(b).

    Fig.7 Relationship between VDATA and IOLED of 4T1C pixel circuit

    4 Conclusion

    In this paper, a new IGZO TFT pixel circuit with simplified structure for AMOLED panel with

    high resolutionis was proposed. It features using the data line to switch the controlling transistor betweenVDDand the driving transistor. Thus only scanning signals, data signal andVDDsupply line are used for a single pixel circuit, and the scanning driver can be as simple as the conventional 2T1C display.

    Performance comparisons are carried out between the proposed circuit, the 2T1C pixel, and the conventional 4T1C scheme. Compensating efficiency of the proposed circuit is improved concerning threshold voltage shift and mobility variations.IOLEDdiscrepancy is decreased to be less than 5% and 9%, withVTHshift of 2 V and mobility increasing of 30%, respectively. And it also features much decreased transient current during programming phase.

    Measurements using discrete FETs are carried out to verify the driving ability of the proposed 4T1C pixel circuit. The measuredIOLEDversusVDATAmatches well with the analysis. The disclosed results verify the proposed scheme is suitable for realizing AMOLED panel with high resolution.

    猜你喜歡
    數(shù)據(jù)線蘭蘭中南大學(xué)
    數(shù)據(jù)線長短影響充電速度
    中南大學(xué)建筑與藝術(shù)學(xué)院作品選登
    中南大學(xué)教授、博士生導(dǎo)師
    安全(2021年4期)2021-05-19 07:56:52
    中南大學(xué)校慶文創(chuàng)產(chǎn)品設(shè)計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    數(shù)據(jù)線接口超聲波焊接設(shè)備設(shè)計
    焊接(2016年7期)2016-02-27 13:05:07
    艾米莉·狄金森的自然:生態(tài)批評的解讀
    會叫喚的數(shù)據(jù)線
    找春天
    在新加坡的蘭蘭姐姐(下)
    在新加坡的蘭蘭姐姐(中)
    亚洲国产最新在线播放| 精品久久久精品久久久| a级毛片在线看网站| 纵有疾风起免费观看全集完整版| 免费女性裸体啪啪无遮挡网站| 黑丝袜美女国产一区| 国产成人精品福利久久| 国产一区二区激情短视频 | av免费在线看不卡| 成人亚洲精品一区在线观看| 国产伦理片在线播放av一区| 久久国产精品男人的天堂亚洲 | 亚洲一码二码三码区别大吗| 国产av一区二区精品久久| 水蜜桃什么品种好| 大片免费播放器 马上看| 桃花免费在线播放| 永久免费av网站大全| 免费看不卡的av| 自线自在国产av| 欧美亚洲日本最大视频资源| 国语对白做爰xxxⅹ性视频网站| 99久久中文字幕三级久久日本| 大话2 男鬼变身卡| 亚洲精品一二三| 亚洲精品国产av蜜桃| videossex国产| 精品卡一卡二卡四卡免费| 欧美国产精品一级二级三级| 777米奇影视久久| 伊人亚洲综合成人网| 18+在线观看网站| 成人二区视频| 亚洲精品av麻豆狂野| 美女脱内裤让男人舔精品视频| 欧美成人午夜精品| 一本—道久久a久久精品蜜桃钙片| 成年美女黄网站色视频大全免费| 一个人免费看片子| a级毛片黄视频| 国产高清国产精品国产三级| 91aial.com中文字幕在线观看| 岛国毛片在线播放| 男女午夜视频在线观看 | 99国产精品免费福利视频| 高清毛片免费看| 国产亚洲精品久久久com| 国产国拍精品亚洲av在线观看| 伊人亚洲综合成人网| 中国美白少妇内射xxxbb| 女人被躁到高潮嗷嗷叫费观| 9热在线视频观看99| 视频中文字幕在线观看| 在线观看三级黄色| 七月丁香在线播放| 亚洲精品色激情综合| 美女大奶头黄色视频| 男女无遮挡免费网站观看| 欧美日韩av久久| 亚洲欧美日韩卡通动漫| 99久久综合免费| 黑人猛操日本美女一级片| 精品国产一区二区久久| 视频在线观看一区二区三区| 色网站视频免费| 国产精品不卡视频一区二区| 80岁老熟妇乱子伦牲交| 欧美精品高潮呻吟av久久| 高清毛片免费看| 秋霞在线观看毛片| 大片免费播放器 马上看| 在线观看国产h片| 免费不卡的大黄色大毛片视频在线观看| 制服诱惑二区| 视频在线观看一区二区三区| 插逼视频在线观看| 国产精品人妻久久久久久| 一个人免费看片子| 亚洲国产成人一精品久久久| 水蜜桃什么品种好| 热99国产精品久久久久久7| 亚洲av福利一区| 国产精品偷伦视频观看了| 边亲边吃奶的免费视频| 男女免费视频国产| 岛国毛片在线播放| 日韩在线高清观看一区二区三区| 高清毛片免费看| 亚洲av综合色区一区| 久久久久精品性色| 五月天丁香电影| 高清不卡的av网站| 色吧在线观看| 少妇被粗大猛烈的视频| 国产精品 国内视频| 亚洲人成77777在线视频| 亚洲久久久国产精品| 看免费成人av毛片| 宅男免费午夜| 亚洲精品一二三| 日韩成人伦理影院| 亚洲,欧美,日韩| 国产精品人妻久久久久久| 欧美日韩一区二区视频在线观看视频在线| 这个男人来自地球电影免费观看 | 亚洲色图 男人天堂 中文字幕 | 一区二区日韩欧美中文字幕 | 国产在视频线精品| 国产精品国产av在线观看| 亚洲精品自拍成人| 在线观看美女被高潮喷水网站| 亚洲国产欧美日韩在线播放| 免费观看在线日韩| 久久综合国产亚洲精品| 久久99热6这里只有精品| 国产在线视频一区二区| 777米奇影视久久| 亚洲人与动物交配视频| 国产在线免费精品| 国产国拍精品亚洲av在线观看| 国产 精品1| 国产精品不卡视频一区二区| 久久这里只有精品19| av电影中文网址| 成年女人在线观看亚洲视频| 99香蕉大伊视频| 嫩草影院入口| 久久毛片免费看一区二区三区| av在线观看视频网站免费| 天美传媒精品一区二区| tube8黄色片| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 欧美丝袜亚洲另类| 熟女电影av网| 中文字幕最新亚洲高清| 精品亚洲成a人片在线观看| 人成视频在线观看免费观看| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx在线观看| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 国产男女超爽视频在线观看| 亚洲精品国产色婷婷电影| 如何舔出高潮| 满18在线观看网站| 一区二区三区四区激情视频| 亚洲丝袜综合中文字幕| 又大又黄又爽视频免费| 国产黄色视频一区二区在线观看| 精品酒店卫生间| 18禁裸乳无遮挡动漫免费视频| 熟女人妻精品中文字幕| 国产免费现黄频在线看| 男女国产视频网站| 三上悠亚av全集在线观看| 国产av精品麻豆| 又粗又硬又长又爽又黄的视频| 三级国产精品片| av有码第一页| 久久ye,这里只有精品| 久热久热在线精品观看| 男女下面插进去视频免费观看 | 90打野战视频偷拍视频| 亚洲精品国产色婷婷电影| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 国产精品女同一区二区软件| 国产亚洲av片在线观看秒播厂| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| 精品熟女少妇av免费看| av在线播放精品| 日本91视频免费播放| 美女大奶头黄色视频| av国产精品久久久久影院| 国产精品麻豆人妻色哟哟久久| 国产精品 国内视频| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 日本与韩国留学比较| 精品少妇内射三级| 国产成人午夜福利电影在线观看| 日韩大片免费观看网站| 五月天丁香电影| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 亚洲少妇的诱惑av| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 成年av动漫网址| 人成视频在线观看免费观看| 国精品久久久久久国模美| 国产色爽女视频免费观看| 久久99精品国语久久久| 国产精品久久久久成人av| 国产精品不卡视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 91在线精品国自产拍蜜月| 在线观看一区二区三区激情| 国产国语露脸激情在线看| 午夜激情av网站| 国产成人精品福利久久| 国产日韩一区二区三区精品不卡| 国产成人精品一,二区| 日本av免费视频播放| 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码 | 少妇高潮的动态图| www.熟女人妻精品国产 | 国产男女内射视频| 在线亚洲精品国产二区图片欧美| 欧美亚洲 丝袜 人妻 在线| 久久精品国产综合久久久 | av卡一久久| h视频一区二区三区| 少妇被粗大猛烈的视频| 亚洲综合精品二区| 新久久久久国产一级毛片| 久久国产精品大桥未久av| 亚洲精品久久久久久婷婷小说| 2018国产大陆天天弄谢| 水蜜桃什么品种好| 免费人成在线观看视频色| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| av有码第一页| 午夜免费鲁丝| 18禁国产床啪视频网站| 一级片'在线观看视频| 国产爽快片一区二区三区| 久久免费观看电影| av不卡在线播放| 黄色配什么色好看| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 26uuu在线亚洲综合色| 久久久久国产精品人妻一区二区| 久久人妻熟女aⅴ| 精品少妇久久久久久888优播| 国产淫语在线视频| 日本wwww免费看| 一级黄片播放器| 香蕉丝袜av| 精品少妇久久久久久888优播| 青春草视频在线免费观看| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 2022亚洲国产成人精品| 亚洲欧美一区二区三区国产| 午夜福利在线观看免费完整高清在| 亚洲精品久久午夜乱码| 亚洲精品久久成人aⅴ小说| 视频区图区小说| 国产精品一二三区在线看| 最近最新中文字幕大全免费视频 | 欧美日韩综合久久久久久| 青青草视频在线视频观看| 久久久久久久亚洲中文字幕| 亚洲av男天堂| 国产精品蜜桃在线观看| 如日韩欧美国产精品一区二区三区| 中文字幕精品免费在线观看视频 | 美女内射精品一级片tv| 久久久久国产网址| av天堂久久9| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久小说| 久久久久国产精品人妻一区二区| av.在线天堂| 国产av国产精品国产| 两个人免费观看高清视频| 日本vs欧美在线观看视频| 婷婷成人精品国产| 国产精品国产三级专区第一集| 春色校园在线视频观看| 老司机影院毛片| 免费观看性生交大片5| 热99久久久久精品小说推荐| 色哟哟·www| 欧美精品高潮呻吟av久久| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| 久久鲁丝午夜福利片| 欧美少妇被猛烈插入视频| 精品亚洲成国产av| 又大又黄又爽视频免费| 国产精品久久久久久精品古装| 亚洲精品乱码久久久久久按摩| 2021少妇久久久久久久久久久| 国产成人精品在线电影| 91在线精品国自产拍蜜月| 宅男免费午夜| 免费久久久久久久精品成人欧美视频 | 建设人人有责人人尽责人人享有的| 男女下面插进去视频免费观看 | 亚洲精品乱码久久久久久按摩| 亚洲四区av| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 欧美精品av麻豆av| 成人午夜精彩视频在线观看| 免费av中文字幕在线| 国产精品麻豆人妻色哟哟久久| 精品一区二区三区四区五区乱码 | 男的添女的下面高潮视频| 性色avwww在线观看| 性高湖久久久久久久久免费观看| 色视频在线一区二区三区| 宅男免费午夜| 精品第一国产精品| 午夜福利,免费看| 国产亚洲最大av| 成年女人在线观看亚洲视频| 国产激情久久老熟女| 十八禁高潮呻吟视频| 日本色播在线视频| 免费看av在线观看网站| 国产一区二区三区av在线| 久久久久国产精品人妻一区二区| 亚洲一区二区三区欧美精品| 在线免费观看不下载黄p国产| 肉色欧美久久久久久久蜜桃| 2021少妇久久久久久久久久久| 欧美日韩综合久久久久久| av卡一久久| 亚洲在久久综合| 久久热在线av| 国产毛片在线视频| 天堂8中文在线网| 中国美白少妇内射xxxbb| av一本久久久久| 秋霞伦理黄片| 色哟哟·www| 国产淫语在线视频| 夫妻午夜视频| 国产不卡av网站在线观看| 黑人猛操日本美女一级片| 国产淫语在线视频| 97在线视频观看| 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 国产乱人偷精品视频| 草草在线视频免费看| 中文字幕亚洲精品专区| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 视频区图区小说| 成年av动漫网址| 国产国语露脸激情在线看| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲三级黄色毛片| 色哟哟·www| 久久这里有精品视频免费| 色哟哟·www| 人妻 亚洲 视频| 九色成人免费人妻av| 成人综合一区亚洲| 国产激情久久老熟女| 亚洲丝袜综合中文字幕| 国产男女内射视频| 国产不卡av网站在线观看| 久久ye,这里只有精品| 18+在线观看网站| 欧美精品av麻豆av| 欧美激情国产日韩精品一区| 久久青草综合色| 免费看光身美女| 亚洲色图综合在线观看| 国产成人精品在线电影| 我要看黄色一级片免费的| 在线天堂最新版资源| 大香蕉97超碰在线| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 国产黄色免费在线视频| 欧美成人午夜精品| 亚洲色图 男人天堂 中文字幕 | 视频在线观看一区二区三区| 欧美3d第一页| 又大又黄又爽视频免费| 在线观看人妻少妇| 久久久国产一区二区| 男人添女人高潮全过程视频| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 免费av不卡在线播放| 亚洲国产精品专区欧美| 一级黄片播放器| 久久99精品国语久久久| 中文字幕亚洲精品专区| 亚洲国产av影院在线观看| 国产日韩欧美亚洲二区| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 多毛熟女@视频| 亚洲精品一二三| 视频中文字幕在线观看| 久久精品人人爽人人爽视色| 亚洲精品国产av成人精品| 制服丝袜香蕉在线| 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 久久久久久人妻| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 欧美另类一区| 亚洲性久久影院| 人人澡人人妻人| 久久鲁丝午夜福利片| 亚洲高清免费不卡视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品日本国产第一区| 男女啪啪激烈高潮av片| 国产日韩欧美视频二区| 一区在线观看完整版| 内地一区二区视频在线| 黑人高潮一二区| 精品一品国产午夜福利视频| 两个人看的免费小视频| 日韩熟女老妇一区二区性免费视频| 成人无遮挡网站| 成年美女黄网站色视频大全免费| 久久精品夜色国产| 观看av在线不卡| 欧美成人午夜免费资源| 在线观看三级黄色| 久久婷婷青草| 视频中文字幕在线观看| 夫妻性生交免费视频一级片| 欧美国产精品va在线观看不卡| 久久免费观看电影| 国产精品久久久久久久久免| 桃花免费在线播放| 久久婷婷青草| 校园人妻丝袜中文字幕| 免费高清在线观看日韩| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| 18禁动态无遮挡网站| 亚洲综合色惰| 日韩精品免费视频一区二区三区 | 在线精品无人区一区二区三| 五月玫瑰六月丁香| 免费看不卡的av| 精品少妇久久久久久888优播| 国产毛片在线视频| 王馨瑶露胸无遮挡在线观看| 国产女主播在线喷水免费视频网站| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 久久久久久久亚洲中文字幕| 搡老乐熟女国产| 精品酒店卫生间| 国产亚洲精品久久久com| 伊人亚洲综合成人网| a级毛色黄片| 日韩伦理黄色片| tube8黄色片| 欧美少妇被猛烈插入视频| 亚洲在久久综合| 咕卡用的链子| 22中文网久久字幕| 蜜桃国产av成人99| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区视频免费看| 两个人看的免费小视频| 成人亚洲欧美一区二区av| 亚洲欧美中文字幕日韩二区| 香蕉国产在线看| av黄色大香蕉| 夫妻午夜视频| av有码第一页| 国产精品久久久久久精品电影小说| 最新的欧美精品一区二区| 18禁动态无遮挡网站| 久久久久视频综合| 尾随美女入室| 国语对白做爰xxxⅹ性视频网站| 一级片免费观看大全| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩视频在线欧美| 黄片播放在线免费| 插逼视频在线观看| 97精品久久久久久久久久精品| 亚洲天堂av无毛| videos熟女内射| 亚洲欧洲精品一区二区精品久久久 | 国产成人av激情在线播放| 国产男女超爽视频在线观看| 一二三四在线观看免费中文在 | 在线免费观看不下载黄p国产| 免费在线观看黄色视频的| 日韩视频在线欧美| 久久久久久久精品精品| 你懂的网址亚洲精品在线观看| 99热全是精品| 国产精品秋霞免费鲁丝片| 精品视频人人做人人爽| 91在线精品国自产拍蜜月| 亚洲欧美精品自产自拍| 免费看av在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲精华国产精华液的使用体验| videossex国产| 亚洲久久久国产精品| 激情视频va一区二区三区| 制服诱惑二区| 夜夜骑夜夜射夜夜干| 99热这里只有是精品在线观看| av在线观看视频网站免费| 中文字幕制服av| 色吧在线观看| h视频一区二区三区| 丰满迷人的少妇在线观看| 久久久久精品人妻al黑| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 日本猛色少妇xxxxx猛交久久| 亚洲精华国产精华液的使用体验| 欧美日韩视频高清一区二区三区二| 高清视频免费观看一区二区| 久久青草综合色| 色94色欧美一区二区| 午夜91福利影院| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 亚洲精品视频女| 欧美亚洲日本最大视频资源| 国产一区二区在线观看av| 日韩电影二区| 精品第一国产精品| 成人亚洲精品一区在线观看| 校园人妻丝袜中文字幕| 18禁国产床啪视频网站| 国精品久久久久久国模美| 国产精品久久久久久久电影| 国产精品99久久99久久久不卡 | 少妇人妻精品综合一区二区| 亚洲美女黄色视频免费看| 日韩一区二区三区影片| 一区二区三区精品91| 内地一区二区视频在线| 黑人高潮一二区| 宅男免费午夜| 亚洲成人手机| 国产女主播在线喷水免费视频网站| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 18禁观看日本| 一本色道久久久久久精品综合| 久久这里有精品视频免费| 国产精品女同一区二区软件| 性高湖久久久久久久久免费观看| 99久久精品国产国产毛片| 满18在线观看网站| 日韩一区二区三区影片| 欧美bdsm另类| 免费黄频网站在线观看国产| 97在线视频观看| www.av在线官网国产| 精品国产国语对白av| 五月开心婷婷网| 一级毛片我不卡| 国产福利在线免费观看视频| 国产 精品1| 国产精品无大码| 成人二区视频| av片东京热男人的天堂| 青春草视频在线免费观看| 国产日韩一区二区三区精品不卡| 久久鲁丝午夜福利片| 午夜91福利影院| 中文天堂在线官网| 激情视频va一区二区三区| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 欧美另类一区| 久久鲁丝午夜福利片| 婷婷色综合www| 最近最新中文字幕大全免费视频 | 亚洲第一av免费看| 欧美精品av麻豆av| 国产在线免费精品| av不卡在线播放| av在线观看视频网站免费| 自线自在国产av| 黑人高潮一二区| 久久亚洲国产成人精品v| 男男h啪啪无遮挡| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 中文字幕人妻丝袜制服| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说|