• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池高安全性阻燃電解液研究進展

    2018-11-08 11:40:48許高潔姜苗苗黃蘇琪上官雪慧崔光磊
    儲能科學(xué)與技術(shù) 2018年6期
    關(guān)鍵詞:磷酸酯乙基碳酸

    許高潔,王 曉,陸 迪,2,姜苗苗,黃蘇琪,3,上官雪慧,4,崔光磊

    ?

    鋰離子電池高安全性阻燃電解液研究進展

    許高潔1,王 曉1,陸 迪1,2,姜苗苗1,黃蘇琪1,3,上官雪慧1,4,崔光磊1

    (1中國科學(xué)院青島生物能源與過程研究所,青島儲能產(chǎn)業(yè)技術(shù)研究院,山東 青島 266101;2中國海洋大學(xué)化學(xué)化工學(xué)院,山東 青島 266100;3青島大學(xué)化學(xué)化工學(xué)院,山東 青島 266071;4中國科學(xué)院青海鹽湖研究所,青海 西寧 810008)

    商品鋰離子電池在機械沖擊、熱沖擊和過充短路等濫用條件下易發(fā)生起火燃燒甚至爆炸。為了解決這一安全性問題,需要開發(fā)高安全性阻燃電解液取代傳統(tǒng)易燃燒的碳酸酯電解液。本文綜述了高安全性阻燃電解液的研究進展,首先介紹了燃燒機理、阻燃機理和阻燃測試方法,再闡述鋰離子電池對阻燃電解液的性質(zhì)要求,并對阻燃電解液進行分類探討,包括阻燃添加劑、阻燃溶劑(共溶劑)、高濃度阻燃電解液、離子液體和阻燃型凝膠聚合物電解質(zhì)。重點對這些高安全性阻燃電解液的配方、阻燃效果、適用的電池體系進行詳細(xì)闡述。最后對高安全性阻燃電解液未來的研究方向進行展望。

    鋰離子電池;安全性;阻燃電解液

    商品鋰離子電池具有能量和功率密度高、無記憶效應(yīng)、循環(huán)壽命長和環(huán)境友好等優(yōu)點,其應(yīng)用正迅速從消費電子品領(lǐng)域拓展到電動汽車和新能源儲能領(lǐng)域[1]。然而,近年來,隨著鋰離子電池的大規(guī)模推廣應(yīng)用,在世界范圍內(nèi),每年都會發(fā)生大量與鋰離子電池濫用熱失控相關(guān)的安全事故,學(xué)術(shù)界和產(chǎn)業(yè)界也在不斷重視和加強對鋰離子電池安全性的探究和提高(圖1)[2-3]。造成熱失控(冒煙、起火燃燒、爆炸)的濫用條件主要有機械濫用(如擠壓、針刺)、電濫用(如過充、內(nèi)部短路)和熱濫用(如過熱沖擊)等。從鋰離子電池?zé)崾Э剡^程的鏈?zhǔn)椒磻?yīng)定性描述圖中(圖2)可以看出,電解液在鋰離子電池?zé)崾Э剡^程中扮演的角色非常關(guān)鍵[2]。商品鋰離子電池中通常采用碳酸酯基電解液,由鋰鹽(如六氟磷酸鋰LiPF6)與閃點低、高度可燃、電化學(xué)穩(wěn)定性差的碳酸酯溶劑(如碳酸乙烯酯EC、碳酸丙烯酯PC、碳酸二甲酯DMC、碳酸二乙酯DEC、碳酸甲乙酯EMC)組成[4-5]。目前,從材料角度看,防止鋰離子電池?zé)崾Э仄鸹鹑紵ǖ陌踩愿倪M策略眾多,如采用阻燃電解液[4-9]、阻燃型耐熱收縮隔膜[1,7,10-15]、固態(tài)電解質(zhì)[16]、結(jié)構(gòu)穩(wěn)定性高的電極材料(如磷酸鐵鋰LFP)[7]等。這其中,發(fā)展高安全性阻燃電解液是最經(jīng)濟簡單的策略,能夠有效降低鋰離子電池?zé)崾Э厝紵L(fēng)險(概率),并極大降低熱失控帶來的人員財產(chǎn)傷害。本文將結(jié)合文獻資料首先介紹燃燒機理、阻燃機理和阻燃測試方法;再闡述鋰離子電池對阻燃電解液的性質(zhì)要求;對阻燃電解液進行分類探討論述,包括基于阻燃添加劑的阻燃電解液、基于阻燃溶劑(共溶劑)的阻燃電解液、基于高濃度鋰鹽的阻燃電解液、基于離子液體的阻燃電解液和阻燃型凝膠聚合物電解質(zhì);最后,對高安全性阻燃電解液未來的研究方向進行展望。

    圖1 鋰離子電池失效引發(fā)的安全事故及相關(guān)聯(lián)的濫用條件[2]

    圖2 鋰離子電池?zé)崾Э剡^程中鏈?zhǔn)椒磻?yīng)的定性描述[2]

    1 燃燒機理、阻燃機理和阻燃測試方法

    1.1 燃燒機理

    燃燒過程是一個復(fù)雜的化學(xué)反應(yīng)過程(圖3),需同時具備3個重要條件,即熱(heat)、氧化劑(oxidizer)和燃料(fuel),燃料是燃燒的物質(zhì),氧化劑是產(chǎn)生氧氣讓燃料可以燃燒的物質(zhì),而熱是驅(qū)動燃燒過程的能量[17-18]。維持燃燒通常依賴自由基的產(chǎn)生,基態(tài)O2吸收熱量產(chǎn)生反應(yīng)活性非常高的單線態(tài)氧(singlet oxygen, O2*),如式(1)所示;與此同時,有機質(zhì)(燃料)吸收熱量產(chǎn)生氫自由基(H?),如式(2)所示;O2*與H?結(jié)合產(chǎn)生氫過氧化物自由基(HOO*?),如式(3)所示;HOO*?分解產(chǎn)生氫氧自 由基(HO?),如式(4)所示[17]。這些自由基壽命 極短但反應(yīng)活性非常強,會產(chǎn)生大量的熱/火焰??傊?,這種自由基機制意味著氫自由基(H?)、單線態(tài)氧(O2*)和氫氧自由基(HO?)在維持燃燒過程中扮演著極為重要的角色。

    圖3 燃燒反應(yīng)圖及公認(rèn)的燃燒維持機制[17]

    1.2 阻燃機理

    1.3 阻燃測試方法

    在鋰離子電池電解液領(lǐng)域,最常用的測試指標(biāo)是自熄滅時間(self-extinguishing time,SET),即一個點燃的電解液混合物樣品持續(xù)燃燒的時間。另一個重要指標(biāo)是極限氧指數(shù)(limited oxygen index,LOI),即讓電解液燃燒保持至少60 s的O2/N2混合物中O2的占比。SET值越小,LOI值越高,電解液(凝膠聚合物電解質(zhì))越不容易燃燒。SET和LOI主要通過ASTM、UL和IEC的一些標(biāo)準(zhǔn)測試方法(如ASTM D-5306, ASTM D2863, UL-94VO, IEC 62133)來確定[17,20]。XU等[21]建議根據(jù)SET值將電解液歸為3類:如果SET小于6 s/g,定義為不燃(non-flammable);如果SET在6~20 s/g之間,定義為阻燃(flame-retarded);如果SET大于20 s/g,定義為可燃(flammable)。

    差示掃描量熱法(differential scanning calorimetry,DSC)和絕熱加速量熱法(accelerating rate calorimeter,ARC)被用來評估阻燃電解液的熱穩(wěn)定性,即測定其放熱量和失控溫度[17,22]。目前ARC設(shè)備的生產(chǎn)商主要有HEL、THT和NETZSCH。閃點(flash point,F(xiàn)P)的測試對發(fā)展阻燃電解液也至關(guān)重要,閃點的概念為:樣品被點燃的最低溫度[1.103 bar(1 bar=105Pa)條件下][17,20]。HESS等[20]對閃點的測試方法進行了詳細(xì)論述。

    2 阻燃電解液性質(zhì)要求

    如果采用阻燃電解液能夠保證鋰離子電池的安全性能,犧牲一部分電化學(xué)性能是可以接受的。而通常情況下,阻燃電解液的使用也總會伴隨著鋰離子電池電化學(xué)性能的下降,尤其是循環(huán)壽命和倍率性能。HAREGEWOIN等[6]和NAGASUBRAMANIAN等[17]總結(jié)了對阻燃電解液(阻燃成分)的性質(zhì)要求:①與正負(fù)極材料兼容性好,特別是碳基負(fù)極材料;對電池電化學(xué)性能毒副作用?。虎趯旱匿囯x子電導(dǎo)率影響不大、不影響基液的閃點、易與基液混合;③能夠產(chǎn)生消除燃燒自由基的自由基,低自放熱速率(ARC測試);④低溶劑化能力,不燃性或可燃性低,低火焰?zhèn)鞑ニ俾?;⑤無毒或低毒,燃燒產(chǎn)物無毒或低毒、黏度低、不易揮發(fā)、環(huán)境友好;⑥高電壓穩(wěn)定性;⑦能夠浸潤隔膜和電極材料;⑧放熱起始溫度高且總放熱量低(采用DSC和ARC 測試)。

    3 基于阻燃添加劑的阻燃電解液

    3.1 含磷元素阻燃添加劑

    鋰離子電池阻燃電解液研究最早和最多的一類阻燃劑是含磷元素的有機阻燃添加劑,主要分為(鹵代)磷酸酯類阻燃添加劑、(鹵代)亞磷酸酯類阻燃添加劑、(鹵代)膦酸酯類阻燃添加劑、磷腈類阻燃添加劑等。

    3.1.1 磷酸酯類阻燃添加劑

    研究最早的短碳鏈烷基磷酸酯類阻燃添加 劑[19,21,23-25],如磷酸三甲酯[trimethyl phosphate,TMP,圖4(c)]、磷酸三乙酯[triethyl phosphate,TEP,圖4(i)]、磷酸三丁酯[tributylphosphate,TBP,圖4(b)]等,捕捉燃燒自由基能力強,阻燃效果良好。但是這些烷基磷酸酯通常黏度較大且與電極材料(尤其碳基負(fù)極)兼容性差,加入基液后在提高電解液阻燃性的同時會降低電解液的離子電導(dǎo)率并極大縮短電池循環(huán)壽命。提高烷基磷酸酯電化學(xué)穩(wěn)定性的途徑有:①芳香基團(苯基)取代烷基基團,如磷酸三苯酯[triphenylphosphate,TPP,圖4(a)][23,25-30]、4-異丙基苯基二苯基磷酸酯[4-isopropyl phenyl diphenyl phosphate,IPPP,圖4(d)][31]、三(4-甲氧基苯基)磷酸酯[tri-(4-methoxythphenyl) phosphate,TMPP,圖4(e)][32]、磷酸甲苯二苯酯[cresyl diphenyl phosphate,CDP,圖4(f)][33-34]、二苯基磷酸辛酯[diphenyl octyl phosphate,DPOF,圖4(g)][35-38];②增加烷基基團的碳含量,如磷酸三辛酯[trioctyl Phosphate,TOP,圖4(h)][34];③采用環(huán)狀磷酸酯,如乙烯乙基磷酸酯[ethylene ethyl phosphate,EEP,圖4(j)][39];最近,TSUBOUCHI等[40]通過雙三氟甲烷磺酰亞胺鉀(KTFSA)添加劑修飾負(fù)極SEI膜來提高TMP基(50%,體積百分?jǐn)?shù))阻燃電解液與石墨負(fù)極的兼容性、庫侖效率提升明顯。LIU等[30]設(shè)計了一種非常新穎的熱“智能”阻燃的無紡布靜電紡絲隔膜,靜電紡絲纖維由TPP內(nèi)核和偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)外殼組成,鋰離子電池正常運行時,TPP不會對電池的循環(huán)性能造成影響,但當(dāng)電池過熱時,PVDF-HFP外殼熔斷破碎,釋放出TPP阻燃劑,捕捉燃燒自由基,從而阻止鋰離子電池?zé)崾Э厝紵ā?/p>

    圖4 磷酸酯類阻燃添加劑結(jié)構(gòu)式

    圖5 熱“智能”阻燃無紡布靜電紡絲隔膜示意圖[30]

    鹵代磷酸酯含有鹵素和P兩種阻燃元素,阻燃效果更佳。廉價的磷酸三(β-氯乙基)酯[tri(β-chloromethyl) phosphate,TCEP,圖4(k)]含有氯和磷兩種阻燃元素,其分解產(chǎn)物氯乙烷不但具有阻燃性,而且具有強烈的制冷作用[41-44]。為了最大限度地減少TCEP對電池電化學(xué)性能的影響,BAGINSKA等[44]通過原位聚合的手段將TCEP包裹在核-殼結(jié)構(gòu)的聚脲醛樹脂微膠囊里。最近,ASPERN 等[45]開發(fā)了兩種氟代磷酸酯阻燃添加劑,磷酸三(2,2,3,3,3-五氟丙基)酯[tris(2,2,3,3,3-pentafluoropropyl) phosphate,5F-TPrP,圖4(l)]和磷酸三(1,1,1,3,3,3-六氟-2-丙基)酯[tris(1,1,1,3,3,3- hexafluoropropan- 2-yl) phosphate,HFiP,圖4(m)]。少量(1%,質(zhì)量百分?jǐn)?shù))使用5F-TPrP和HFiP能夠通過修飾正極電解質(zhì)界面膜(CEI)提高高電壓三元正極(NCM111)的循環(huán)穩(wěn)定性,5F-TPrP使用量達到20%(質(zhì)量百分?jǐn)?shù))才能保證電解液不燃燒(約13%具有阻燃性)。

    3.1.2 亞磷酸酯類阻燃添加劑

    亞磷酸酯也是一類非常重要的阻燃添加 劑[24,27,45-50],如亞磷酸三甲酯[trimethyl phosphite,TMP(i),圖6(a)][24]、亞磷酸三苯酯[triphenylphosphite,TPP(i),圖6(b)][27,47]、亞磷酸三乙酯[triethyl phosphite,TEP(i),圖6(c)][46]、磷酸三丁酯[tributylphosphite,TBP(i),圖6(d)][46]、三(2,2,2-三氟乙基)亞磷酸鹽[tris(2,2,2-trifluoroethyl) phosphite,TTFP(i),圖6(e)][48-50]、亞磷酸三(1,1,1,3,3,3-六氟-2-丙基)酯[tris(1,1,1,3,3,3-hexafluoropropan-2-yl) phosphite,THFPP(i),圖6(f)]等。亞磷酸酯類化合物相對于磷酸酯類化合物更穩(wěn)定,這是因為P—O單鍵反應(yīng)活性低于P==O雙鍵[46]。另外,亞磷酸酯類化合物更有利于形成穩(wěn)定性高的SEI膜,能夠通過使五氟化磷(PF5)失活而穩(wěn)定鋰鹽六氟磷酸鋰(LiPF6),也能消除電解液中游離的氫氟酸(HF)[51]。WANG等[49]將氟代亞磷酸酯TTFP(i)基的碳酸酯電解液應(yīng)用于高能量密度的鋰硫電池中,當(dāng)TTFP(i)的濃度大于10%時,碳酸酯電解液阻燃甚至不燃。最重要的是,鋰硫電池的電化學(xué)性能得到了極大的提升,10 C倍率下循環(huán)750圈容量幾乎沒有損失,而且容量高達800 mA·h/g。PIRES等[50]將TTFP(i)用作正極成膜添加劑提高富鋰正極材料的循環(huán)穩(wěn)定性,并且可以明顯改善電解液的熱穩(wěn)定性。

    圖6 亞磷酸酯類阻燃添加劑結(jié)構(gòu)式

    3.1.3 膦酸酯類阻燃添加劑

    據(jù)報道,由于磷元素含量高,烷基膦酸酯類阻燃劑的阻燃能力高于烷基磷酸酯和烷基亞磷酸 酯[52],常見的烷基膦酸酯阻燃劑有甲基膦酸二甲酯[dimethyl methylphosphonate,DMMP,圖7(a)][52-55]、乙基膦酸二乙酯[diethyl ethylphosphonate,DEEP,圖7(b)][52-55]。為了提高烷基膦酸酯與碳基負(fù)極的兼容性,苯基取代、鹵素取代、噻吩甲基取代的膦酸酯類阻燃劑也被陸續(xù)開發(fā)出來,如苯基膦酸二乙酯[diethyl phenylphosphonate,DPP,圖7(c)][27]、雙(2,2,2-三氟乙基)甲基膦酸酯[bis(2,2,2-trifluoroethyl) methylphosphonate,TFMP,圖7(d)][25,27,56]、雙(2,2,2-三氟乙基)乙基膦酸酯[bis(2,2,2-trifluoroethyl) ethylphosphonate,TFEP,圖7(e)][57]、2-(噻吩甲基)膦酸二乙酯[diethyl(thiophen-2-ylmethyl)phosphonate,DTYP,圖7(f)][58]。最近,ZHU等[58]通過理論計算設(shè)計開發(fā)的DTYP是一種多功能阻燃添加劑(圖8),噻吩會通過自由基聚合在正極預(yù)先形成一層離子傳導(dǎo)性優(yōu)異的CEI膜,膦酸酯中的氧通過路易酸堿配位作用可以中和消除電解液中的PF5,膦酸酯可以有效終止燃燒過程中的自由基連鎖反應(yīng)。DTYP被成功應(yīng)用于5 V高電壓鎳錳酸鋰(LiNi0.5Mn1.5O4)電池中,能夠明顯提升電池循環(huán)性能。

    圖7 膦酸酯類阻燃添加劑結(jié)構(gòu)式

    圖8 DTYP分子結(jié)構(gòu)式及其相關(guān)功能[58]

    3.1.4 磷腈類阻燃添加劑

    磷腈類化合物,是復(fù)合型阻燃添加劑,主要包括小分子環(huán)狀磷氮化合物和高分子線性磷氮化合物(圖9)[8,21,59-72]。磷腈類阻燃添加劑的主要特點是少量添加(5%~15%,質(zhì)量百分?jǐn)?shù))即可達到使電解液阻燃或不燃的效果,且與電極材料兼容性好,對鋰離子電池的電化學(xué)性能影響小。用于電解液阻燃的磷腈類阻燃添加劑主要分為以下幾類:六烷氧基環(huán)三磷腈,如六甲氧基環(huán)三磷腈[hexamethox- ycyclotriphosphazene,HMPN,圖9(a)][21,59]、六(甲氧基乙氧基乙氧基)環(huán)三磷腈[hexa(methoxyethox- yethoxy)cyclotriphosphazene,MEE trimer,圖9(b)][60]、不飽和烷氧基環(huán)三磷腈[AL-7,圖9(c)][61]、六(2,2,2-三氟乙氧基)環(huán)三磷腈[hexakis(2,2,2- trifluoroethoxy)cyclotriphosphazene,HFEPN,圖9(d)][62];單烷氧基五氟環(huán)三磷腈,如乙氧基五氟環(huán)三磷腈[(ethoxy)pentafluorocyclotriphosphazene,PFPN,圖9(e)][8,63-65]、苯氧基五氟環(huán)三磷腈[pentafluoro(phenoxy)cyclotriphosphazene,F(xiàn)PPN,圖9(f)][66-68]、4-甲氧基-苯氧基五氟環(huán)三磷腈[(4-methoxy)-phenoxy pentafluorocyclotriphosphazene,4-MPPFPP,圖9(g)][69]、2-氯-4-甲氧基-苯氧基五氟環(huán)三磷腈[(2-chloro-4-methoxy)-phenoxy pentafluorocycl- otriphosphazene,2-Cl-4-MPPFPP,圖9(h)][70];線性聚磷腈,如聚[雙(甲氧基乙氧基乙氧基)磷腈][poly[bis(methoxyethoxyethoxy)phosphazene],MEEP,圖9(i)][60]、聚[雙(乙氧基乙氧基乙氧基)磷腈][poly[bis(ethoxyethoxyethoxy)phosphazene],EEEP,圖9(j)][71];磷腈小分子[triethoxyphosphazen--phosphoryldiethylester,PNP,圖9(k)][72]。由于 環(huán)三磷腈類阻燃添加劑具有較高的電化學(xué)氧化窗口,在下一代高電壓鋰離子中的應(yīng)用案例較多,如采用高電壓鈷酸鋰正極材料或采用5 V高電壓鎳錳酸鋰(LiNi0.5Mn1.5O4)材料的鋰離子電池[8,62-68]。最近,XU等[8]將7%阻燃添加劑PFPN與功能添加劑聯(lián)用,即能大幅度提高5 V高電壓LiNi0.5Mn1.5O4/石墨全電池的長循環(huán)性能(1 C倍率下循環(huán)300圈,容量保持率87.4%),又能讓電解液具有不燃性(該阻燃電解液配方可以經(jīng)受5次點火實驗而不被點燃,圖10)。

    3.1.5 其它含磷元素阻燃添加劑

    已報道的含磷阻燃添加劑還有三(4-氟苯基)磷化氫[tris(4-fluorophenyl) phosphine,TFPP,圖11(a)][48]、六甲基磷酰三胺[hexamethylphosphoramide,HMPA,圖11(b)][73]、二(,-二乙基)甲氧基乙氧基甲基磷酰胺[bis(N,N-diethyl)(2-methoxyethoxy) methylphos- phonamidate,DEMEMPA,圖11(c)][74]、富含磷?;淖枞茧x子-新型阻燃鋰鹽[Li[P(DPC)3],圖11(d)][75]、聚(磷酸乙酯-乙二醇)共(寡)聚物[EPCP,圖11(e)][9]。值得注意的是,最近,WANG等[9]將離子傳導(dǎo)性優(yōu)異的EO片段嵌入到磷酸酯中形成具有阻燃性EPCP寡聚物,該寡聚物添加量為15%時,電解液完全不燃,且電解液的離子電導(dǎo)率不受EPCP加入影響。另外EPCP還有利于電極材料界面的穩(wěn)定,因此,采用鈷酸鋰正極的鋰離子電池(LiCoO2/Li)循環(huán)性能和倍率性能均有所提升。

    圖9 磷腈類阻燃添加劑結(jié)構(gòu)式

    圖10 添加7% PFPN阻燃添加劑的阻燃效果(自熄滅5次)[8]

    圖11 其它含磷阻燃添加劑結(jié)構(gòu)式

    3.2 其它類型阻燃添加劑

    其它類型阻燃添加劑主要有硅烷類阻燃添加劑[圖12(a)~(d)][76-80]、三嗪類阻燃添加劑[圖12(e)~(g)][81-82]、離子液體類阻燃添加劑[圖12(h)~(l)][83-85]、氟代烷氧烴(氟醚類)阻燃添加劑[圖12(m)][86]、雙酚類阻燃添加劑[圖12(n)][87]、全氟烷酮[圖11(o)][88]、烯丙基三(2,2,2-三氟乙基)碳酸酯[allyl tris(2,2,2-trifluoroethyl) carbonate,ATFEC][89]。硅烷類(有機硅)有機阻燃劑的主要特點是熱穩(wěn)定性優(yōu)異、可燃性低、毒性小、電導(dǎo)率和分解電壓高,在鋰離子電池新型電解液領(lǐng)域備受關(guān)注,QIN等[76]綜述了有機硅電解液的研究進展。以乙烯基-三-(2-甲氧基乙氧基)硅烷[vinyl-tris-(methoxydiethoxy)silane,VTMS,圖12(a)][77]為例,VTMS是一種環(huán)境友好的阻燃添加劑,利于形成有效的SEI膜阻止碳酸丙烯酯(PC)在石墨表面的分解,且熱穩(wěn)定性高,黏度低,對鋰離子電池(LiCoO2體系)電化學(xué)性能負(fù)面影響較小。YIM等[86]將十氟-3-甲氧基-2-三氟甲基戊烷[1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)- pentane,DMTP,圖12(m)]用交聯(lián)型聚甲基丙烯酸甲酯(PMMA)包裹,并通過PVDF-HFP黏結(jié)劑涂覆固定在聚乙烯微孔膜上,在電池過熱時,PMMA外殼破碎釋放DMTP阻燃劑包括電池安全[圖13(a)]。最近,JIANG等[88]設(shè)計了一種具有自冷卻功能的阻燃復(fù)合電解液[圖13(b)],其核心組分是全氟-2-甲基-3-戊酮[perfluoro-2-methyl-3-pentanone,PFMP,圖12(o)]。盡管該電解液能夠提高鋰離子電池三元正極材料(NCM111)的熱穩(wěn)定性,但是其與電極材料的電化學(xué)兼容性還有待提高。

    圖12 其它類型阻燃添加劑結(jié)構(gòu)式

    圖13 (a)將包裹有DMTP的PMMA聚合物微膠囊用PVDF-HFP黏結(jié)劑固定在聚乙烯隔膜上[86];(b)具有雙重保護 機制的復(fù)合電解液[88]

    4 基于阻燃溶劑(共溶劑)的阻燃電解液

    4.1 含磷元素阻燃溶劑(共溶劑)

    含磷的化合物作為阻燃添加劑,在某些條件下其阻燃效果可能達不到電池的使用需求,因此需要增加含磷化合物的使用量作為電解液的阻燃共溶劑,但是總體上各種類的含磷化合物與電極材料兼容性較差,作為溶劑使用難度較大。

    在阻燃電解液研究的早期,主要采用烷基磷酸酯類阻燃共溶劑的有TMP[圖4(c)][19,21]、TEP[圖4(i)][21,90]、TPP[圖4(a)][91-92],但這些烷基磷酸酯與石墨負(fù)極兼容性差;相比之下,氟代磷酸酯類化合物與電極材料兼容性更好(利于穩(wěn)定SEI膜)、阻燃效果更佳(用量少)、黏度低,作為電解液共溶劑更受關(guān)注:如三(2,2,2-三氟乙基)磷酸酯[tris(2,2,2-trifluoroethyl)phosphate,TFP,圖14(a)][93-98],二(2,2,2-三氟乙基)-甲基磷酸酯[bis(2,2,2-trifluoroethyl) methyl phosphate BMP,圖14(b)][94-95],(2,2,2-三氟乙基)-二乙基磷酸酯[(2,2,2-trifluoroethyl) diethyl phosphate,TDP,圖14(c)][94-95],三(2,2,2-二氟乙基)磷酸酯[tris(2,2-difluoroethyl) phosphate, TFHP,圖14(d)][96],磷酸三丙酯[tripropyl phosphate, TPrP,圖14(e)][99],三(3,3,3-三氟丙基)磷酸酯[tris(3,3,3-trifluoropropyl) phosphate,3F-TPrP,圖14(f)][99],三(2,2,3,3-四氟丙基)磷酸酯[tris(2,2,3,3-tetrafluoropropyl) phosphate,4F-TPrP,圖14(g)][99],三(2,2,3,3,3-五氟丙基)磷酸酯[tris(2,2,3,3,3-pentafluoropropyl) phosphate,5F-TPrP,圖4(l)][99]。最近,MURMANN等[99]研究不同氟化程度的TPrP的阻燃效果和電化學(xué)性能,結(jié)果顯示,氟化程度最高的5F-TPrP作為溶劑使用量為30%時電解液完全不燃且?guī)缀醪粫κ? NCM111全電池的循環(huán)性能造成影響。ZHANG 等[100]發(fā)現(xiàn),除了作為阻燃溶劑,亞磷酸酯TTFP(i)[圖6(e)]還能夠抑制碳酸丙烯酯(PC)對石墨材料的剝離,提高全電池在PC基電解液中的循環(huán)穩(wěn)定性,尤其是高溫條件下。

    圖14 含磷元素阻燃溶劑(共溶劑)結(jié)構(gòu)式

    膦酸酯中作為電解液阻燃溶劑(共溶劑)應(yīng)用最多的是DMMP[圖7(a)][91,101-105]。XIANG等[102]發(fā)現(xiàn)DMMP基阻燃電解液與Li4Ti5O12負(fù)極材料兼容性良好,該阻燃電解液被成功用于高能量密度高電壓LiNi0.5Mn1.5O4/Li4Ti5O12全電池體系中。ZENG等[104]以DMMP為主溶劑開發(fā)出適用于LiFePO4/SiO全電池體系的阻燃型電解液。WU等[105]將雙三氟甲烷磺酰亞胺鋰(LiTFSI)作為主鹽溶解于一種新型磷酸酯主溶劑中,二甲基(2-甲氧基乙氧基)甲基磷酸酯[dimethyl(2-methoxyethoxy) methylphosphonate,DMMEMP,圖14(h)],該阻燃型電解液與金屬鋰片兼容性良好,適用于LiFePO4/Li電池體系。磷腈類化合物作為阻燃電解液溶劑(共溶劑)的報道較少[圖14(i)~(j)][21,106-107],ROLLINS等[106]報道了一種氟代六烷氧基環(huán)三磷腈[FM-2,圖14(i)]共溶劑,能夠提高電化學(xué)穩(wěn)定窗口、熱穩(wěn)定性和安全性能高,利于穩(wěn)定SEI膜,該阻燃電解液被成功應(yīng)用于石墨/(錳酸鋰+三元材料)全電池體系中,當(dāng)使用量為20%時,可以明顯改善全電池的循環(huán)性能。

    4.2 其它類型阻燃溶劑(共溶劑)

    氟代醚類和氟代碳酸酯類有機化合物的特點是閃點高或者是沒有閃點。該類化合物作為阻燃溶劑是通過稀釋高揮發(fā)和易燃性共溶劑起作用,所以在阻燃電解液中占比較大(通常大于70%)[51]。另外,借助氟元素的吸電子效應(yīng),該類氟代化合物溶劑分子更容易在碳基負(fù)極表面還原,優(yōu)化SEI膜,改進阻燃電解液與電極材料的電化學(xué)兼容性,提高電池的性能。文獻報道過的用于鋰電池阻燃電解液的氟代醚有:甲基九氟丁醚[methyl nonafluorobutyl ether ,MFE,圖15(a)][108-110],乙基九氟丁醚[ethyl nonafluorobutyl ether,EFE,圖15(b)][94-95],DMTP[或稱為TMMP,圖12(m)][111-112],1,1,2,2-四氟乙基2,2,3,3-四氟丙醚[1,1,2,2-tetrafluoroethyl-2,2,3,3- tetrafluoropropyl ether,F(xiàn)-EPE,圖15(c)][113-115],1,1,2,2-四氟乙基-2,2,2-三氟乙基醚[1,1,2,2- tetrafluoroethyl 2,2,2-trifluoroethyl ether,HFE,圖15(d)][116],六氟異丙基甲醚[1,1,1,3,3,3-hexafluoroi- sopropyl methyl ether,HFPM,圖15(e)][117]。氟代碳酸酯的代表性化合物有:氟代環(huán)狀碳酸酯[F-AEC,圖15(f)][113],三氟乙基甲基碳酸酯[3,3,3-fluoroethylmethyl carbonate,F(xiàn)-EMC,圖15(g)][113,116],TFPOM-C[4-(2,2,3,3-tetrafluoropropo- xymethyl)-1,3-dioxolan-2-one,圖15(h)][118], TFTFMP- C[4-(2,3,3,3-tetrafluoro-2-trifluoromethyl-propyl)- 1,3- dioxolan-2-one,圖15(i)][118],雙(四氟丙基)碳酸酯[bis(2,2,3,3-tetrafluoro-propyl) carbonate,BTFP-C,圖15(j)][118],雙(五氟丙基)碳酸酯[bis(2,2,3,3,3- pentafluoro-propyl) carbonate,BPFP-C,圖15(k)][118]。最近,F(xiàn)AN等[116]將氟代醚HFE、氟代碳酸酯F-EMC和FEC(氟代碳酸乙烯酯)聯(lián)用開發(fā)了一種耐高電壓的不燃全氟電解液[圖16(a)~(c)],在高鎳三元材料[NCM811,圖16(d)]和5 V磷酸鈷鋰[LCP, 圖16(e)]金屬鋰電池中取得了巨大的成功。相比非全氟電解液,該不燃電解液能夠保護金屬鋰片,抑制鋰枝晶的產(chǎn)生,減小電池短路風(fēng)險[圖16(f)]。另外,閃點較高,氧化穩(wěn)定性高的環(huán)丁砜[sulfolane,TMS,圖15(l)][119-121],己二腈(adiponitrile,ADN)[122]也被用作阻燃電解液的主溶劑。

    圖15 其它類型阻燃溶劑(共溶劑)結(jié)構(gòu)式

    圖16 氟代醚(HFE)和氟代碳酸酯(F-EMC和FEC)組成的不燃全氟電解液阻燃效果及其在金屬鋰電池中的應(yīng)用[116]

    5 基于高濃度鋰鹽的阻燃電解液

    “高濃度電解液”是一類備受關(guān)注的電解液體系,其鋰鹽濃度高達 4 mol/L,遠(yuǎn)遠(yuǎn)高于普通電解液鋰鹽濃度(通常為1 mol/L)[4]。在高濃度電解液中,幾乎所有溶劑都與鋰離子直接配位,使其具有一些特殊的優(yōu)點:高氧化/還原穩(wěn)定性、利于在石墨負(fù)極或金屬鋰負(fù)極形成高穩(wěn)定界面膜、高熱穩(wěn)定性、阻燃或者不燃,及高電壓下鈍化正極Al集流 體[4,123-125]。磷酸酯類化合物作為阻燃添加劑或阻燃溶劑都存在與負(fù)極材料(碳基負(fù)極或金屬鋰負(fù)極)兼容性差的問題,其應(yīng)用收到嚴(yán)重的限制?!案邼舛入娊庖骸备拍畹陌l(fā)展促使磷酸酯類化合物(TMP[126-128]、TFEP[129]、TEP[130-131])直接作為主溶劑(甚至單一溶劑)用于鋰離子電池或金屬鋰電池中。例如,WANG等[126]發(fā)現(xiàn)5.3 mol/L LiFSI/TMP高濃度電解液與石墨的兼容性好,石墨/Li半電池循環(huán)1000圈容量幾乎沒有衰減,這得益于高濃度電解液能夠在石墨負(fù)極形成一層非常有效的鈍化膜(圖17),該高濃度電解液被成功應(yīng)用于高電壓5 V 石墨/鎳錳酸鋰全電池體系。另外,碳酸酯作為單一溶劑的高濃度電解液(1∶1.1,LiFSI/DMC)也具有阻燃特性[123],并具有優(yōu)異的電化學(xué)兼容性,能夠顯著提高高電壓5 V 石墨/鎳錳酸鋰全電池體系的室溫循環(huán)性能和高溫循環(huán)性能。最近,ALVARADO等[125]開發(fā)了以高閃點環(huán)丁砜為單一溶劑的高濃度電解液(3 mol/kg LiFSI/TMS),其能夠讓MCMB/鎳錳酸鋰全電池運行1000次循環(huán)。發(fā)展阻燃型高濃電解液用于高能量密度的下一代高電壓鋰離子電池或金屬鋰電池將是未來的重點研究方向。

    圖17 高安全性電池電解液設(shè)計理念[126]

    6 基于離子液體的阻燃電解液

    離子液體由陰、陽離子兩部分組成, 陰離子通常有、、TFSI-、FSI-等,陽離子通常有吡咯類、咪唑類、哌啶類和季銨鹽類等。離子液體具有揮發(fā)性極小、不燃、電化學(xué)穩(wěn)定窗口寬、溶解能力強、熱穩(wěn)定性高等特點,既適合應(yīng)用于高電壓電解液,又適合制備阻燃型電解液,提高鋰離子電池安全性[4,132-133]。例如,CHANCELIER 等[133]實驗證實兩種離子液體的高熱穩(wěn)定和阻燃特性,即1-丁基- 2,3-甲基咪唑-二(三氟甲基磺酰)亞胺[1-butyl-3-methylimidazolium bis(trifluoromethanesu- lfonyl)imide,C1C4ImTFSI,圖18(a)]和-甲基--丁基吡咯-二(三氟甲基磺酰)亞胺[PYR14TFSI 或BMP-TFSI,圖12(i)]。盡管如此, 由于純離子液體黏度大,且與隔膜、電極材料的浸潤性差,鋰離子的遷移受到極大限制;另外,大多數(shù)的離子液體與碳基負(fù)極的兼容性差,因而,純離子液體較難作 為電解液直接用于鋰離子電池。例如,KIM等[132]將純-甲基--丁基吡咯-雙氟磺酰亞胺[-butyl-- methylpyrrolidinium bis(fluorosulfonyl) imide,PYR14FSI,圖18(b)]基阻燃型電解液直接應(yīng)用于非碳基負(fù)極全電池體系(LiFePO4/Li4Ti5O12),但倍率性能差。實際上,離子液體通常與碳酸酯類[134-141]、砜類[142]或氟代醚類[143]等溶劑混合使用來制備阻燃型高性能電解液。與碳酸酯混合使用配制阻燃型電解液的吡咯類離子液體有PYR14TFSI 或BMP-TFSI[圖12(i)][134-135]、-丙基--甲基吡咯-二(三氟甲基磺酰)亞胺[-propyl--methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide ,PYR13TFSI,圖18(c)][136]、-乙基-2-甲氧基吡咯-雙氟磺酰亞胺[-ethyl-2-methoxypyrrolinium bis(fluorosulfonyl) imide,E(OMe)Pyrl-FSI,圖18(d)][137]。KIM等[137]報道E(OMe)Pyrl-FSI與碳酸酯溶劑混合后電解液阻燃效果優(yōu)異,且能保證LiFePO4/Li體系60 ℃高溫的穩(wěn)定運行(圖19)。與碳酸酯混合的代表性哌啶類離子液體有-甲基--丙基哌啶-二(三氟甲基磺酰)亞胺[-methyl--propylpiperidinium bis (trifluoromethanesulfonyl) imide,PP13TFSI,圖18(e)][138-140]、1-乙基-1-甲基哌啶-二(三氟甲基磺酰)亞胺[1-ethyl-1-methyl piperidinium bis(trifluorome thanesulfonyl)imide,EMP-TFSI,圖18(f)][141]。另外,季銨鹽類離子液體也有應(yīng)用案例,如二乙基甲基-(2-甲氧乙基)銨基-雙(三氟甲基磺酰)亞胺[,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)azanide,DMMA-TFSI,圖18(g)]與環(huán)丁砜[圖15(l)]混合使用于NCM/石墨體系[142]、圖18(h)~(i)的季銨鹽類離子液體與阻燃溶劑甲基九氟丁醚[MFE,圖15(a)]混合使用于LiFePO4/Li體系[143]。

    圖18 一些離子液體陽離子和陰離子的結(jié)構(gòu)式

    圖19 離子液體E(OMe)Pyrl-FSI與碳酸酯溶劑的二元電解液阻燃性測試及其在LiFePO4/Li電池體系中60 ℃高溫的循環(huán)性能[137]

    7 阻燃型凝膠聚合物電解質(zhì)

    阻燃型聚合物電解質(zhì)主要分為阻燃型固態(tài)聚合物電解質(zhì)[144-147]和阻燃型凝膠聚合物電解質(zhì)[148-157]。本文主要關(guān)注含液體溶劑的阻燃型凝膠聚合物電解質(zhì)。早在1998年,AKASHI等[148]通過優(yōu)化聚丙烯腈[polyacrylonitrile,PAN,圖20(a)]、碳酸酯溶劑和LiPF6的比例制備出一種PAN基的阻燃性凝膠聚合物電解質(zhì)。熱重分析表明LiPF6降低了PAN基凝膠聚合物電解質(zhì)的碳化溫度點并增加了燃燒后殘留的碳質(zhì)材料。線性燃燒速率與碳化溫度點的相關(guān)性表明,PAN基凝膠聚合物電解質(zhì)的阻燃特性源于表面形成的碳質(zhì)層。LU等[149]以聚四氟乙烯微孔膜(PTFE)為支撐體,交聯(lián)型聚(乙二醇)和聚(甲基丙烯酸縮水甘油酯)嵌段共聚物[PEG-b-PGMA,圖20(b)]為填料,LiTFSI為鋰鹽制備出一種適用于LiFePO4/Li體系的不燃型凝膠聚合物電解質(zhì),其25 ℃離子電導(dǎo)率高達1.30×10-3S/cm。LI等[150]用聚乙二醇二甲基丙烯酸酯(PEGDMA)將聚芳醚酮(PAEK)無紡布交聯(lián),獲得一種阻燃型凝膠聚合物電解質(zhì)[PAEKNW-SPE,圖20(c)],其室溫離子電導(dǎo)率為1.20×10-3S/cm。最近,BAIK等[151]將全氟聚醚[Fluorolink E10H,圖20(d)]交聯(lián)后制備出一種不燃、熱穩(wěn)定性高、電化學(xué)穩(wěn)定窗口寬[高達5 V (vs. Li/Li+)]的凝膠聚合物電解質(zhì)?;陔x子液體的阻燃型凝膠聚合物電解質(zhì)也有報道[153-157]。LEE等[153]成功將基于聚(1-甲基-3-(2-丙烯酰氧基己基)咪唑鎓-四氟硼酸鹽)[poly(1-methyl-3-(2-acryloyloxy- hexyl) imidazolium tetrafluoroborate),PIL,圖20(e)]的凝膠聚合物電解質(zhì)應(yīng)用于LiCoO2電池中。LUO等[154]開發(fā)了一種基于酚醛環(huán)氧樹脂寡聚離子液體[咪唑類,OIL,圖20(f)]與PVDF-HFP的阻燃型凝膠聚合物電解質(zhì),其熱穩(wěn)定高(150 ℃,熱收縮<1%),室溫離子電導(dǎo)率高達2.0×10-3S/cm。2018年GUO等[157]將離子液體1-乙基-2,3-甲基咪唑二(三氟甲基磺酰)亞胺[1-ethyl-3-methylimidazolium triluoromethanesufonate,EMITFSI,圖20(g)]、無機快離子導(dǎo)體Li1.5Al0.5Ge1.5(PO4)3(LAGP)和PVDF-HFP混合制備一種阻燃型凝膠聚合物電解質(zhì)膜(IL-GPE,圖21)用于高安全性的金屬鋰電池,IL-GPE與金屬鋰兼容優(yōu)異無鋰枝晶產(chǎn)生,能夠顯著提高LiFePO4/Li體系循環(huán)性能。

    圖20 阻燃型凝膠聚合物電解質(zhì)中的聚合物或離子液體

    圖21 一種有機無機復(fù)合的凝膠聚合物電解質(zhì)(ILGPE)及其阻燃測試[126]

    8 展 望

    高安全性阻燃電解液的發(fā)展是鋰離子電池大規(guī)模推廣應(yīng)用過程中至關(guān)重要的一環(huán)。目前,阻燃型電解液的使用通常能夠提高鋰離子電池的安全性能,但會犧牲一部分鋰離子電池的電化學(xué)性能。綜合全文所述,未來阻燃電解液的發(fā)展呈現(xiàn)以下趨勢。

    (1)發(fā)展電極界面兼容性優(yōu)異的多功能阻燃添加劑或阻燃溶劑,即不僅具有阻燃效果,而且具有界面成膜功能;或?qū)⒆枞紕┡c功能成膜添加劑聯(lián)用,發(fā)揮協(xié)同作用。

    (2)通過原位表征手段研究阻燃電解液與電極界面性質(zhì),研究其氧化還原分解機制,反饋指導(dǎo)阻燃電解液優(yōu)化改進;加強各阻燃電解液體系的阻燃機理研究。

    (3)發(fā)展聚合物微膠囊包裹阻燃劑的實用技術(shù),保證阻燃劑只在極端失控情況下起作用,并在大容量電池中驗證此技術(shù)。

    (4)發(fā)展更多電極界面兼容性優(yōu)異的高濃度阻燃電解液體系。

    (5)開發(fā)新型低黏度阻燃型離子液體基阻燃電解液;或開發(fā)性能優(yōu)異的阻燃型凝膠聚合物電解質(zhì)。

    (6)不能單純只評估阻燃電解液的阻燃效果,還需在大容量電池中全面評估阻燃電解液的實用性,包括電化學(xué)性能測試、濫用性測試、熱安全性測試(ARC設(shè)備)等。

    [1] 崔光磊. 動力鋰電池中聚合物關(guān)鍵材料[M]. 北京: 科學(xué)出版社, 2018.

    CUI G L. Polymer key materials of power lithium batteries [M]. Beijing: Science Press, 2018.

    [2] FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.

    [3] LIU X, REN D S, HSU H J, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2: 1-18.

    [4] 夏蘭, 余林頗, 胡笛, 等. 鋰離子電池高電壓和耐燃電解液研究進展[J]. 化學(xué)學(xué)報, 2017, 75(12): 1183-1195.

    XIA L, YU L P, HU D, et al. Research progress and perspectives on high voltage, flame retardant electrolytes for lithium-ion batteries[J]. Acta Chimica Sinica, 2017, 75(12): 1183-1195.

    [5] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.

    [6] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy Environmental Science, 2016, 9(6): 1955-1988.

    [7] LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): doi: 10.1126/sciadv. aas9820.

    [8] XU G J, PANG C G, CHEN B B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(9): doi: 10.1002/aenm.201701398.

    [9] WANG Q F, LIU P P, LI S Z, et al. A flame retardant ionic conductor additive for safety-reinforced liquid electrolyte of lithium batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1559-A1563.

    [10] ZHANG J J, KONG Q S, LIU Z H, et al. A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process[J]. Solid State Ionics, 2013, 245/246: 49-55.

    [11] ZHANG J J, YUE L P, KONG Q S, et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery[J]. Scientific Reports, 2014, 4: doi: 10.1038/srepo3935.

    [12] 張建軍, 岳麗萍, 劉志宏, 等. 高安全性阻燃動力鋰離子電池隔膜[J]. 中國科學(xué): 化學(xué), 2014, 44(7): 1069-1080.

    ZHANG, J J, YUE L P, LIU Z H, et al. Highly safe and flame-retardant separators for power lithium ion batteries[J]. Scientia Sinica Chimica, 2014, 44(7): 1069-1080.

    [13] YUE L P, ZHANG J J, LIU Z H, et al. A heat resistant and flame-retardant polysulfonamide/polypropylene composite nonwoven for high performance lithium ion battery separator[J]. Journal of the Electrochemical Society, 2014, 161(6): A1032-A1038.

    [14] ZHANG B, WANG Q F, ZHANG J J, et al. A superior thermostable and nonflammable composite membrane towards high power battery separator[J]. Nano Energy, 2014, 10: 277-287.

    [15] DING G L, QIN B S, LIU Z H, et al. A polyborate coated cellulose composite separator for high performance lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): A834-A838.

    [16] 杜奧冰, 柴靜超, 張建軍, 等. 鋰電池用全固態(tài)聚合物電解質(zhì)的研究進展[J]. 儲能科學(xué)與技術(shù), 2016, 5(5): 627-648.

    DU A B, CHAI J C, ZHANG J J, et al. All-solid lithium-ion batteries based on polymer electrolyes: State of the art, challengs and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648.

    [17] NAGASUBRAMANIAN G, FENTON K. Reducing Li-ion safety hazards through use of nonflammable solvents and recent work at Sandia National Laboratories[J]. Electrochimica Acta, 2013, 101: 3-10.

    [18] HARRIS S J, TIMMONS A, PITZ W J. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries[J]. Journal of Power Sources, 2009, 193(2): 855-858.

    [19] WANG X, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148(10): A1058-A1065.

    [20] HESS S, MEHRENS M W, WACHTLER M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements[J]. Journal of the Electrochemical Society, 2015, 162(2): A3084-A3097.

    [21] XU K, DING M S, ZHANG S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149(5): A622-A626.

    [22] CHANCELIER L, DIALLO A O, SANTINI C C, et al. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage[J]. Physical Chemistry Chemical Physics, 2014, 16(5): 1967-1976

    [23] HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/121: 383-387.

    [24] YAO X L, XIE S, CHEN C H, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144(1): 170-175.

    [25] SMITH K A, SMART M C, PRAKASH G K S, et al. Lithium-ion electrolytes containing flame-retardant additives for increased safety characteristics[J]. ECS Transactions, 2009, 16(35): 33-41.

    [26] SHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. Journal of Power Sources, 2007, 172(2): 919-924.

    [27] SMART M C, KRAUSE F C, HWANG C, et al. The evaluation of triphenyl phosphate as a flame retardant additive to improve the safety of lithium-ion battery electrolytes[J]. ECS Transactions, 2011, 35(13): 1-11.

    [28] XIA X, PING P, DAHN J R. The reactivity of charged electrode materials with electrolytes containing the flame retardant, triphenyl phosphate[J]. Journal of the Electrochemical Society, 2012, 159(11): A1834-A1837.

    [29] HOGSTROM K C, LUNDGREN H, WILKEN S, et al. Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4cells in high power applications[J]. Journal of Power Sources, 2014, 256: 430-439.

    [30] LIU K, LIU W, QIU Y C, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances, 2017, 3(1): doi: 10.1126/sciadv.1601978.

    [31] WANG Q, SUN J, YAO X, et al. 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2005, 8 (9): A467-A470.

    [32] FENG J K, CAO Y L, AI X P, et al. Tri-(4-methoxythphenyl) phosphate: a new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries[J]. Electrochimica Acta, 2008, 53(28): 8265-8268.

    [33] ZHOU D, LI W, TAN C, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 589-592.

    [34] SHIM E G, NAM T H, KIM J G, et al. Effects of trioctyl phosphate and cresyl diphenyl phosphate as flame-retarding additives for Li-ion battery electrolytes[J]. Metals and Materials International, 2009, 15(4): 615-621.

    [35] SHIM E G, NAM T H, KIM J G, et al. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries[J]. Journal of Power Sources, 2008, 175(1): 533-539.

    [36] SHIM E G, NAM T H, KIM J G, et al. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries[J]. Electrochimica Acta, 2009, 54(8): 2276-2283.

    [37] LAI Y, REN C, LU H, et al. Compatibility of diphenyloctyl phosphate as flame-retardant additive with LiNi1/3Co1/3Mn1/3O2/artificial graphite cells[J]. Journal of the Electrochemical Society, 2012, 159(8): A1267-A1272.

    [38] NAM N D, PARK I J, KIM J G, et al. Effect of flame-retarding additives on surface chemistry in Li-ion batteries[J]. Materials Research Bulletin, 2012, 47(10): 2811-2814.

    [39] GAO D, XU J B, LIN M, et al. Ethylene ethyl phosphate as a multifunctional electrolyte additive for lithium-ion batteries[J]. RSC Advances, 2015, 5(23): 17566-17571.

    [40] TSUBOUCHI S, SUZUKI S, NISHIMURA K, et al. Electrochemical stabilization of self-extinguishing electrolyte solutions with trimethyl phosphate by adding potassium salts[J]. The Journal of Physical Chemistry C, 2018, 122(24):12657-12664.

    [41] HE Y B, LIU Q, TANG Z Y, et al. The cooperative effect of tri(β-chloromethyl) phosphate and cyclohexyl benzene on lithium ion batteries[J]. Electrochimica Acta, 2007, 52(11): 3534-3540.

    [42] 賀艷兵, 唐致遠(yuǎn), 陳玉紅, 等. 鋰離子電池阻燃劑磷酸三(β-氯乙基)酯[J]. 化學(xué)通報, 2007, 70(3): 212-216.

    HE Y B, TANG Z Y, CHEN Y H, et al. Tri(2-chloroethyl) phosphate as a flame-retardant additive for lithium-ion batteries[J]. Chemistry Bulletin, 2007, 70(3): 212-216.

    [43] SHIM E G, PARK I J, NAM T H, et al. Electrochemical performance of tris(2-chloroethyl) phosphate as a flame-retarding additive for lithium-ion batteries[J]. Metals and Materials International, 2010, 16(4): 587-594.

    [44] BAGINSKA M, SOTTOS N R, WHITE S R. Core-shell microcapsules containing flame retardant tris(2-chloroethyl phosphate) for lithium-ion battery applications[J]. ACS Omega, 2018, 3(2): 1609-1613.

    [45] ASPERN N V, ROSER S, RAD B R, et al. Phosphorus additives for improving high voltage stability and safety of lithium ion batteries[J]. Journal of Fluorine Chemistry, 2017, 198: 24-33.

    [46] NAM N D, PARK I J, KIM J G. Triethyl and tributyl phosphite as flame-retarding additives in Li-ion batteries[J]. Metals and Materials International, 2012, 18(1): 189-196.

    [47] JIA H, WANG J, LIN F, et al. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes[J]. Chemical Communications, 2014, 50(53): 7011-7013.

    [48] NAM N D, PARK I J, KIM J G. Tris(4-fluorophenyl) phosphine and tris(2,2,2-trifluoroethyl) phosphite as flame-retarding additives in Li-ion batteries[J]. ECS Transactions, 2011, 33(22): 7-15.

    [49] WANG J, LIN F, JIA H, et al. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J]. Angewandte Chemie, 2014, 53(38): 10099-10104.

    [50] PIRES J, CASTETS A, TIMPERMAN L, et al. Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2015, 296: 413-425.

    [51] 楊聚平, 王莉, 趙鵬, 等. 鋰離子電池電解液阻燃添加劑研究進展[J]. 新材料產(chǎn)業(yè), 2013(4): 64-69.

    YANG J P, WANG L, ZHAO P, et al. Research progress of electrolyte flame-retardant additives for lithium-ion batteries[J]. Advanced Materials Industry, 2013(4): 64-69.

    [52] XIANG H F, XU H Y, WANG Z Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173(1): 562-564.

    [53] XIANG H, CHEN J, WANG H. Effect of vinyl ethylene carbonate on the compatibility between graphite and the flame-retarded electrolytes containing dimethyl methyl phosphonate[J]. Ionics, 2011, 17(5): 415-420.

    [54] XIANG H F, LIN H W, YIN B, et al. Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes[J]. Journal of Power Sources, 2010, 195(1): 335-340.

    [55] FENG J, MA P, YANG H, et al. Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries[J]. Electrochimica Acta, 2013, 114(114): 688-692.

    [56] ZENG Z, JIANG X, WU B, et al. Bis(2,2,2-trifluoroethyl) methylphosphonate: An novel flame-retardant additive for safe lithium-ion battery[J]. Electrochimica Acta, 2014, 129(6): 300-304.

    [57] ZHU X, JIANG X, AI X, et al. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165: 67-71.

    [58] ZHU Y, LUO X, ZHI H, et al. Diethyl(thiophen-2-ylmethyl) phosphonate: A novel multifunctional electrolyte additive for high voltage batteries[J]. Journal of Materials Chemistry A, 2018, 6(23): 10990-11004.

    [59] LEE C W, VENKATACHALAPATHY R, PRAKASH J. A novel flame-retardant additive for lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 3(2): 63-65.

    [60] FEI S T, ALLCOCK H R. Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems[J]. Journal of Power Sources, 2010, 195(7): 2082-2088.

    [61] HARRUP M K, ROLLINS H W, JAMISON D K, et al. Unsaturated phosphazenes as co-solvents for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2014, 278: 794-801.

    [62] KIM C, SHIN D, KIM K, et al. Fluorinated hyperbranched cyclotriphosphazene simultaneously enhances the safety and electrochemical performance of high‐voltage lithium‐ion batteries[J]. ChemElectroChem, 2016, 3(6): 913-921.

    [63] XIA L, XIA Y G, LIU Z P. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278: 190-196.

    [64] LI X, LI W K, CHEN L, et al. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 707-716.

    [65] LIU J W, SONG X, ZHOU L, et al. Fluorinated phosphazene derivative—A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46: 404-414.

    [66] FENG J K, GAO X P, CI L J, et al. A novel bifunctional additive for 5 V-class, high-voltage lithium ion batteries[J]. RSC Advances, 2016, 6(9): 7224-7228.

    [67] DAGGER T, LüRENBAUM C, SCHAPPACHER F M, et al. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements[J]. Journal of Power Sources, 2017, 342: 266-272.

    [68] JI Y J, ZHANG P B, LIN M, et al. Toward a Stable electrochemical interphase with enhanced safety on high-voltage LiCoO2cathode: A case of phosphazene additives[J]. Journal of Power Sources, 2017, 359: 391-399.

    [69] HUANG T, ZHENG X Z, FANG G F, et al. (4-methoxy)-phenoxy pentafluorocyclotriphosphazene as a novel flame retardant and overcharge protection additive for lithium-ion batteries[J]. RSC Advances, 2017, 7(75): 47775-47780.

    [70] HUANG T, ZHENG X Z, WANG W G, et al. (2-chloro-4-methoxy)-phenoxy pentafluorocyclotriphosphazene as a safety additive for lithium-ion batteries[J]. Materials Chemistry & Physics, 2017, 196: 310-314.

    [71] ZHOU M J, QIN C Y, LIU Z, et al. Enhanced high voltage cyclability of LiCoO2cathode by adopting poly[bis-(ethoxyethoxyethoxy) phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries[J]. Applied Surface Science, 2017, 403: 260-266.

    [72] WU B B, PEI F, WU Y, et al. An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries[J]. Journal of Power Sources, 2013, 227: 106-110.

    [73] IZQUIERDO-GONZALES S, LI W, LUCHT B L. Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2004, 135(1): 291-296.

    [74] HU J, JIN Z, ZHONG H, et al. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries[J]. Journal of Power Sources, 2012, 197(8): 297-300.

    [75] RECTENWALD M F, GAFFEN J R, RHEINGOLD A L, et al. Phosphoryl-rich flame-retardant ions (FRIONs): Towards safer lithium-ion batteries[J]. Angewandte Chemie, 2014, 53(16): 4173-4176.

    [76] 秦雪英, 汪靖倫, 張靈志. 鋰離子電池有機硅電解液[J]. 化學(xué)進展, 2012, 24(5): 810-822.

    QIN X Y, WANG J L, ZHANG L Z. Organosilicon based electrolytes for lithium-ion batteries[J]. Progress in Chemistry, 2012, 24(5): 810-822.

    [77] ZHANG H P, XIA Q, WANG B, et al. Vinyl-tris- (methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(3): 526-529.

    [78] LI L L, LI L, WANG B, et al. Methyl phenyl bis-methoxy- diethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(13): 4858-4864.

    [79] CHEN R J, ZHAO Y Y, LI Y J, et al. Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(10): 5142-5147.

    [80] XU H W, SHI J L, HU G S, et al. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3nanoparticles for high-safety high-voltage lithium ion batteries[J]. Journal of Power Sources, 2018, 391: 113-119.

    [81] KIM K, AHN S, KIM H S, et al. Electrochemical and thermal properties of 2,4,6-tris(trifluoromethyl)-1,3,5-triazine as a flame retardant additive in Li-ion batteries[J]. Electrochimica Acta, 2009, 54(8): 2259-2265.

    [82] CHO Y H, KIM K, AHN S, et al. Allyl-substituted triazines as additives for enhancing the thermal stability of Li-ion batteries[J]. Journal of Power Sources, 2011, 196(3): 1483-1487.

    [83] CHOI J A, SUN Y K, SHIM E G, et al. Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(27): 10179-10184.

    [84] BAE S Y, SHIM E G, KIM D W. Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries[J]. Journal of Power Sources, 2013, 244(4): 266-271.

    [85] SUBBURAJ T, JO Y N, LEE C W. Effect of monocationic ionic liquids as electrolyte additives on the electrochemical and thermal properties of Li-ion batteries[J]. Current Applied Physics, 2014, 14(8): 1022-1027.

    [86] YIM T, PARK M S, WOO S G, et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness[J]. Nano Letters, 2015, 15(8): 5059-5067.

    [87] BELOV D G, SHIEH D T. A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes[J]. Journal of Power Sources, 2014, 247(2): 865-875.

    [88] JIANG L H, WANG Q S, LI K, et al. A self-cooling and flame-retardant electrolyte for safer lithium ion batteries[J]. Sustainable Energy & Fuels, 2018, 2(6): 1323-1331.

    [89] CHEN S Y, WANG Z X, ZHAO H L, et al. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries[J]. Journal of Power Sources, 2009, 187(1): 229-232.

    [90] YANG H J, LI Q Y, GUO C, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications, 2018, 54(33): 4132-4135.

    [91] DUNN R P, NADIMPALLI S P V, GUDURU P, et al. Flame retardant co-solvent incorporation into lithium-ion coin cells with thin-film Si anodes[J]. Journal of the Electrochemical Society, 2014, 161(1): A176-A182.

    [92] DUNN R P, CAO C N, LUCHT B L. Flame-retardant co-solvent incorporation into lithium-ion coin cells with Si-nanoparticle anodes[J]. Journal of Applied Electrochemistry, 2015, 45(8): 1-8.

    [93] XU K, ZHANG S S, ALLEN J L , et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate[J]. Journal of the Electrochemical Society, 2002, 149(8): A1079-A1082.

    [94] XU K, DING M S, ZHANG S S, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries ii. Performance in cell and electrochemical properties[J]. Journal of the Electrochemical Society, 2003, 150(2): A161-A169.

    [95] XU K, DING M S, ZHANG S S, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries ii. Performance in cell[J]. Journal of the Electrochemical Society, 2003, 150(2): A170-A175.

    [96] MURMANN P, M?NNIGHOFF X, ASPERN N V , et al. Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries: Studies on fluorinated compounds deriving from triethyl phosphate[J]. Journal of the Electrochemical Society, 2016, 163(5): A751-A757.

    [97] TODOROV Y M, AOKI M, MIMURA H, et al. Thermal and electrochemical properties of nonflammable electrolyte solutions containing fluorinated alkylphosphates for lithium-ion batteries[J]. Journal of Power Sources, 2016, 332: 322-329.

    [98] TODOROV Y M, FUJII K, YOSHIMOTO N, et al. Ion-solvation structure and battery electrode characteristics of nonflammable organic electrolytes based on tris(trifluoroethyl)phosphate dissolving lithium salts[J]. Physical Chemistry Chemical Physics, 2017, 19: 31085-31093.

    [99] MURMANN P, ASPERN N V, JANSSEN P, et al. Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 165(9): A1935-A1942.

    [100] ZHANG S S, XU K, JOW T R. Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 166-172.

    [101] FENG J K, SUN X J, AI X P, et al. Dimethyl methyl phosphate: A new nonflammable electrolyte solvent for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 570-573.

    [102] XIANG H F, JIN Q Y, WANG R, et al. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4and Li4Ti5O2[J]. Journal of Power Sources, 2008, 179(1): 351-356.

    [103] XIANG H F, WANG Q, WANG D Z, et al. Optimizing the compatibility between dimethyl methylphosphonate (DMMP)-based electrolytes and carbonaceous anodes[J]. Journal of Applied Electrochemistry, 2011, 41(8): 965-971.

    [104] ZENG Z Q, WU B B, XIAO L F, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015, 279: 6-12.

    [105] WU L, SONG Z P, LIU L S, et al. A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries[J]. Journal of Power Sources, 2009, 188(2): 570-573.

    [106] ROLLINS H W, HARRUP M K, DUFEK E J , et al. Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes[J]. Journal of Power Sources, 2014, 263(5): 66-74.

    [107] DUFEK E J, KLAEHN J R, MCNALLY J S , et al. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes[J]. Electrochimica Acta, 2016, 209: 36-43.

    [108] ARAI J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries[J]. Journal of Applied Electrochemistry, 2002, 32(10): 1071-1079.

    [109] FANG S H, WANG G J, QU L , et al. Novel mixture of diethylene glycol diethylether and non-flammable methyl-nonafluorobutyl ether as safe electrolyte for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(42): 21159-21166.

    [110] LIU Y, FANG S H, LUO D, et al. Safe electrolytes for lithium-ion batteries based on ternary mixtures of triethylene glycol dimethylether, fluoroethylene carbonate and non-flammable methyl-nonafluorobutyl ether[J]. Journal of the Electrochemical Society, 2016, 163(9): A1951-A1958.

    [111] NAGASUBRAMANIAN G, ORENDORFF C J. Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable[J]. Journal of Power Sources, 2011, 196(20): 8604-8609.

    [112] NAOI K, IWAMA E, OGIHARA N, et al. Nonflammable hydrofluoroether for lithium-ion batteries: Enhanced rate capability, cyclability, and low-temperature performance[J]. Journal of the Electrochemical Society, 2009, 156(4): A272-A276.

    [113] ZHANG Z C, HU L B, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6(6): 1806-1810.

    [114] LIU Y, FANG S H, SHI P, et al. Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2016, 331: 445-451.

    [115] SHI P, FANG S, LUO D , et al. A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for high-performance lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(9): A1991-A1999.

    [116] FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018: doi: 10.1038/s41565-018-0183-2.

    [117] XIA L, XIA Y G, WANG C S, et al. 5 V-class electrolytes based on fluorinated solvents for Li‐ion batteries with excellent cyclability[J]. Chemelectrochem, 2016, 2(11): 1707-1712.

    [118] ACHIHA T, NAKAJIMA T, OHZAWA Y. Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries[J]. Journal of the Electrochemical Society, 2009, 156(6): A483-A488.

    [119] ABOUIMRANE A, BELHAROUAK I, AMINE K. Sulfone-based electrolytes for high-voltage Li-ion batteries[J]. Electrochemistry Communications, 2009, 11(5): 1073-1076.

    [120] WU F, XIANG J, LI L, et al. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries[J]. Journal of Power Sources, 2012, 202(1): 322-331.

    [121] LI C L, ZHAO Y Y, ZHANG H M , et al. Compatibility betweenLiNi0.5Mn1.5O4and electrolyte based upon lithium bis(oxalate)borate and sulfolane for high voltage lithium-ion batteries[J]. Electrochimica Acta, 2013, 104(8): 134-139.

    [122] ISKEN P, DIPPEL C, SCHMITZ R, et al. High flash point electrolyte for use in lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(22): 7530-7535.

    [123] WANG J H, YAMADA Y, SODEYAMA K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms 12032.

    [124] SUO L, XUE W, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1156-1161.

    [125] ALVARADO J, SCHROEDER M, ZHANG M H, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353.

    [126] WANG X M, YAMADA C, NAITO H, et al. High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells[J]. Journal of the Electrochemical Society, 2006, 153(1): A135-A139.

    [127] YAMADA A, WATANABE E, WANG J H, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2017, 3(1): 22-29.

    [128] SHI P, ZHENG H, LIANG X, et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries[J]. Chemical Communications, 2018, 54(35): 4453-4456.

    [129] SHIGA T, KATO Y, KONDO H, et al. Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(10): 5156-5162.

    [130] ZENG Z Q, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 4: 1-8.

    [131] CHEN S, ZHENG J M, Y L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018: doi: 10.1016/j.joule.2018.05.002.

    [132] KIM G T, JEONG S S, JOOST M, et al. Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(4): 2187-2194.

    [133] CHANCELIER L, DIALLO A O, SANTINI C C, et al. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage[J]. Physical Chemistry Chemical Physics, 2014, 16(5): 1967-1976.

    [134] ARBIZZANI C, GABRIELLI G, MASTRAGOSTINO M. Thermal stability and flammability of electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(10): 4801-4805.

    [135] PATRA J, WANG C H, LEE T C, et al. Mixed ionic liquid/organic carbonate electrolytes for LiNi0.8Co0.15Al0.05O2electrodes at various temperatures[J]. RSC Advances, 2015, 5(129): 106824-106831.

    [136] YANG B B, LI C H, ZHOU J H, et al. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries[J]. Electrochimica Acta, 2014, 148: 39-45.

    [137] KIM H T, KANG J, MUN J, et al. Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2015, 4(2): 497-505.

    [138] NAKAGAWA H, FUJINO Y, KOZONO S, et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells[J]. Journal of Power Sources, 2007, 174(2): 1021-1026.

    [139] LALIA B S, YOSHIMOTO N, EGASHIRA M, et al. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries[J]. Journal of Power Sources, 2010, 195(21): 7426-7431.

    [140] LI H F, PANG JI, YIN Y P, et al. Application of a nonflammable electrolyte containing Pp13TFSI ionic liquid for lithium-ion batteries using the high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. RSC Advances, 2013, 3(33): 13907-13914.

    [141] KIM K, CHO Y H, SHIN H C. 1-ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries[J]. Journal of Power Sources, 2013, 225: 113-118.

    [142] HOFMANN A, SCHULZ M, INDRIS S, et al. Mixtures of ionic liquid and sulfolane as electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2014, 147: 704-711

    [143] FANG S H, QU L, LUO D, et al. Novel mixtures of ether-functionalized ionic liquids and non-flammable methylper- fluorobutylether as safe electrolytes for lithium metal batteries[J]. RSC Advances, 2015, 5(43): 33897-33904.

    [144] SHIBUTANI R, TSUTSUMI H. Fire-retardant solid polymer electrolyte films prepared from oxetane derivative with dimethyl phosphate ester group[J]. Journal of Power Sources, 2012, 202: 369-373.

    [145] CAO J W, HE R X, KYU T. Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries[J]. Current Opinion in Chemical Engineering, 2017, 15: 68-75.

    [146] FU G P, SOUCEK M D, KYU T. Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane[J]. Solid State Ionics, 2018, 320: 310-315.

    [147] SHENG O W, JIN C B, LUO J M, et al. Mg2B2O5nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018, 18(5): 3104-3112.

    [148] AKASHI H, SEKAI K, TANAKA K. A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries[J]. Electrochimica Acta, 1998, 43(10/11): 1193-1197.

    [149] LU Q W, FANG J H, YANG J, et al. Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries[J]. Journal of Membrane Science, 2014, 449: 176-183.

    [150] LI G B, CHEN X, MIAO L X, et al. A hybridized solid-gel nonflammable Li-battery[J]. Journal of Power Sources, 2018, 394: 26-34.

    [151] BAIK J H, KIM D G, LEE J H, et al. Nonflammable and thermally stable gel polymer electrolytes based on crosslinked perfluoropolyether (PFPE) network for lithium battery applications[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 453-460.

    [152] KIM S, HAN T, JEONG J, et al. A flame-retardant composite polymer electrolyte for lithium-ion polymer batteries[J]. Electrochimica Acta, 2017, 241: 553-559.

    [153] LEE Y S, KIM D W. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer[J]. Electrochimica Acta, 2013, 106: 460-464.

    [154] KUO P L, TSAO C H, HSU C H, et al. A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries[J]. Journal of Membrane Science, 2016, 499: 462-469.

    [155] GUO Q, P HAN Y, WANG H, et al. Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes[J]. RSC Advances, 2016, 6(103): 101638-101644.

    [156] KARUPPASAMY K, REDDY P A, SRINIVAS G, et al. An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 21(4): 1145-1155.

    [157] GUO Q P, HAN Y, WANG H, et al. Flame Retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries[J]. The Journal of Physical Chemistry C, 2018, 122(19): 10334-10342.

    Research progress of high safety flame retardant electrolytes for lithium-ion batteries

    XU Gaojie1, WANG Xiao1, LU Di1,2, JANG Miaomiao1, HUANG Suqi1,3, SHANGGUAN Xuehui1,4, CUI Guanglei1

    (1Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao Industrial Energy Storage Research Institute, Qingdao 266101, Shandong, China;2College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China;3School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China;4Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, China)

    Commercial lithium-ion batteries (LIBs) are easy to catch fire and even explode under abuse conditions such as mechanical shock, thermal shock, overcharge, and short circuit,. To resolve this safety concern, it is necessary to develop high safety flame retardant electrolytes replacing the highly flammable conventional carbonate-based electrolytes. This review presents the research progress of high safety flame retardant electrolytes for LIBs. Firstly, the mechanisms of combustion and flame retardant, together with the methods of flame retardant evaluation are introduced. Then, the LIBs demands on properties of flame retardant electrolytes are described, and flame retardant electrolytes are discussed by classifications: flame retardant additives; flame retardant solvents/cosolvents; highly concentrated electrolytes; ionic liquids; and flame retardant gel polymer electrolyte. The formulations, flame retardant effects, and applicable battery systems of these high safety flame retardant electrolytes are mainly focused. Finally, future research directions of high safety flame retardant electrolytes are prospected.

    lithium-ion batteries; safety; flame retardant electrolytes

    10.12028/j.issn.2095-4239.2018.0153

    TQ 028.8

    A

    2095-4239(2018)06-1040-20

    2018-08-18;

    2018-09-01。

    國家自然科學(xué)基金項目(51625204,51502319),山東省自然科學(xué)基金項目(ZR2016BQ18)。

    許高潔(1987—),男,助理研究員,主要研究方向為鋰離子電池電解液,E-mail:xugj@qibebt.ac.cn;

    崔光磊,研究員,主要研究方向為電化學(xué)儲能材料及器件,E-mail:cuigl@qibebt.ac.cn。

    猜你喜歡
    磷酸酯乙基碳酸
    什么!碳酸飲料要斷供了?
    冒泡的可樂
    “碳酸鈉與碳酸氫鈉”知識梳理
    大米淀粉磷酸酯的制備及其理化性質(zhì)研究
    硫酸鋅電解液中二(2-乙基己基)磷酸酯的測定
    2-羧乙基苯基次膦酸的胺化處理及其在尼龍6中的阻燃應(yīng)用
    基于Ni2+氧化性和磷酸酯緩蝕性制備水性鋁顏料
    雙[2-(5-硝基-2H-四唑基)-2,2-二硝乙基]硝胺的合成與量子化學(xué)計算
    鑭石型碳酸鐠釹向堿式碳酸鐠釹的相轉(zhuǎn)變反應(yīng)特征及其應(yīng)用
    加速溶劑萃取-氣相色譜測定紡織品中磷酸酯類增塑劑
    絲綢(2014年3期)2014-02-28 14:54:53
    国产精品综合久久久久久久免费| 久久久久久九九精品二区国产| 国产免费男女视频| 亚洲性久久影院| 久久久久久久久中文| 亚洲人成网站在线观看播放| 久久亚洲国产成人精品v| 国产亚洲精品av在线| 免费一级毛片在线播放高清视频| 国产亚洲精品av在线| 精品不卡国产一区二区三区| 亚洲av男天堂| 岛国在线免费视频观看| 亚洲国产精品久久男人天堂| 精品不卡国产一区二区三区| 亚洲综合色惰| 一区二区三区四区激情视频 | 99热这里只有是精品50| 久久久久久大精品| 欧美性感艳星| 好男人视频免费观看在线| 免费搜索国产男女视频| 亚洲av一区综合| 午夜亚洲福利在线播放| 少妇猛男粗大的猛烈进出视频 | 51国产日韩欧美| 国产中年淑女户外野战色| 成年免费大片在线观看| 国产精品伦人一区二区| 在线播放国产精品三级| 国产日韩欧美在线精品| 中国美白少妇内射xxxbb| 一个人看的www免费观看视频| 成人毛片a级毛片在线播放| 黑人高潮一二区| 一本久久中文字幕| 欧美最黄视频在线播放免费| 亚洲精品久久久久久婷婷小说 | 91在线精品国自产拍蜜月| 男人狂女人下面高潮的视频| 熟妇人妻久久中文字幕3abv| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 级片在线观看| 日本-黄色视频高清免费观看| 久久久久久伊人网av| 亚洲五月天丁香| 99热这里只有精品一区| 中文亚洲av片在线观看爽| 亚洲av.av天堂| 一区二区三区免费毛片| 国产成人a区在线观看| 欧美日韩一区二区视频在线观看视频在线 | or卡值多少钱| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99 | 一级黄色大片毛片| av又黄又爽大尺度在线免费看 | 干丝袜人妻中文字幕| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 久久午夜福利片| 欧洲精品卡2卡3卡4卡5卡区| 久久精品91蜜桃| 五月玫瑰六月丁香| 一级黄片播放器| kizo精华| eeuss影院久久| 女人十人毛片免费观看3o分钟| 欧美成人精品欧美一级黄| 日韩,欧美,国产一区二区三区 | 卡戴珊不雅视频在线播放| 午夜福利成人在线免费观看| 国产精品久久久久久久电影| 亚洲精品国产成人久久av| 一级黄片播放器| 中国美白少妇内射xxxbb| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 精品一区二区免费观看| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 午夜a级毛片| 美女内射精品一级片tv| 免费观看精品视频网站| 国产三级在线视频| 欧美成人a在线观看| 日本三级黄在线观看| 小说图片视频综合网站| 亚洲国产欧美人成| 久久草成人影院| 黄色一级大片看看| 久久久久久伊人网av| 99久久精品国产国产毛片| 久久久a久久爽久久v久久| 国产一级毛片七仙女欲春2| 长腿黑丝高跟| 欧美3d第一页| 人人妻人人澡人人爽人人夜夜 | 亚洲第一区二区三区不卡| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说 | 久久韩国三级中文字幕| 日韩视频在线欧美| 亚洲精品亚洲一区二区| 日韩av在线大香蕉| 久久人妻av系列| 亚洲人成网站在线播放欧美日韩| 久久精品综合一区二区三区| 国产v大片淫在线免费观看| 成年版毛片免费区| 国产成人精品婷婷| 男人狂女人下面高潮的视频| av.在线天堂| 又粗又硬又长又爽又黄的视频 | 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 免费看美女性在线毛片视频| 老司机福利观看| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看 | 成熟少妇高潮喷水视频| 欧美精品一区二区大全| 嫩草影院新地址| 亚洲图色成人| 日韩欧美 国产精品| 色哟哟·www| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩东京热| 草草在线视频免费看| 午夜免费激情av| 美女被艹到高潮喷水动态| 日本黄大片高清| 亚洲综合色惰| 久久久久久大精品| 99riav亚洲国产免费| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 日韩国内少妇激情av| 欧美+亚洲+日韩+国产| 日日撸夜夜添| 搡老妇女老女人老熟妇| 人妻少妇偷人精品九色| 日韩欧美国产在线观看| 特级一级黄色大片| 精品人妻偷拍中文字幕| 免费电影在线观看免费观看| 成人无遮挡网站| 老司机福利观看| 免费av不卡在线播放| 亚洲av男天堂| 欧美激情在线99| 老师上课跳d突然被开到最大视频| 12—13女人毛片做爰片一| 美女xxoo啪啪120秒动态图| 成人亚洲精品av一区二区| 精品熟女少妇av免费看| 日本免费a在线| 如何舔出高潮| 91久久精品电影网| 嫩草影院入口| 亚洲成av人片在线播放无| 26uuu在线亚洲综合色| 春色校园在线视频观看| 国产探花极品一区二区| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 国产精品1区2区在线观看.| 欧美精品国产亚洲| 91精品国产九色| 你懂的网址亚洲精品在线观看 | 精品无人区乱码1区二区| 99久久九九国产精品国产免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄片美女视频| 色综合站精品国产| 色尼玛亚洲综合影院| 国产女主播在线喷水免费视频网站 | 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说 | 国产老妇女一区| 一级毛片电影观看 | 国内精品久久久久精免费| 2021天堂中文幕一二区在线观| 亚洲高清免费不卡视频| 色5月婷婷丁香| 99热网站在线观看| 国产单亲对白刺激| 天天躁夜夜躁狠狠久久av| 欧美在线一区亚洲| 尾随美女入室| 少妇的逼好多水| 亚洲av电影不卡..在线观看| 久久久午夜欧美精品| 好男人视频免费观看在线| 天堂av国产一区二区熟女人妻| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片| 一边亲一边摸免费视频| 亚洲第一电影网av| 黄片无遮挡物在线观看| 亚洲精品久久国产高清桃花| 亚洲在久久综合| 五月玫瑰六月丁香| 在线播放国产精品三级| 亚洲精品成人久久久久久| 老司机影院成人| 国产熟女欧美一区二区| АⅤ资源中文在线天堂| 日本在线视频免费播放| 中文欧美无线码| 97热精品久久久久久| 插逼视频在线观看| 国内揄拍国产精品人妻在线| 色综合站精品国产| 精品一区二区三区视频在线| 国内精品久久久久精免费| 国内精品美女久久久久久| 色综合亚洲欧美另类图片| 高清午夜精品一区二区三区 | 亚洲国产精品成人综合色| 99热这里只有精品一区| 大型黄色视频在线免费观看| 岛国在线免费视频观看| 天堂影院成人在线观看| 国产精品久久久久久av不卡| 精品久久久久久久末码| 最近最新中文字幕大全电影3| 人妻夜夜爽99麻豆av| 中国国产av一级| 九九爱精品视频在线观看| 高清午夜精品一区二区三区 | 人妻少妇偷人精品九色| 国产成人精品一,二区 | 一本久久中文字幕| 乱码一卡2卡4卡精品| 成年女人看的毛片在线观看| 日日撸夜夜添| 最近手机中文字幕大全| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 成人国产麻豆网| 最近手机中文字幕大全| 免费人成在线观看视频色| 国产极品天堂在线| 久久6这里有精品| 别揉我奶头 嗯啊视频| 永久网站在线| 搡女人真爽免费视频火全软件| 久久99精品国语久久久| 91久久精品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 精品熟女少妇av免费看| 一级二级三级毛片免费看| 成熟少妇高潮喷水视频| 夫妻性生交免费视频一级片| 哪里可以看免费的av片| 国产69精品久久久久777片| 99久久九九国产精品国产免费| 日日撸夜夜添| 国产成人aa在线观看| 亚洲欧美成人精品一区二区| avwww免费| 日本一二三区视频观看| 欧美一级a爱片免费观看看| 熟女电影av网| 国产男人的电影天堂91| 三级毛片av免费| 国产伦理片在线播放av一区 | 91在线精品国自产拍蜜月| 如何舔出高潮| 日本成人三级电影网站| 国产精品免费一区二区三区在线| 国产人妻一区二区三区在| 97超碰精品成人国产| 亚洲欧美日韩无卡精品| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 又爽又黄无遮挡网站| 国产爱豆传媒在线观看| 成人av在线播放网站| 国产亚洲精品久久久久久毛片| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱 | 色综合色国产| 岛国在线免费视频观看| 亚洲欧美日韩东京热| 嫩草影院精品99| 啦啦啦观看免费观看视频高清| 精品国产三级普通话版| 午夜精品国产一区二区电影 | 久久久久网色| av福利片在线观看| 久久午夜福利片| 亚洲国产精品合色在线| 超碰av人人做人人爽久久| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av| 亚洲av不卡在线观看| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 精品人妻偷拍中文字幕| 国产美女午夜福利| 日本黄大片高清| 亚洲va在线va天堂va国产| 国产精品.久久久| 69人妻影院| 久久久久免费精品人妻一区二区| 中文字幕熟女人妻在线| 国产精品不卡视频一区二区| 国产精品精品国产色婷婷| 久久这里有精品视频免费| 波多野结衣高清作品| 国产在视频线在精品| avwww免费| 晚上一个人看的免费电影| 久久人人精品亚洲av| 精品无人区乱码1区二区| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6| av黄色大香蕉| 国产精品免费一区二区三区在线| 亚洲第一电影网av| 久久精品国产清高在天天线| 高清在线视频一区二区三区 | 长腿黑丝高跟| 久久久精品大字幕| 亚洲18禁久久av| 国产色爽女视频免费观看| 日日撸夜夜添| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 日韩欧美国产在线观看| 99热网站在线观看| 真实男女啪啪啪动态图| 国产一区亚洲一区在线观看| 啦啦啦观看免费观看视频高清| 97超视频在线观看视频| 丝袜喷水一区| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 亚洲18禁久久av| 男女那种视频在线观看| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品| 日本免费一区二区三区高清不卡| 成人亚洲欧美一区二区av| 91午夜精品亚洲一区二区三区| 在线观看美女被高潮喷水网站| av黄色大香蕉| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 欧美高清性xxxxhd video| 白带黄色成豆腐渣| 国产精品一区二区三区四区久久| 少妇熟女欧美另类| 欧美人与善性xxx| 国产精品久久久久久精品电影| 久久精品国产亚洲av涩爱 | 久久人人爽人人片av| 免费av不卡在线播放| 中文字幕熟女人妻在线| 天堂影院成人在线观看| 亚洲自拍偷在线| 在现免费观看毛片| h日本视频在线播放| 听说在线观看完整版免费高清| 老女人水多毛片| 精品久久久久久久久亚洲| 亚洲欧美清纯卡通| 三级男女做爰猛烈吃奶摸视频| videossex国产| 九九在线视频观看精品| 亚洲欧美清纯卡通| 一进一出抽搐gif免费好疼| 熟女人妻精品中文字幕| av在线观看视频网站免费| 麻豆乱淫一区二区| www日本黄色视频网| 欧美另类亚洲清纯唯美| www.色视频.com| 观看免费一级毛片| 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 一个人免费在线观看电影| 亚洲性久久影院| 69人妻影院| 成年版毛片免费区| 国产成人a∨麻豆精品| 成人高潮视频无遮挡免费网站| 99九九线精品视频在线观看视频| 内射极品少妇av片p| 搡老妇女老女人老熟妇| 国内精品一区二区在线观看| 能在线免费看毛片的网站| .国产精品久久| 亚洲高清免费不卡视频| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡免费网站照片| 美女脱内裤让男人舔精品视频 | 亚洲av中文字字幕乱码综合| 激情 狠狠 欧美| 在线播放无遮挡| av在线天堂中文字幕| 欧美人与善性xxx| 一夜夜www| 欧美激情久久久久久爽电影| 免费人成视频x8x8入口观看| 精品不卡国产一区二区三区| 亚洲av免费高清在线观看| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 麻豆久久精品国产亚洲av| 国产老妇伦熟女老妇高清| 日韩欧美 国产精品| 国产精品久久久久久精品电影小说 | 男女那种视频在线观看| 亚洲18禁久久av| 一级毛片aaaaaa免费看小| a级毛片免费高清观看在线播放| 看黄色毛片网站| 国产视频首页在线观看| 亚洲最大成人中文| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 天堂av国产一区二区熟女人妻| or卡值多少钱| 伊人久久精品亚洲午夜| 好男人视频免费观看在线| 亚洲成人av在线免费| 99riav亚洲国产免费| 国产精品一区二区性色av| 欧美xxxx性猛交bbbb| 久久99精品国语久久久| 成熟少妇高潮喷水视频| 国产精品一及| 大又大粗又爽又黄少妇毛片口| 97在线视频观看| 中国美白少妇内射xxxbb| 搡老妇女老女人老熟妇| 夫妻性生交免费视频一级片| 欧美色视频一区免费| 此物有八面人人有两片| 成熟少妇高潮喷水视频| 日韩三级伦理在线观看| 熟妇人妻久久中文字幕3abv| 91在线精品国自产拍蜜月| av天堂中文字幕网| 国产片特级美女逼逼视频| 国产亚洲5aaaaa淫片| 女的被弄到高潮叫床怎么办| 99热只有精品国产| 免费av观看视频| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久久久毛片| 人妻少妇偷人精品九色| 亚洲精品日韩av片在线观看| av黄色大香蕉| 色综合站精品国产| 少妇高潮的动态图| 久久久色成人| 国产精品无大码| 国产高清三级在线| 国产高清视频在线观看网站| 国产伦理片在线播放av一区 | 久久久久免费精品人妻一区二区| 亚洲精品影视一区二区三区av| 三级国产精品欧美在线观看| 干丝袜人妻中文字幕| 国产精品久久久久久精品电影| 一级毛片aaaaaa免费看小| 少妇裸体淫交视频免费看高清| 一个人看的www免费观看视频| 1024手机看黄色片| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 久久久久久国产a免费观看| 伊人久久精品亚洲午夜| 毛片女人毛片| 中文欧美无线码| 尤物成人国产欧美一区二区三区| a级毛片免费高清观看在线播放| 亚洲国产精品合色在线| 好男人在线观看高清免费视频| av在线观看视频网站免费| 亚洲图色成人| 一级毛片电影观看 | 我的老师免费观看完整版| 青春草国产在线视频 | 性欧美人与动物交配| 丰满的人妻完整版| 人人妻人人看人人澡| 免费人成视频x8x8入口观看| 欧美精品一区二区大全| 人妻久久中文字幕网| 波多野结衣高清作品| 亚洲,欧美,日韩| 亚洲欧美清纯卡通| 村上凉子中文字幕在线| 久久久a久久爽久久v久久| 最近视频中文字幕2019在线8| 少妇高潮的动态图| 国产人妻一区二区三区在| 18禁黄网站禁片免费观看直播| 日本一本二区三区精品| 免费观看人在逋| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 久久这里只有精品中国| 欧美变态另类bdsm刘玥| 男女视频在线观看网站免费| 成人毛片a级毛片在线播放| 晚上一个人看的免费电影| 欧美精品国产亚洲| 人妻制服诱惑在线中文字幕| 久久午夜亚洲精品久久| 国产 一区精品| 成人美女网站在线观看视频| 日本爱情动作片www.在线观看| 成年女人看的毛片在线观看| 一级av片app| 国产一区亚洲一区在线观看| 一个人看视频在线观看www免费| 给我免费播放毛片高清在线观看| 少妇人妻一区二区三区视频| 久久久精品大字幕| 亚洲七黄色美女视频| 我的老师免费观看完整版| 欧美成人免费av一区二区三区| 久久人人爽人人爽人人片va| 久久久久国产网址| 能在线免费观看的黄片| 久久亚洲精品不卡| 日韩欧美在线乱码| 亚洲欧美清纯卡通| 久久国产乱子免费精品| 日韩视频在线欧美| 丝袜美腿在线中文| 国产三级中文精品| 亚洲精品456在线播放app| 精品国产三级普通话版| 老女人水多毛片| 免费不卡的大黄色大毛片视频在线观看 | 久久99精品国语久久久| 久久草成人影院| 热99在线观看视频| 十八禁国产超污无遮挡网站| 国产黄a三级三级三级人| 在线国产一区二区在线| 嫩草影院精品99| 日本熟妇午夜| 亚洲欧美日韩无卡精品| 如何舔出高潮| 哪个播放器可以免费观看大片| 国产精品久久电影中文字幕| 在线观看一区二区三区| 国产v大片淫在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 尤物成人国产欧美一区二区三区| 国产成年人精品一区二区| 成人午夜精彩视频在线观看| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看| 18禁在线播放成人免费| 久久久久久久久久成人| 国产黄色小视频在线观看| 国内精品一区二区在线观看| 国模一区二区三区四区视频| 麻豆久久精品国产亚洲av| 久久人人爽人人片av| 免费观看a级毛片全部| 91精品国产九色| 久久久久久久久大av| 可以在线观看毛片的网站| 最近视频中文字幕2019在线8| 成人高潮视频无遮挡免费网站| 成人无遮挡网站| 一进一出抽搐gif免费好疼| 国产亚洲欧美98| 国产精品av视频在线免费观看| 国产高清三级在线| 91久久精品国产一区二区三区| 免费看光身美女| 午夜免费激情av| 欧美+亚洲+日韩+国产| 精品日产1卡2卡| 99热只有精品国产| 在线国产一区二区在线| 两个人视频免费观看高清| 全区人妻精品视频| 一进一出抽搐动态| 黄片wwwwww| 亚洲天堂国产精品一区在线| 欧美性感艳星| 91久久精品电影网| 亚洲天堂国产精品一区在线| 两个人视频免费观看高清| 久久欧美精品欧美久久欧美| 亚洲在线自拍视频| 99久久无色码亚洲精品果冻| 蜜臀久久99精品久久宅男|