• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Bicyclic Graph with the Minimum Distance Laplacian Spectral Radius

    2020-03-07 02:01:56FANDandanNIUAihongWANGGuoping
    工程數(shù)學學報 2020年1期

    FAN Dan-dan, NIU Ai-hong, WANG Guo-ping,

    (1- College of Mathematical and Physical Sciences, Xinjiang Agricultural University, Urumqi 830052;2- School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054)

    Abstract: The largest eigenvalue of the distance Laplacian matrix of a connected graph G is called the distance Laplacian spectral radius of the graph G.In this paper we obtain a sharp lower bound of distance Laplacian spectral radius,and then using the bound we determine the unique graph which has the minimum distance Laplacian spectral radius among all unicyclic graphs.Finally,by using the bound again as well as the characteristics polynomial of a distance Laplacian matrix, we characterize the unique graph with the minimum distance Laplacian spectral radius among all bicyclic graphs.

    Keywords: distance Laplacian spectral radius; unicyclic graph; bicyclic graph

    1 Introduction

    The distance spectral radius of a connected graph has been studied extensively.Bose et al[1]obtained the graph with the maximum distance spectral radius in the class of graphs without a pendant vertex.Yu et al[2,3]determined the graphs having maximum and minimum distance spectral radius among graphs with a given number of pendant vertices and among unicyclic graphs, respectively.Ili[4]determined the graph with the minimum distance spectral radius among the trees with given matching number.Nath and Paul[5]characterized the graphs with the minimum distance spectral radius among all connected bipartite graphs with a given matching number and a given vertex connectivity, respectively.Stevanoviand Ili[6]determined the graph with the maximum distance spectral radius among the trees with fixed maximum degree.

    Aouchiche and Hansen[7]introduced the distance Laplacian and distance signless Laplacian spectral of graphs, respectively.Xing and Zhou[8]gave the graphs with the minimum distance and distance signless Laplacian spectral radius among bicyclic graphs with fixed number of vertices.Xing et al[9]determined the graphs with the minimum distance signless Laplacian spectral radius among the trees,unicyclic graphs,bipartite graphs and the connected graphs with fixed pendant vertices and fixed connectivity, respectively.Aouchiche and Hansen[10]proved that the star Snattains the minimum distance Laplacian spectral radius among all trees of order n.Lin and Zhou[11]determined the graphs with the minimum distance Laplacian spectral radius among the connected graphs with fixed number of pendant vertices and the fixed connectivity, respectively.

    In this paper, we determine the graphs with minimum distance Laplacian spectral radius among unicyclic and bicyclic graphs, respectively.

    2 Main results

    If x = (x1,x2,··· ,xn)Tthen it can be viewed as a function defined on V(G) ={v1,v2,··· ,vn} which maps the vertex vito xi, i.e., x(vi)=xi.Thus we have

    which shows that LD(G) is positive semidefinite.

    Suppose that x is an eigenvector of LD(G) with respect to the eigenvalue μ.Then

    and we call x an eigenvector of G with respect to μ.Throughout the paper, we denote by ?(G) the distance Laplacian spectral radius of G.

    Let tracemax(G) be the maximum transmission of vertices of G.Then we have:

    Lemma 1[12]Let G be a connected graph.Then ?(G)>tracemax(G)+1.

    Suppose that G and H are two graphs.Then we write GH if G and H are isomorphic, and GH otherwise.

    Let Snbe the star on n vertices, andbe the unicyclic graph on n vertices obtained by joining two pendant vertices in Sn.Aouchiche and Hansen[13]conjectured thatattains the minimum distance Laplacian spectral radius among all unicyclic graphs.This has been verified by Tian et al[14].Here we again verify it by the direct computation which is more simple.

    Theorem 1Let G be a connected unicyclic graph on n ≥6 vertices.Then?(G) ≥=2n ? 1 with equality if and only if

    ProofBy a simple computation we can obtain=2n ? 1.

    So we next assume that G ∈ Ck,n?k.

    Case 1k =3.Suppose that G is isomorphic to the graph H1which is shown in Figure 1,where 1 ≤ n1≤ n2, n3=0 or 1 ≤ n1≤ n2≤ n3.Note that n=n1+n2+n3+3.In this case we can choose a pendant vertex v, and by a simple computation we obtain that traceG(v)=(2n ? 2)+(n2+n3? 1) ≥ 2n ? 2.

    Figure 1: The graphs H1 and H2

    Case 2k =4 or 5.Suppose that k =4.If G is isomorphic to the graph H2which is shown in Figure 1,then since n ≥ 6,we easily obtain that traceG(u′)=3n?8 ≥ 2n?2,and otherwise we can choose a pendant vertex v′such that

    Therefore,tracemax(G)≥ 2n?2.When k =5 we can similarly prove that tracemax(G)≥2n ?2.

    Case 36 ≤ k ≤ n?1.We denote bythe graph of Ck,n?kwhere Ckcontains only one attached vertex.It is easy to know that if `v and u′′are respectively pendant vertices of G andthenNote that

    if k is even, and otherwise

    Therefore, tracemax(G)>2n ?2.

    Case 4GCn.Then tracemax(Cn)=if n is even,and otherwise tracemax(Cn)Thus, tracemax(Cn) ≥ 2n ? 2 if n ≥ 7.

    By a simple computation we can obtain that ?(C6) = 13 and so by Lemma 1 we know the result is true.

    Connected graphs in which the number of edges equals the number of vertices plus one are called bicyclic graphs.Define a b-graph to be a graph consisting either of two vertex-disjoint cycles C1and C2and a path P joining them having only its end-verticesandin common with the cycles, or two cycles C1and C2with exactly one vertexin common.The former is called b1-graph and the latter b2-graph.Define a θ-graph to be a graph consisting of two given vertices u0and v0joined by three paths P1, P2and P3with any two of these paths having only the given vertices in common.Obviously,a bicyclic graph is a b-graph or a θ-graph with trees attached.

    Denote by θ1(n1,n2,n3)the θ-graph where the path Piis of length ni+1(i=1,2,3)and n3≥ n2≥ n1.Φ(G,t) = det(tIn? LD(G)) is called the distance Laplacian characteristic polynomial of graph G.

    Lemma 2Let G be a connected bicyclic graph on 6 vertices.Then ?(G) ≥?(θ1(1,1,2)) with equality if and only if Gθ1(1,1,2).

    ProofAll bicyclic graphs on 6 vertices are shown in Figure 2.By a simple computation we can obtain that traceGi(w)≥ 10,and so by Lemma 1,we know ?(Gi)>11 for 1 ≤ i ≤ 11.By direct calculation, we have

    from which we have

    Note that Φ(G17,12) = ?720 < 0, and so ?(G17) > 12.We see G14θ1(1,1,2), and so the result is true.

    Figure 2: All bicyclic graphs on 6 vertices

    Lemma 3Suppose n ≥7.Then we have:

    (i) tracemax(G)≥if G is a b-graph on n vertices;

    (ii) tracemax(G) ≥ 2n ? 2 if G is a θ-graph on n vertices but

    (iii) tracemax(G) ≥ 2n ? 2 if G is a bicyclic graph with pendant vertices but

    Proof(i) Let H3and H4be shown in Figure 3, where w is the vertex which is farthest fromin Ca+1.We easily verify that

    and so traceH3(w)≥traceH4(w).

    Figure 3: The graphs H3 and H4

    Suppose without loss of generality that a+1 ≤ n ? a.Then we haveNow we distinguish two cases to discuss.

    Case 1.1If n is odd, thenThus

    if a is odd, and otherwise traceH4(w)=

    Case 1.2If n is even, thenThus

    if a is odd, and otherwise traceH4(w)=

    These show that (i) is true.

    if n ≥8.This shows that (ii) is true.

    (iii) Suppose that G is b1-graph with trees attached.If w is a pendant vertex of G, then there must be two vertices u1and u2such that dwu1≥ 3 and dwu2≥ 3, from which we can obtain that

    So we assume G is a b2-graph with trees attached.

    Denote by Bm1,m2the set of the bicyclic graphs on n vertices which are b2-graphs with trees attached,where Ciis of length mi(i=1,2).Let Cm1,m2consist of the graphs of Bm1,m2which are b2-graphs with edges attached.

    Let G ∈ Bm1,m2Cm1,m2.Suppose that Tu?is a tree attached at u?∈ Ciand that w?∈ Tu?is one of the pendant vertices which is farthest from u?.Then

    So we next assume that G ∈Cm1,m2.If m1> 3 and m2> 3 then we can choose a pendant vertex w such that

    So we can assume without loss of generality that G ∈Cm1,3.Next we distinguish three cases to discuss.

    Case 2.1m1=3.Suppose that G is isomorphic to the graph H5which is shown in Figure 4, where n1≥1.

    Figure 4: The graphs H5 and H6

    Note that n ≥7.Therefore, if nj= 0(j = 2,3,4,5) then we obtain traceG() =2n ?1, and otherwise

    Case 2.2m1=4 or 5.Suppose that m1=4.If G is isomorphic to the graph H6which is shown in Figure 4 then we easily obtain that traceG(w′) = 3n ? 8 > 2n ? 2,and otherwise we can choose a pendant vertex w′′such that

    Therefore,tracemax(G)>2n?2.When m1=5,we can similarly prove that tracemax(G)>2n ?2.

    Case 2.3m1≥ 6.We denote bythe graph of Cm1,3in which only the vertexis attached by edges.It is easy to know that ifand v′′are respectively pendant vertices of G andthenNote that

    if m1is even, and otherwise

    Therefore, tracemax(G)>2n ?2.

    Denote by P(n1,n2,n3) the set of the bicyclic graphs on n vertices which are θgraphs with trees attached, where Piis of length ni+1(i = 1,2,3).Let(n1,n2,n3)consist of the graphs of P(n1,n2,n3) which are Pni+2with edges attached.

    Let G ∈ P(n1,n2,n3)(n1,n2,n3).Suppose that Tv?is a tree attached at v?∈Pni+2and that∈Tv?is one of the pendant vertices which is farthest from v?.Then dv?≥2 and so

    If n3≥n2≥n1≥1 then we can choose a pendant vertexand find another one vertex z such that≥3.Thus

    If n3≥n2≥2 and n1= 0, then we can also choose a pendant vertexand find two vertices u1and u2such that≥3(i=1,2).Thus

    Case 3.1n3= 1.Suppose G is isomorphic to the graph H7which is shown in Figure 5.

    Figure 5: The graphs H7 and H8

    If s2= s4= 0, then sincewe have s1≥1 and s3≥1.Suppose thatv1is a pendant edge.Then

    If s20 andis a pendant edge then

    Therefore, tracemax(G) ≥ 2n ? 2.If s40, we can similarly prove that tracemax(G) ≥2n ?2.

    Case 3.2n3=2 or 3.Suppose that n3=2.Note that n ≥7.If G is isomorphic to the graph H8which is shown in Figure 5, then we easily obtain that traceG() =3n?9 ≥2n?2,and otherwise we can choose a pendant vertexsuch that traceG()>2n ? 2.Therefore, tracemax(G) ≥ 2n ? 2.When n3= 3, we can similarly prove that tracemax(G)>2n ?2.

    Denote by θ(n1,n2,n3) the graph of(n1,n2,n3) in which only the vertex u0is attached by edges.

    Case 3.3n3≥4.It is easy to know that ifandare respectively pendant vertices of G and θ(0,1,n3) then traceG()≥traceθ(0,1,n3)().Note that

    if n3is even, and otherwise

    Therefore, tracemax(G)>2n ?2.

    Theorem 2Suppose that G is a bicyclic graph on n ≥6 vertices.Then we have:

    (i) If n=6, then ?(G) ≥ θ1(1,1,2) with equality if and only if Gθ1(1,1,2);

    ProofBy a simple computation we know

    啦啦啦 在线观看视频| 操美女的视频在线观看| 国产片内射在线| 色视频在线一区二区三区| 搡老熟女国产l中国老女人| 亚洲五月色婷婷综合| 狠狠精品人妻久久久久久综合| 欧美成人午夜精品| 97在线人人人人妻| 国产xxxxx性猛交| 国产在线免费精品| 超色免费av| 性少妇av在线| 国产亚洲精品一区二区www | 97人妻天天添夜夜摸| 老司机靠b影院| 久久久国产欧美日韩av| 大香蕉久久网| 高清毛片免费观看视频网站 | 午夜精品国产一区二区电影| 精品人妻在线不人妻| 性高湖久久久久久久久免费观看| 午夜福利在线观看吧| 老司机午夜十八禁免费视频| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 天天影视国产精品| 99精国产麻豆久久婷婷| 久久久国产成人免费| 成人影院久久| 亚洲五月色婷婷综合| 欧美av亚洲av综合av国产av| 国产精品一区二区在线观看99| tocl精华| 国产在线精品亚洲第一网站| 一级a爱视频在线免费观看| 侵犯人妻中文字幕一二三四区| 色老头精品视频在线观看| 黄色丝袜av网址大全| 日韩欧美三级三区| 色在线成人网| av天堂在线播放| 免费黄频网站在线观看国产| 午夜免费成人在线视频| 成人av一区二区三区在线看| 悠悠久久av| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区精品视频观看| 美女国产高潮福利片在线看| 欧美激情久久久久久爽电影 | 国产精品九九99| 国产成人精品无人区| 精品午夜福利视频在线观看一区 | 国产野战对白在线观看| av有码第一页| 99热国产这里只有精品6| 国产日韩一区二区三区精品不卡| 国产精品亚洲一级av第二区| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 精品国产乱子伦一区二区三区| 色老头精品视频在线观看| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 国产av又大| 夫妻午夜视频| 99九九在线精品视频| www.自偷自拍.com| 国产一区二区激情短视频| 国产精品偷伦视频观看了| 亚洲第一欧美日韩一区二区三区 | 日韩欧美国产一区二区入口| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 黄色a级毛片大全视频| 午夜激情av网站| 免费看a级黄色片| 岛国毛片在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区久久| 国产男靠女视频免费网站| 捣出白浆h1v1| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频 | 大陆偷拍与自拍| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 亚洲专区中文字幕在线| a级片在线免费高清观看视频| 高清毛片免费观看视频网站 | 一个人免费看片子| 国产免费福利视频在线观看| 精品福利永久在线观看| 欧美日韩黄片免| 国产成人欧美在线观看 | 亚洲七黄色美女视频| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区91| 两性夫妻黄色片| 首页视频小说图片口味搜索| 国产精品 欧美亚洲| 男男h啪啪无遮挡| 欧美国产精品va在线观看不卡| 777久久人妻少妇嫩草av网站| 欧美乱码精品一区二区三区| xxxhd国产人妻xxx| 国产av国产精品国产| 国精品久久久久久国模美| netflix在线观看网站| 高潮久久久久久久久久久不卡| 大片免费播放器 马上看| 亚洲中文字幕日韩| 在线亚洲精品国产二区图片欧美| 乱人伦中国视频| 国产真人三级小视频在线观看| 国产精品久久久av美女十八| 精品视频人人做人人爽| 18禁国产床啪视频网站| 亚洲av美国av| 久久精品人人爽人人爽视色| 久久精品国产亚洲av高清一级| 69av精品久久久久久 | 别揉我奶头~嗯~啊~动态视频| 99香蕉大伊视频| 久久久久久亚洲精品国产蜜桃av| 91老司机精品| 精品国产国语对白av| 欧美精品啪啪一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 丰满饥渴人妻一区二区三| 自线自在国产av| 久久精品国产亚洲av香蕉五月 | a级毛片在线看网站| 精品第一国产精品| 久久人人97超碰香蕉20202| 国产又爽黄色视频| 男女边摸边吃奶| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产色婷婷电影| 超色免费av| 91成人精品电影| 国产成人系列免费观看| 日韩欧美一区视频在线观看| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| 1024视频免费在线观看| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区精品| svipshipincom国产片| av免费在线观看网站| 少妇被粗大的猛进出69影院| 一边摸一边抽搐一进一小说 | 黄片播放在线免费| 免费日韩欧美在线观看| 80岁老熟妇乱子伦牲交| 18在线观看网站| 精品第一国产精品| 乱人伦中国视频| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面| 国产在视频线精品| 久久久精品免费免费高清| a级毛片在线看网站| xxxhd国产人妻xxx| 波多野结衣av一区二区av| 免费观看人在逋| 亚洲成国产人片在线观看| 色老头精品视频在线观看| 国产高清激情床上av| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 中文字幕人妻熟女乱码| 丰满少妇做爰视频| 美女午夜性视频免费| 国内毛片毛片毛片毛片毛片| 久久久国产一区二区| 午夜福利影视在线免费观看| 国产亚洲一区二区精品| 美女午夜性视频免费| 热99久久久久精品小说推荐| 黑丝袜美女国产一区| 麻豆国产av国片精品| 欧美另类亚洲清纯唯美| 亚洲欧美日韩高清在线视频 | 他把我摸到了高潮在线观看 | www.精华液| 免费一级毛片在线播放高清视频 | 手机成人av网站| 久久久久久久国产电影| 亚洲专区中文字幕在线| 国产真人三级小视频在线观看| 美女高潮到喷水免费观看| 欧美乱妇无乱码| 亚洲 欧美一区二区三区| 99久久人妻综合| 久久中文字幕一级| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 国产成人一区二区三区免费视频网站| 亚洲va日本ⅴa欧美va伊人久久| 人妻一区二区av| 麻豆国产av国片精品| 国产成人精品久久二区二区免费| 欧美精品高潮呻吟av久久| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 国产深夜福利视频在线观看| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 国产男靠女视频免费网站| 亚洲人成电影观看| 精品国产国语对白av| 国产男靠女视频免费网站| 汤姆久久久久久久影院中文字幕| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 在线观看免费午夜福利视频| 在线 av 中文字幕| 久久久水蜜桃国产精品网| 国产片内射在线| 日本黄色视频三级网站网址 | 午夜激情av网站| 日韩免费av在线播放| h视频一区二区三区| 国产一区二区三区在线臀色熟女 | 动漫黄色视频在线观看| 无遮挡黄片免费观看| 国产欧美亚洲国产| 久久天躁狠狠躁夜夜2o2o| 极品人妻少妇av视频| 黄片播放在线免费| 国产精品一区二区精品视频观看| 免费黄频网站在线观看国产| 国产一区二区三区综合在线观看| 18在线观看网站| 久久久国产一区二区| 无限看片的www在线观看| 91字幕亚洲| 深夜精品福利| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲专区中文字幕在线| 考比视频在线观看| videosex国产| 中亚洲国语对白在线视频| 别揉我奶头~嗯~啊~动态视频| av网站在线播放免费| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人 | 国产一区二区激情短视频| 99riav亚洲国产免费| 老司机福利观看| 男男h啪啪无遮挡| 国产无遮挡羞羞视频在线观看| 成年动漫av网址| 人人妻人人澡人人爽人人夜夜| 嫁个100分男人电影在线观看| 精品欧美一区二区三区在线| 色综合婷婷激情| 欧美 日韩 精品 国产| 宅男免费午夜| 午夜老司机福利片| 亚洲五月色婷婷综合| 热99久久久久精品小说推荐| 国产97色在线日韩免费| 免费在线观看影片大全网站| 91成年电影在线观看| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| 日韩中文字幕视频在线看片| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说 | 午夜福利影视在线免费观看| 宅男免费午夜| 一区二区av电影网| 免费在线观看影片大全网站| av超薄肉色丝袜交足视频| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 午夜激情久久久久久久| 男人舔女人的私密视频| 成人手机av| 精品久久久精品久久久| 欧美黑人欧美精品刺激| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| 香蕉国产在线看| 丰满少妇做爰视频| 日韩视频一区二区在线观看| 国产片内射在线| 国产深夜福利视频在线观看| 久久性视频一级片| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 一级毛片女人18水好多| kizo精华| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 亚洲人成77777在线视频| 看免费av毛片| 国产不卡av网站在线观看| 黄色片一级片一级黄色片| 亚洲精品在线美女| 69av精品久久久久久 | 久久国产精品大桥未久av| 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 妹子高潮喷水视频| 人成视频在线观看免费观看| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 三级毛片av免费| 少妇 在线观看| 久久久久久久精品吃奶| 精品国产国语对白av| 一本一本久久a久久精品综合妖精| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 99riav亚洲国产免费| 超碰成人久久| 女人久久www免费人成看片| 黄色a级毛片大全视频| 成年动漫av网址| 国产麻豆69| 一级黄色大片毛片| 老鸭窝网址在线观看| 99国产精品99久久久久| 日本精品一区二区三区蜜桃| 黑人欧美特级aaaaaa片| av欧美777| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 人人妻人人澡人人看| 欧美 日韩 精品 国产| 两性夫妻黄色片| 建设人人有责人人尽责人人享有的| 电影成人av| 手机成人av网站| 国产福利在线免费观看视频| 国产精品国产高清国产av | 两人在一起打扑克的视频| 乱人伦中国视频| 午夜老司机福利片| 极品少妇高潮喷水抽搐| 成人国产av品久久久| 操出白浆在线播放| 嫩草影视91久久| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 成人黄色视频免费在线看| 欧美日韩黄片免| 两性夫妻黄色片| 午夜福利视频精品| 久久中文字幕人妻熟女| 一本色道久久久久久精品综合| 欧美精品啪啪一区二区三区| 久久狼人影院| 一级片免费观看大全| 国产色视频综合| 国产精品.久久久| 一区二区av电影网| 香蕉久久夜色| 丝瓜视频免费看黄片| 日韩欧美三级三区| 久久中文字幕人妻熟女| 久久久久久亚洲精品国产蜜桃av| 免费在线观看视频国产中文字幕亚洲| 久久久国产欧美日韩av| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 999久久久国产精品视频| av电影中文网址| 免费黄频网站在线观看国产| 女人久久www免费人成看片| 久久久久视频综合| 欧美人与性动交α欧美软件| 巨乳人妻的诱惑在线观看| 亚洲精品中文字幕一二三四区 | 欧美国产精品va在线观看不卡| 天堂动漫精品| 中亚洲国语对白在线视频| 久久热在线av| 久久久久久久大尺度免费视频| 午夜福利在线免费观看网站| 美女主播在线视频| 亚洲av成人一区二区三| tube8黄色片| 18在线观看网站| 国精品久久久久久国模美| 丝袜喷水一区| 人成视频在线观看免费观看| 高潮久久久久久久久久久不卡| 女人被躁到高潮嗷嗷叫费观| 国产精品自产拍在线观看55亚洲 | 香蕉国产在线看| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 一级黄色大片毛片| 免费观看a级毛片全部| 国产精品一区二区精品视频观看| 天天操日日干夜夜撸| 一级a爱视频在线免费观看| 久久久久久久精品吃奶| 午夜福利影视在线免费观看| 国产福利在线免费观看视频| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 亚洲午夜精品一区,二区,三区| 狠狠婷婷综合久久久久久88av| av国产精品久久久久影院| 人妻一区二区av| 欧美大码av| 日韩视频在线欧美| 免费久久久久久久精品成人欧美视频| 久久精品熟女亚洲av麻豆精品| av一本久久久久| 精品人妻在线不人妻| 久久这里只有精品19| 少妇精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| 午夜两性在线视频| 两性夫妻黄色片| 一区二区三区激情视频| av网站免费在线观看视频| 国产精品1区2区在线观看. | 久久亚洲真实| 老司机亚洲免费影院| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 欧美精品一区二区大全| 欧美国产精品va在线观看不卡| 啦啦啦 在线观看视频| 大片电影免费在线观看免费| 久久精品熟女亚洲av麻豆精品| av福利片在线| 少妇 在线观看| 中国美女看黄片| 变态另类成人亚洲欧美熟女 | 午夜91福利影院| 国产免费现黄频在线看| 窝窝影院91人妻| 久久国产精品大桥未久av| 色综合婷婷激情| 搡老熟女国产l中国老女人| 国产欧美亚洲国产| 男男h啪啪无遮挡| 十八禁网站免费在线| 看免费av毛片| 啦啦啦 在线观看视频| 精品国内亚洲2022精品成人 | 好男人电影高清在线观看| 国产97色在线日韩免费| 国产精品久久久av美女十八| 国产人伦9x9x在线观看| 国产欧美日韩精品亚洲av| 国产片内射在线| 1024香蕉在线观看| 久久热在线av| 90打野战视频偷拍视频| 国产成人免费无遮挡视频| 免费观看av网站的网址| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品一区二区三区在线| 亚洲熟女毛片儿| 嫁个100分男人电影在线观看| 水蜜桃什么品种好| 国产成人影院久久av| 在线观看免费视频日本深夜| 女警被强在线播放| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 亚洲国产成人一精品久久久| 三级毛片av免费| 十八禁高潮呻吟视频| 国产亚洲午夜精品一区二区久久| 91麻豆精品激情在线观看国产 | 黄片大片在线免费观看| 亚洲中文字幕日韩| 91国产中文字幕| 人人妻,人人澡人人爽秒播| e午夜精品久久久久久久| 久热这里只有精品99| av天堂久久9| 亚洲第一av免费看| 黄片播放在线免费| 亚洲精品粉嫩美女一区| 欧美人与性动交α欧美软件| 男女下面插进去视频免费观看| 黄色视频在线播放观看不卡| 午夜精品久久久久久毛片777| 91字幕亚洲| 成人黄色视频免费在线看| 国产欧美日韩一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频网站a站| 国产人伦9x9x在线观看| 人人妻人人爽人人添夜夜欢视频| 国产免费视频播放在线视频| 久久中文字幕一级| 99久久99久久久精品蜜桃| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 露出奶头的视频| 成年版毛片免费区| 十八禁人妻一区二区| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 免费不卡黄色视频| 日本欧美视频一区| 欧美久久黑人一区二区| 啦啦啦 在线观看视频| 亚洲av片天天在线观看| 夜夜爽天天搞| 欧美日韩黄片免| 一进一出抽搐动态| 狠狠精品人妻久久久久久综合| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利一区二区在线看| 久久人人爽av亚洲精品天堂| 国产精品免费一区二区三区在线 | 窝窝影院91人妻| 免费看a级黄色片| 国产黄色免费在线视频| 国产成+人综合+亚洲专区| 久久久水蜜桃国产精品网| 亚洲情色 制服丝袜| 日韩 欧美 亚洲 中文字幕| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 亚洲五月色婷婷综合| 欧美在线一区亚洲| 成人精品一区二区免费| 亚洲久久久国产精品| 久久久久精品国产欧美久久久| videos熟女内射| 国产成人av教育| 丝袜在线中文字幕| 国产成人影院久久av| 9热在线视频观看99| 精品国产一区二区三区久久久樱花| svipshipincom国产片| 少妇精品久久久久久久| 久久香蕉激情| 日韩欧美国产一区二区入口| 777米奇影视久久| 国产欧美日韩一区二区三| 精品卡一卡二卡四卡免费| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频| 国产精品 国内视频| 久久久精品区二区三区| 香蕉国产在线看| 美女午夜性视频免费| 91大片在线观看| 国产一区二区激情短视频| 欧美性长视频在线观看| a级毛片在线看网站| 一边摸一边做爽爽视频免费| 久9热在线精品视频| 日本五十路高清| 亚洲综合色网址| 成人免费观看视频高清| 黑人操中国人逼视频| 久久久久久久精品吃奶| www.自偷自拍.com| 久久久国产一区二区| 99精品欧美一区二区三区四区| 精品久久久精品久久久| 亚洲精华国产精华精| 激情视频va一区二区三区| 一本色道久久久久久精品综合| 蜜桃在线观看..| 啦啦啦在线免费观看视频4| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 国产极品粉嫩免费观看在线| 另类亚洲欧美激情| 国产精品电影一区二区三区 | 久久免费观看电影| 国产成人欧美| 久久精品国产99精品国产亚洲性色 | 亚洲精品国产区一区二| 菩萨蛮人人尽说江南好唐韦庄| 美女高潮喷水抽搐中文字幕| 大片免费播放器 马上看| 男女下面插进去视频免费观看| 亚洲av成人不卡在线观看播放网| 高清av免费在线| 高清视频免费观看一区二区| 下体分泌物呈黄色| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 亚洲精品国产色婷婷电影| 成人免费观看视频高清| 亚洲色图av天堂| 69精品国产乱码久久久| 久久久国产欧美日韩av| 国产一区二区 视频在线| 亚洲九九香蕉| 不卡av一区二区三区| 一区二区三区精品91| 欧美 日韩 精品 国产| 成人影院久久| 日韩视频一区二区在线观看| 精品福利观看|